import gradio as gr

############### VANILLA INFERENCE ###############
# from transformers import AutoModelForSeq2SeqLM, AutoTokenizer

# model_path = "anzorq/m2m100_418M_ft_ru-kbd_44K"  
# src_lang="ru" 
# tgt_lang="zu"

# # tokenizer = AutoTokenizer.from_pretrained(model_path, src_lang=src_lang)
# tokenizer = AutoTokenizer.from_pretrained(model_path)
# model = AutoModelForSeq2SeqLM.from_pretrained(model_path, use_safetensors=True)#, load_in_4bit=True, device_map="auto")
# model.to_bettertransformer()

# def translate(text, num_beams=4, num_return_sequences=4):
#   inputs = tokenizer(text, return_tensors="pt")

#   num_return_sequences = min(num_return_sequences, num_beams)

#   translated_tokens = model.generate(
#       **inputs, forced_bos_token_id=tokenizer.lang_code_to_id[tgt_lang], num_beams=num_beams, num_return_sequences=num_return_sequences
#   )

#   translations = []
#   for translation in tokenizer.batch_decode(translated_tokens, skip_special_tokens=True):
#       translations.append(translation)

#   # result = {"input":text, "translations":translations}
#   return text, translations


############### IPEX OPTIMIZED INFERENCE ###############
# from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
# from optimum.bettertransformer import BetterTransformer
# import intel_extension_for_pytorch as ipex
# from transformers.modeling_outputs import BaseModelOutput
# import torch

# model_path = "anzorq/m2m100_418M_ft_ru-kbd_44K"
# src_lang = "ru"
# tgt_lang = "zu"

# tokenizer = AutoTokenizer.from_pretrained(model_path)
# model = AutoModelForSeq2SeqLM.from_pretrained(model_path)

# # flash attention optimization
# model = BetterTransformer.transform(model, keep_original_model=False)

# # ipex optimization
# model.eval()
# model = ipex.optimize(model, dtype=torch.float, level="O1", conv_bn_folding=False, inplace=True)

# # Get the encoder
# encoder = model.get_encoder()

# # Prepare an example input for the encoder
# example_input_text = "Example text in Russian"
# inputs_example = tokenizer(example_input_text, return_tensors="pt")

# # Trace just the encoder with strict=False
# scripted_encoder = torch.jit.trace(encoder, inputs_example['input_ids'], strict=False)

# def translate(text, num_beams=4, num_return_sequences=4):
#     inputs = tokenizer(text, return_tensors="pt")
#     num_return_sequences = min(num_return_sequences, num_beams)

#     # Use the scripted encoder for the first step of inference
#     encoder_output_dict = scripted_encoder(inputs['input_ids'])
#     encoder_outputs = BaseModelOutput(last_hidden_state=encoder_output_dict['last_hidden_state'])

#     # Use the original, untraced model for the second step, passing the encoder's outputs as inputs
#     translated_tokens = model.generate(
#         encoder_outputs=encoder_outputs,
#         forced_bos_token_id=tokenizer.lang_code_to_id[tgt_lang], 
#         num_beams=num_beams, 
#         num_return_sequences=num_return_sequences
#     )

#     translations = [tokenizer.decode(translation, skip_special_tokens=True) for translation in translated_tokens]
#     return text, translations

# ############### ONNX MODEL INFERENCE ###############
# from transformers import AutoTokenizer, pipeline
# from optimum.onnxruntime import ORTModelForSeq2SeqLM

# model_id = "anzorq/m2m100_418M_ft_ru-kbd_44K"

# model = ORTModelForSeq2SeqLM.from_pretrained(model_id, subfolder="onnx", file_name="encoder_model_optimized.onnx")
# tokenizer = AutoTokenizer.from_pretrained(model_id)

# def translate(text, num_beams=4, num_return_sequences=4):
#   inputs = tokenizer(text, return_tensors="pt")

#   num_return_sequences = min(num_return_sequences, num_beams)

#   translated_tokens = model.generate(
#       **inputs, forced_bos_token_id=tokenizer.lang_code_to_id["zu"], num_beams=num_beams, num_return_sequences=num_return_sequences
#   )

#   translations = []
#   for translation in tokenizer.batch_decode(translated_tokens, skip_special_tokens=True):
#       translations.append(translation)

#   return text, translations


############### CTRANSLATE2 INFERENCE ###############
import ctranslate2
import transformers

translator = ctranslate2.Translator("ctranslate2")
tokenizer = transformers.AutoTokenizer.from_pretrained("anzorq/m2m100_418M_ft_ru-kbd_44K")

def translate(text, num_beams=4, num_return_sequences=4):

    num_return_sequences = min(num_return_sequences, num_beams)

    source = tokenizer.convert_ids_to_tokens(tokenizer.encode(text))
    target_prefix = [tokenizer.lang_code_to_token["zu"]]
    results = translator.translate_batch(
        [source],
        target_prefix=[target_prefix],
        beam_size=num_beams,
        num_hypotheses=num_return_sequences
    )
    
    translations = []
    for hypothesis in results[0].hypotheses:
        target = hypothesis[1:]
        decoded_sentence = tokenizer.decode(tokenizer.convert_tokens_to_ids(target))
        translations.append(decoded_sentence)
    
    return text, translations

output = gr.Textbox()
# with gr.Accordion("Advanced Options"):
num_beams = gr.Slider(2, 10, step=1, label="Number of beams", value=4)
num_return_sequences = gr.Slider(2, 10, step=1, label="Number of returned sentences", value=4)


title = "Russian-Circassian translator demo"
article = "<p style='text-align: center'>Want to help? Join the <a href='https://discord.gg/cXwv495r' target='_blank'>Discord server</a></p>"

# examples = [
#     ["Мы идем домой"],
#     ["Сегодня хорошая погода"],
#     ["Дети играют во дворе"],
#     ["We live in a big house"],
#     ["Tu es une bonne personne."],
#     ["أين تعيش؟"],
#     ["Bir şeyler yapmak istiyorum."],
#     ["– Если я его отпущу, то ты вовек не сможешь его поймать, – заявил Сосруко."],
#     ["Как только старик ушел, Сатаней пошла к Саусырыко."],
#     ["我永远不会放弃你。"],
#     ["우리는 소치에 살고 있습니다."],
# ]

gr.Interface(
  fn=translate,
  inputs=["text", num_beams, num_return_sequences],
  outputs=["text", output],
  title=title,
  # examples=examples,
  article=article).launch()

# import gradio as gr

# title = "Русско-черкесский переводчик"
# description = "Demo of a Russian-Circassian (Kabardian dialect) translator. <br>It is based on Facebook's <a href=\"https://about.fb.com/news/2020/10/first-multilingual-machine-translation-model/\">M2M-100 model</a> machine learning model, and has been trained on 45,000 Russian-Circassian sentence pairs. <br>It can also translate from 100 other languages to Circassian (English, French, Spanish, etc.), but less accurately. <br>The data corpus is constantly being expanded, and we need help in finding sentence sources, OCR, data cleaning, etc. <br>If you are interested in helping out with this project, please contact me at the link below.<br><br>This is only a demo, not a finished product. Translation quality is still low and will improve with time and more data.<br>45,000 sentence pairs is not enough to create an accurate machine translation model, and more data is needed.<br>You can help by finding sentence sources (books, web pages, etc.), scanning books, OCRing documents, data cleaning, and other tasks.<br><br>If you are interested in helping out with this project, contact me at the link below."
# article = """<p style='text-align: center'><a href='https://arxiv.org/abs/1806.00187'>Scaling Neural Machine Translation</a> | <a href='https://github.com/pytorch/fairseq/'>Github Repo</a></p>"""

# examples = [
#     ["Мы идем домой"],
#     ["Сегодня хорошая погода"],
#     ["Дети играют во дворе"],
#     ["We live in a big house"],
#     ["Tu es une bonne personne."],
#     ["أين تعيش؟"],
#     ["Bir şeyler yapmak istiyorum."],
# ]

# gr.Interface.load("models/anzorq/m2m100_418M_ft_ru-kbd_44K", title=title, description=description, article=article, examples=examples).launch()