File size: 4,692 Bytes
7abf701
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3319cd3
 
 
 
 
 
 
 
7abf701
 
3319cd3
7abf701
 
3319cd3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7abf701
 
 
 
3319cd3
7abf701
 
07da4e5
3319cd3
7abf701
 
 
 
 
 
 
 
 
 
 
3319cd3
 
7abf701
 
 
 
 
 
 
 
3319cd3
7abf701
 
 
 
3319cd3
7abf701
3319cd3
7abf701
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
import gradio as gr
import numpy as np
import random
import spaces
import torch
from diffusers import DiffusionPipeline

dtype = torch.bfloat16
device = "cuda" if torch.cuda.is_available() else "cpu"

pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=dtype).to(device)

MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 2048

@spaces.GPU()
def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, num_inference_steps=4, progress=gr.Progress(track_tqdm=True)):
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    generator = torch.Generator().manual_seed(seed)
    image = pipe(
            prompt = prompt,
            width = width,
            height = height,
            num_inference_steps = num_inference_steps,
            generator = generator,
            guidance_scale=0.0
    ).images[0]
    return image, seed

examples = [
    "Create a new logo for a tech startup",
    "Design an engaging Instagram post for a fashion brand",
    "Create a new character for a social media campaign",
    "Generate a marketing advertisement for a new product launch",
    "Design a social media banner for a charity event",
    "Create a new branding concept for a luxury hotel",
    "Design a promotional video thumbnail for a movie premiere",
    "Generate a marketing campaign for a sustainable lifestyle brand"
]

css = """
#col-container {
    margin: 0 auto;
    max-width: 800px;
    padding: 20px;
    border-radius: 10px;
    box-shadow: 0px 0px 10px rgba(0, 0, 0, 0.1);
}

#title {
    text-align: center;
    font-size: 32px;
    font-weight: bold;
    margin-bottom: 20px;
}

#prompt {
    margin-bottom: 20px;
}

#result {
    margin-bottom: 20px;
}

#advanced-settings {
    margin-bottom: 20px;
}

#footer {
    text-align: center;
    font-size: 14px;
    color: #888;
}
"""

footer = """
<div id="footer">
    <a href="https://www.linkedin.com/in/pejman-ebrahimi-4a60151a7/" target="_blank">LinkedIn</a> |
    <a href="https://github.com/arad1367" target="_blank">GitHub</a> |
    <a href="https://arad1367.pythonanywhere.com/" target="_blank">Live demo of my PhD defense</a> |
    <a href="https://huggingface.co/black-forest-labs/FLUX.1-schnell" target="_blank">black-forest-labs/FLUX.1-schnell</a>
    <br>
    Made with πŸ’– by Pejman Ebrahimi
</div>
"""

with gr.Blocks(css=css, theme='gradio/soft') as demo:

    with gr.Column(elem_id="col-container"):
        gr.Markdown("""
        # FLUX.1 Schnell Marketing Assistant

        This app uses the FLUX.1 Schnell model to generate high-quality images based on your prompt. Use it to create new logos, social media content, marketing advertisements, and more.
        """, elem_id="title")

        with gr.Row():
            prompt = gr.Text(
                label="Prompt",
                show_label=False,
                max_lines=1,
                placeholder="Enter your prompt",
                container=False,
                elem_id="prompt"
            )

            run_button = gr.Button("Run", scale=0)

        result = gr.Image(label="Result", show_label=False, elem_id="result")

        with gr.Accordion("Advanced Settings", open=False, elem_id="advanced-settings"):
            seed = gr.Slider(
                label="Seed",
                minimum=0,
                maximum=MAX_SEED,
                step=1,
                value=0,
            )

            randomize_seed = gr.Checkbox(label="Randomize seed", value=True)

            with gr.Row():
                width = gr.Slider(
                    label="Width",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=1024,
                )

                height = gr.Slider(
                    label="Height",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=1024,
                )

            with gr.Row():
                num_inference_steps = gr.Slider(
                    label="Number of inference steps",
                    minimum=1,
                    maximum=50,
                    step=1,
                    value=4,
                )

        gr.Examples(
            examples = examples,
            fn = infer,
            inputs = [prompt],
            outputs = [result, seed],
            cache_examples="lazy"
        )

        gr.HTML(footer)

    gr.on(
        triggers=[run_button.click, prompt.submit],
        fn = infer,
        inputs = [prompt, seed, randomize_seed, width, height, num_inference_steps],
        outputs = [result, seed]
    )

demo.launch()