Spaces:
Running
on
Zero
Running
on
Zero
import spaces | |
import os | |
import time | |
import torch | |
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer, BitsAndBytesConfig, AutoProcessor | |
import gradio as gr | |
from threading import Thread | |
from PIL import Image | |
import subprocess | |
# Install flash-attn if not already installed | |
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True) | |
# Model and tokenizer for the chatbot | |
MODEL_ID1 = "microsoft/Phi-3.5-mini-instruct" | |
MODEL_LIST1 = ["microsoft/Phi-3.5-mini-instruct"] | |
HF_TOKEN = os.environ.get("HF_TOKEN", None) | |
device = "cuda" if torch.cuda.is_available() else "cpu" # for GPU usage or "cpu" for CPU usage / But you need GPU :) | |
quantization_config = BitsAndBytesConfig( | |
load_in_4bit=True, | |
bnb_4bit_compute_dtype=torch.bfloat16, | |
bnb_4bit_use_double_quant=True, | |
bnb_4bit_quant_type="nf4") | |
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID1) | |
model = AutoModelForCausalLM.from_pretrained( | |
MODEL_ID1, | |
torch_dtype=torch.bfloat16, | |
device_map="auto", | |
quantization_config=quantization_config) | |
# Chatbot tab function | |
def stream_chat( | |
message: str, | |
history: list, | |
system_prompt: str, | |
temperature: float = 0.8, | |
max_new_tokens: int = 1024, | |
top_p: float = 1.0, | |
top_k: int = 20, | |
penalty: float = 1.2, | |
): | |
print(f'message: {message}') | |
print(f'history: {history}') | |
conversation = [ | |
{"role": "system", "content": system_prompt} | |
] | |
for prompt, answer in history: | |
conversation.extend([ | |
{"role": "user", "content": prompt}, | |
{"role": "assistant", "content": answer}, | |
]) | |
conversation.append({"role": "user", "content": message}) | |
input_ids = tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt").to(model.device) | |
streamer = TextIteratorStreamer(tokenizer, timeout=60.0, skip_prompt=True, skip_special_tokens=True) | |
generate_kwargs = dict( | |
input_ids=input_ids, | |
max_new_tokens = max_new_tokens, | |
do_sample = False if temperature == 0 else True, | |
top_p = top_p, | |
top_k = top_k, | |
temperature = temperature, | |
eos_token_id=[128001,128008,128009], | |
streamer=streamer, | |
) | |
with torch.no_grad(): | |
thread = Thread(target=model.generate, kwargs=generate_kwargs) | |
thread.start() | |
buffer = "" | |
for new_text in streamer: | |
buffer += new_text | |
yield buffer | |
# Vision model setup | |
models = { | |
"microsoft/Phi-3.5-vision-instruct": AutoModelForCausalLM.from_pretrained("microsoft/Phi-3.5-vision-instruct", trust_remote_code=True, torch_dtype="auto", _attn_implementation="flash_attention_2").cuda().eval() | |
} | |
processors = { | |
"microsoft/Phi-3.5-vision-instruct": AutoProcessor.from_pretrained("microsoft/Phi-3.5-vision-instruct", trust_remote_code=True) | |
} | |
user_prompt = '\n' | |
assistant_prompt = '\n' | |
prompt_suffix = "\n" | |
# Vision model tab function | |
def stream_vision(image, text_input=None, model_id="microsoft/Phi-3.5-vision-instruct"): | |
model = models[model_id] | |
processor = processors[model_id] | |
# Prepare the image list and corresponding tags | |
images = [Image.fromarray(image).convert("RGB")] | |
placeholder = "<|image_1|>\n" # Using the image tag as per the example | |
# Construct the prompt with the image tag and the user's text input | |
if text_input: | |
prompt_content = placeholder + text_input | |
else: | |
prompt_content = placeholder | |
messages = [ | |
{"role": "user", "content": prompt_content}, | |
] | |
# Apply the chat template to the messages | |
prompt = processor.tokenizer.apply_chat_template( | |
messages, | |
tokenize=False, | |
add_generation_prompt=True | |
) | |
# Process the inputs with the processor | |
inputs = processor(prompt, images, return_tensors="pt").to("cuda:0") | |
# Generation parameters | |
generation_args = { | |
"max_new_tokens": 1000, | |
"temperature": 0.0, | |
"do_sample": False, | |
} | |
# Generate the response | |
generate_ids = model.generate( | |
**inputs, | |
eos_token_id=processor.tokenizer.eos_token_id, | |
**generation_args | |
) | |
# Remove input tokens from the generated response | |
generate_ids = generate_ids[:, inputs['input_ids'].shape[1]:] | |
# Decode the generated output | |
response = processor.batch_decode( | |
generate_ids, | |
skip_special_tokens=True, | |
clean_up_tokenization_spaces=False | |
)[0] | |
return response | |
# CSS for the interface | |
CSS = """ | |
.duplicate-button { | |
margin: auto !important; | |
color: white !important; | |
background: black !important; | |
border-radius: 100vh !important; | |
} | |
h3 { | |
text-align: center; | |
} | |
""" | |
PLACEHOLDER = """ | |
<center> | |
<p>Hi! I'm your assistant. Feel free to ask your questions</p> | |
</center> | |
""" | |
TITLE = "<h1><center>Phi-3.5 Chatbot & Phi-3.5 Vision</center></h1>" | |
EXPLANATION = """ | |
<div style="text-align: center; margin-top: 20px;"> | |
<p>This app supports both the microsoft/Phi-3.5-mini-instruct model for chat bot and the microsoft/Phi-3.5-vision-instruct model for multimodal model.</p> | |
<p>Phi-3.5-vision is a lightweight, state-of-the-art open multimodal model built upon datasets which include - synthetic data and filtered publicly available websites - with a focus on very high-quality, reasoning dense data both on text and vision. The model belongs to the Phi-3 model family, and the multimodal version comes with 128K context length (in tokens) it can support. The model underwent a rigorous enhancement process, incorporating both supervised fine-tuning and direct preference optimization to ensure precise instruction adherence and robust safety measures.</p> | |
<p>Phi-3.5-mini is a lightweight, state-of-the-art open model built upon datasets used for Phi-3 - synthetic data and filtered publicly available websites - with a focus on very high-quality, reasoning dense data. The model belongs to the Phi-3 model family and supports 128K token context length. The model underwent a rigorous enhancement process, incorporating both supervised fine-tuning, proximal policy optimization, and direct preference optimization to ensure precise instruction adherence and robust safety measures.</p> | |
</div> | |
""" | |
footer = """ | |
<div style="text-align: center; margin-top: 20px;"> | |
<a href="https://www.linkedin.com/in/pejman-ebrahimi-4a60151a7/" target="_blank">LinkedIn</a> | | |
<a href="https://github.com/arad1367" target="_blank">GitHub</a> | | |
<a href="https://arad1367.pythonanywhere.com/" target="_blank">Live demo of my PhD defense</a> | | |
<a href="https://huggingface.co/microsoft/Phi-3.5-mini-instruct" target="_blank">microsoft/Phi-3.5-mini-instruct</a> | | |
<a href="https://huggingface.co/microsoft/Phi-3.5-vision-instruct" target="_blank">microsoft/Phi-3.5-vision-instruct</a> | |
<br> | |
Made with π by Pejman Ebrahimi | |
</div> | |
""" | |
# Gradio app with two tabs | |
with gr.Blocks(css=CSS, theme="small_and_pretty") as demo: | |
gr.HTML(TITLE) | |
gr.HTML(EXPLANATION) | |
gr.DuplicateButton(value="Duplicate Space for private use", elem_classes="duplicate-button") | |
with gr.Tab("Chatbot"): | |
chatbot = gr.Chatbot(height=600, placeholder=PLACEHOLDER) | |
gr.ChatInterface( | |
fn=stream_chat, | |
chatbot=chatbot, | |
fill_height=True, | |
additional_inputs_accordion=gr.Accordion(label="βοΈ Parameters", open=False, render=False), | |
additional_inputs=[ | |
gr.Textbox( | |
value="You are a helpful assistant", | |
label="System Prompt", | |
render=False, | |
), | |
gr.Slider( | |
minimum=0, | |
maximum=1, | |
step=0.1, | |
value=0.8, | |
label="Temperature", | |
render=False, | |
), | |
gr.Slider( | |
minimum=128, | |
maximum=8192, | |
step=1, | |
value=1024, | |
label="Max new tokens", | |
render=False, | |
), | |
gr.Slider( | |
minimum=0.0, | |
maximum=1.0, | |
step=0.1, | |
value=1.0, | |
label="top_p", | |
render=False, | |
), | |
gr.Slider( | |
minimum=1, | |
maximum=20, | |
step=1, | |
value=20, | |
label="top_k", | |
render=False, | |
), | |
gr.Slider( | |
minimum=0.0, | |
maximum=2.0, | |
step=0.1, | |
value=1.2, | |
label="Repetition penalty", | |
render=False, | |
), | |
], | |
examples=[ | |
["How to make a self-driving car?"], | |
["Give me a creative idea to establish a startup"], | |
["How can I improve my programming skills?"], | |
["Show me a code snippet of a website's sticky header in CSS and JavaScript."], | |
], | |
cache_examples=False, | |
) | |
with gr.Tab("Vision"): | |
with gr.Row(): | |
input_img = gr.Image(label="Input Picture") | |
with gr.Row(): | |
model_selector = gr.Dropdown(choices=list(models.keys()), label="Model", value="microsoft/Phi-3.5-vision-instruct") | |
with gr.Row(): | |
text_input = gr.Textbox(label="Question") | |
with gr.Row(): | |
submit_btn = gr.Button(value="Submit") | |
with gr.Row(): | |
output_text = gr.Textbox(label="Output Text") | |
submit_btn.click(stream_vision, [input_img, text_input, model_selector], [output_text]) | |
gr.HTML(footer) | |
# Launch the combined app | |
demo.launch(debug=True) |