Spaces:
Running
Running
array input audio
Browse files- app.py +12 -7
- packages.txt +1 -0
app.py
CHANGED
@@ -6,6 +6,7 @@ import google.generativeai as genai
|
|
6 |
import re
|
7 |
import torch
|
8 |
from transformers import pipeline
|
|
|
9 |
import time
|
10 |
import spaces
|
11 |
|
@@ -54,14 +55,14 @@ def summarize_transcription(transcription, model, gemini_prompt):
|
|
54 |
return f"Error summarizing transcription: {str(e)}"
|
55 |
|
56 |
@spaces.GPU(duration=120)
|
57 |
-
def process_audio(
|
58 |
print("Starting transcription...")
|
59 |
if language:
|
60 |
print(f"Using language: {language}")
|
61 |
-
transcription = pipe(
|
62 |
else:
|
63 |
print("No language defined, using default language")
|
64 |
-
transcription = pipe(
|
65 |
return transcription
|
66 |
|
67 |
def transcribe(youtube_url, audio_file, whisper_model, gemini_api_key, gemini_prompt, gemini_model_variant, language, progress=gr.Progress()):
|
@@ -72,15 +73,13 @@ def transcribe(youtube_url, audio_file, whisper_model, gemini_api_key, gemini_pr
|
|
72 |
gemini_api_key = default_gemini_api_key
|
73 |
model = configure_genai(gemini_api_key, gemini_model_variant)
|
74 |
|
75 |
-
|
76 |
-
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
77 |
pipe = pipeline(
|
78 |
task="automatic-speech-recognition",
|
79 |
model=whisper_model,
|
80 |
chunk_length_s=30,
|
81 |
device=device,
|
82 |
)
|
83 |
-
pipe.model = pipe.model.to(device)
|
84 |
|
85 |
if youtube_url:
|
86 |
progress(0.1, desc="Extracting YouTube ID")
|
@@ -97,9 +96,15 @@ def transcribe(youtube_url, audio_file, whisper_model, gemini_api_key, gemini_pr
|
|
97 |
progress(0.2, desc="Reading audio file")
|
98 |
audio_file = f"{audio_file.name}"
|
99 |
print(f"Audio file read: {audio_file}")
|
|
|
|
|
|
|
|
|
|
|
|
|
100 |
|
101 |
progress(0.4, desc="Starting transcription")
|
102 |
-
transcription = process_audio(
|
103 |
|
104 |
progress(0.6, desc="Cleaning up")
|
105 |
# Delete the audio file after transcription
|
|
|
6 |
import re
|
7 |
import torch
|
8 |
from transformers import pipeline
|
9 |
+
from transformers.pipelines.audio_utils import ffmpeg_read
|
10 |
import time
|
11 |
import spaces
|
12 |
|
|
|
55 |
return f"Error summarizing transcription: {str(e)}"
|
56 |
|
57 |
@spaces.GPU(duration=120)
|
58 |
+
def process_audio(inputs, pipe, language):
|
59 |
print("Starting transcription...")
|
60 |
if language:
|
61 |
print(f"Using language: {language}")
|
62 |
+
transcription = pipe(inputs, batch_size=8, generate_kwargs={"task": "transcribe", "language": language}, return_timestamps=True)["text"]
|
63 |
else:
|
64 |
print("No language defined, using default language")
|
65 |
+
transcription = pipe(inputs, batch_size=8, generate_kwargs={"task": "transcribe"}, return_timestamps=True)["text"]
|
66 |
return transcription
|
67 |
|
68 |
def transcribe(youtube_url, audio_file, whisper_model, gemini_api_key, gemini_prompt, gemini_model_variant, language, progress=gr.Progress()):
|
|
|
73 |
gemini_api_key = default_gemini_api_key
|
74 |
model = configure_genai(gemini_api_key, gemini_model_variant)
|
75 |
|
76 |
+
device = 0 if torch.cuda.is_available() else "cpu"
|
|
|
77 |
pipe = pipeline(
|
78 |
task="automatic-speech-recognition",
|
79 |
model=whisper_model,
|
80 |
chunk_length_s=30,
|
81 |
device=device,
|
82 |
)
|
|
|
83 |
|
84 |
if youtube_url:
|
85 |
progress(0.1, desc="Extracting YouTube ID")
|
|
|
96 |
progress(0.2, desc="Reading audio file")
|
97 |
audio_file = f"{audio_file.name}"
|
98 |
print(f"Audio file read: {audio_file}")
|
99 |
+
|
100 |
+
with open(audio_file, "rb") as f:
|
101 |
+
inputs = f.read()
|
102 |
+
|
103 |
+
inputs = ffmpeg_read(inputs, pipe.feature_extractor.sampling_rate)
|
104 |
+
inputs = {"array": inputs, "sampling_rate": pipe.feature_extractor.sampling_rate}
|
105 |
|
106 |
progress(0.4, desc="Starting transcription")
|
107 |
+
transcription = process_audio(inputs, pipe, language)
|
108 |
|
109 |
progress(0.6, desc="Cleaning up")
|
110 |
# Delete the audio file after transcription
|
packages.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
ffmpeg
|