Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from fastapi import FastAPI, UploadFile, File
|
2 |
+
from transformers import AutoModelForImageClassification, AutoProcessor
|
3 |
+
from PIL import Image
|
4 |
+
import torch
|
5 |
+
|
6 |
+
app = FastAPI()
|
7 |
+
|
8 |
+
# Carga el modelo y el preprocesador desde Hugging Face
|
9 |
+
model_name = "jazzmacedo/fruits-and-vegetables-detector-36"
|
10 |
+
model = AutoModelForImageClassification.from_pretrained(model_name)
|
11 |
+
processor = AutoProcessor.from_pretrained(model_name)
|
12 |
+
|
13 |
+
@app.post("/predict")
|
14 |
+
async def predict(file: UploadFile = File(...)):
|
15 |
+
# Procesa la imagen recibida
|
16 |
+
image = Image.open(file.file).convert("RGB")
|
17 |
+
inputs = processor(images=image, return_tensors="pt")
|
18 |
+
|
19 |
+
# Realiza la predicci贸n
|
20 |
+
with torch.no_grad():
|
21 |
+
outputs = model(**inputs)
|
22 |
+
|
23 |
+
# Obtiene la predicci贸n con mayor probabilidad
|
24 |
+
logits = outputs.logits
|
25 |
+
predicted_class_idx = logits.argmax(-1).item()
|
26 |
+
predicted_class_name = model.config.id2label[predicted_class_idx]
|
27 |
+
|
28 |
+
return {"prediction": predicted_class_name}
|