arjunbahuguna commited on
Commit
5cb2be5
·
verified ·
1 Parent(s): 5f6df72

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +98 -0
app.py ADDED
@@ -0,0 +1,98 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from queue import Queue
2
+ from threading import Thread
3
+ from typing import Optional
4
+ import numpy as np
5
+ import torch
6
+ from transformers import MusicgenForConditionalGeneration, MusicgenProcessor, set_seed
7
+ from transformers.generation.streamers import BaseStreamer
8
+ import gradio as gr
9
+ import spaces
10
+
11
+ model = MusicgenForConditionalGeneration.from_pretrained("facebook/musicgen-small")
12
+ processor = MusicgenProcessor.from_pretrained("facebook/musicgen-small")
13
+
14
+ title, description, article = "MusicGen Streaming (by Sanchit Gandhi)"
15
+
16
+ class MusicgenStreamer(BaseStreamer):
17
+ def __init__(self, model, device=None, play_steps=10, stride=None, timeout=None):
18
+ self.decoder, self.audio_encoder, self.generation_config = model.decoder, model.audio_encoder, model.generation_config
19
+ self.device = device if device else model.device
20
+ self.play_steps = play_steps
21
+ self.stride = stride if stride else np.prod(self.audio_encoder.config.upsampling_ratios) * (play_steps - self.decoder.num_codebooks) // 6
22
+ self.token_cache, self.to_yield, self.audio_queue, self.stop_signal, self.timeout = None, 0, Queue(), None, timeout
23
+
24
+ def apply_delay_pattern_mask(self, input_ids):
25
+ _, mask = self.decoder.build_delay_pattern_mask(input_ids[:, :1], pad_token_id=self.generation_config.decoder_start_token_id, max_length=input_ids.shape[-1])
26
+ input_ids = self.decoder.apply_delay_pattern_mask(input_ids, mask)
27
+ input_ids = input_ids[input_ids != self.generation_config.pad_token_id].reshape(1, self.decoder.num_codebooks, -1)[None, ...]
28
+ return self.audio_encoder.decode(input_ids.to(self.audio_encoder.device), audio_scales=[None]).audio_values[0, 0].cpu().float().numpy()
29
+
30
+ def put(self, value):
31
+ if value.shape[0] // self.decoder.num_codebooks > 1:
32
+ raise ValueError("MusicgenStreamer only supports batch size 1")
33
+ self.token_cache = torch.concatenate([self.token_cache, value[:, None]], dim=-1) if self.token_cache else value
34
+ if self.token_cache.shape[-1] % self.play_steps == 0:
35
+ audio_values = self.apply_delay_pattern_mask(self.token_cache)
36
+ self.on_finalized_audio(audio_values[self.to_yield : -self.stride])
37
+ self.to_yield += len(audio_values) - self.to_yield - self.stride
38
+
39
+ def end(self):
40
+ audio_values = self.apply_delay_pattern_mask(self.token_cache) if self.token_cache else np.zeros(self.to_yield)
41
+ self.on_finalized_audio(audio_values[self.to_yield :], stream_end=True)
42
+
43
+ def on_finalized_audio(self, audio, stream_end=False):
44
+ self.audio_queue.put(audio, timeout=self.timeout)
45
+ if stream_end:
46
+ self.audio_queue.put(self.stop_signal, timeout=self.timeout)
47
+
48
+ def __iter__(self):
49
+ return self
50
+
51
+ def __next__(self):
52
+ value = self.audio_queue.get(timeout=self.timeout)
53
+ if not isinstance(value, np.ndarray) and value == self.stop_signal:
54
+ raise StopIteration()
55
+ return value
56
+
57
+ sampling_rate, frame_rate = model.audio_encoder.config.sampling_rate, model.audio_encoder.config.frame_rate
58
+
59
+ @spaces.GPU()
60
+ def generate_audio(text_prompt, audio_length_in_s=10.0, play_steps_in_s=2.0, seed=0):
61
+ max_new_tokens, play_steps = int(frame_rate * audio_length_in_s), int(frame_rate * play_steps_in_s)
62
+ device = "cuda:0" if torch.cuda.is_available() else "cpu"
63
+ if device != model.device:
64
+ model.to(device)
65
+ if device == "cuda:0":
66
+ model.half()
67
+ inputs = processor(text=text_prompt, padding=True, return_tensors="pt")
68
+ streamer = MusicgenStreamer(model, device=device, play_steps=play_steps)
69
+ generation_kwargs = dict(**inputs.to(device), streamer=streamer, max_new_tokens=max_new_tokens)
70
+ thread = Thread(target=model.generate, kwargs=generation_kwargs)
71
+ thread.start()
72
+ set_seed(seed)
73
+ for new_audio in streamer:
74
+ print(f"Sample of length: {round(new_audio.shape[0] / sampling_rate, 2)} seconds")
75
+ yield sampling_rate, new_audio
76
+
77
+ demo = gr.Interface(
78
+ fn=generate_audio,
79
+ inputs=[
80
+ gr.Text(label="Prompt", value="80s pop track with synth and instrumentals"),
81
+ gr.Slider(10, 30, value=15, step=5, label="Audio length in seconds"),
82
+ gr.Slider(0.5, 2.5, value=1.5, step=0.5, label="Streaming interval in seconds", info="Lower = shorter chunks, lower latency, more codec steps"),
83
+ gr.Slider(0, 10, value=5, step=1, label="Seed for random generations"),
84
+ ],
85
+ outputs=[gr.Audio(label="Generated Music", streaming=True, autoplay=True)],
86
+ examples=[
87
+ ["An 80s driving pop song with heavy drums and synth pads in the background", 30, 1.5, 5],
88
+ ["A cheerful country song with acoustic guitars", 30, 1.5, 5],
89
+ ["90s rock song with electric guitar and heavy drums", 30, 1.5, 5],
90
+ ["a light and cheerly EDM track, with syncopated drums, aery pads, and strong emotions bpm: 130", 30, 1.5, 5],
91
+ ["lofi slow bpm electro chill with organic samples", 30, 1.5, 5],
92
+ ],
93
+ title=title,
94
+ cache_examples=False,
95
+ )
96
+
97
+ demo.queue().launch()
98
+ This compressed version maintains the core functionality while removing redundant comments and