Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -2,26 +2,24 @@
|
|
2 |
|
3 |
from queue import Queue
|
4 |
from threading import Thread
|
5 |
-
from typing import Optional
|
6 |
import numpy as np
|
7 |
import torch
|
8 |
from transformers import MusicgenForConditionalGeneration, MusicgenProcessor, set_seed
|
9 |
-
from transformers.generation.streamers import BaseStreamer
|
10 |
import gradio as gr
|
11 |
import spaces
|
12 |
|
13 |
model = MusicgenForConditionalGeneration.from_pretrained("facebook/musicgen-small")
|
14 |
processor = MusicgenProcessor.from_pretrained("facebook/musicgen-small")
|
15 |
-
|
16 |
title = "AI Radio"
|
17 |
|
18 |
-
class MusicgenStreamer
|
19 |
def __init__(self, model, device=None, play_steps=10, stride=None, timeout=None):
|
20 |
self.decoder, self.audio_encoder, self.generation_config = model.decoder, model.audio_encoder, model.generation_config
|
21 |
-
self.device = device
|
22 |
self.play_steps = play_steps
|
23 |
-
self.stride = stride
|
24 |
-
self.token_cache, self.to_yield, self.audio_queue, self.
|
|
|
25 |
|
26 |
def apply_delay_pattern_mask(self, input_ids):
|
27 |
_, mask = self.decoder.build_delay_pattern_mask(input_ids[:, :1], pad_token_id=self.generation_config.decoder_start_token_id, max_length=input_ids.shape[-1])
|
@@ -32,15 +30,15 @@ class MusicgenStreamer(BaseStreamer):
|
|
32 |
def put(self, value):
|
33 |
if value.shape[0] // self.decoder.num_codebooks > 1:
|
34 |
raise ValueError("MusicgenStreamer only supports batch size 1")
|
35 |
-
self.token_cache = torch.
|
36 |
if self.token_cache.shape[-1] % self.play_steps == 0:
|
37 |
audio_values = self.apply_delay_pattern_mask(self.token_cache)
|
38 |
-
self.on_finalized_audio(audio_values[self.to_yield
|
39 |
self.to_yield += len(audio_values) - self.to_yield - self.stride
|
40 |
|
41 |
def end(self):
|
42 |
audio_values = self.apply_delay_pattern_mask(self.token_cache) if self.token_cache else np.zeros(self.to_yield)
|
43 |
-
self.on_finalized_audio(audio_values[self.to_yield
|
44 |
|
45 |
def on_finalized_audio(self, audio, stream_end=False):
|
46 |
self.audio_queue.put(audio, timeout=self.timeout)
|
@@ -52,29 +50,26 @@ class MusicgenStreamer(BaseStreamer):
|
|
52 |
|
53 |
def __next__(self):
|
54 |
value = self.audio_queue.get(timeout=self.timeout)
|
55 |
-
if
|
56 |
raise StopIteration()
|
57 |
return value
|
58 |
|
59 |
-
sampling_rate, frame_rate = model.audio_encoder.config.sampling_rate, model.audio_encoder.config.frame_rate
|
60 |
-
|
61 |
@spaces.GPU()
|
62 |
def generate_audio(text_prompt, audio_length_in_s=10.0, play_steps_in_s=2.0, seed=0):
|
63 |
-
max_new_tokens, play_steps = int(frame_rate * audio_length_in_s), int(frame_rate * play_steps_in_s)
|
64 |
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
65 |
if device != model.device:
|
66 |
model.to(device)
|
67 |
if device == "cuda:0":
|
68 |
model.half()
|
|
|
|
|
69 |
inputs = processor(text=text_prompt, padding=True, return_tensors="pt")
|
70 |
streamer = MusicgenStreamer(model, device=device, play_steps=play_steps)
|
71 |
-
|
72 |
-
thread = Thread(target=model.generate, kwargs=generation_kwargs)
|
73 |
-
thread.start()
|
74 |
set_seed(seed)
|
75 |
for new_audio in streamer:
|
76 |
-
print(f"Sample of length: {round(new_audio.shape[0] / sampling_rate, 2)} seconds")
|
77 |
-
yield sampling_rate, new_audio
|
78 |
|
79 |
demo = gr.Interface(
|
80 |
fn=generate_audio,
|
|
|
2 |
|
3 |
from queue import Queue
|
4 |
from threading import Thread
|
|
|
5 |
import numpy as np
|
6 |
import torch
|
7 |
from transformers import MusicgenForConditionalGeneration, MusicgenProcessor, set_seed
|
|
|
8 |
import gradio as gr
|
9 |
import spaces
|
10 |
|
11 |
model = MusicgenForConditionalGeneration.from_pretrained("facebook/musicgen-small")
|
12 |
processor = MusicgenProcessor.from_pretrained("facebook/musicgen-small")
|
|
|
13 |
title = "AI Radio"
|
14 |
|
15 |
+
class MusicgenStreamer:
|
16 |
def __init__(self, model, device=None, play_steps=10, stride=None, timeout=None):
|
17 |
self.decoder, self.audio_encoder, self.generation_config = model.decoder, model.audio_encoder, model.generation_config
|
18 |
+
self.device = device or model.device
|
19 |
self.play_steps = play_steps
|
20 |
+
self.stride = stride or np.prod(self.audio_encoder.config.upsampling_ratios) * (play_steps - self.decoder.num_codebooks) // 6
|
21 |
+
self.token_cache, self.to_yield, self.audio_queue, self.timeout = None, 0, Queue(), timeout
|
22 |
+
self.stop_signal = object()
|
23 |
|
24 |
def apply_delay_pattern_mask(self, input_ids):
|
25 |
_, mask = self.decoder.build_delay_pattern_mask(input_ids[:, :1], pad_token_id=self.generation_config.decoder_start_token_id, max_length=input_ids.shape[-1])
|
|
|
30 |
def put(self, value):
|
31 |
if value.shape[0] // self.decoder.num_codebooks > 1:
|
32 |
raise ValueError("MusicgenStreamer only supports batch size 1")
|
33 |
+
self.token_cache = torch.cat([self.token_cache, value[:, None]], dim=-1) if self.token_cache else value
|
34 |
if self.token_cache.shape[-1] % self.play_steps == 0:
|
35 |
audio_values = self.apply_delay_pattern_mask(self.token_cache)
|
36 |
+
self.on_finalized_audio(audio_values[self.to_yield:-self.stride])
|
37 |
self.to_yield += len(audio_values) - self.to_yield - self.stride
|
38 |
|
39 |
def end(self):
|
40 |
audio_values = self.apply_delay_pattern_mask(self.token_cache) if self.token_cache else np.zeros(self.to_yield)
|
41 |
+
self.on_finalized_audio(audio_values[self.to_yield:], stream_end=True)
|
42 |
|
43 |
def on_finalized_audio(self, audio, stream_end=False):
|
44 |
self.audio_queue.put(audio, timeout=self.timeout)
|
|
|
50 |
|
51 |
def __next__(self):
|
52 |
value = self.audio_queue.get(timeout=self.timeout)
|
53 |
+
if value is self.stop_signal:
|
54 |
raise StopIteration()
|
55 |
return value
|
56 |
|
|
|
|
|
57 |
@spaces.GPU()
|
58 |
def generate_audio(text_prompt, audio_length_in_s=10.0, play_steps_in_s=2.0, seed=0):
|
|
|
59 |
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
60 |
if device != model.device:
|
61 |
model.to(device)
|
62 |
if device == "cuda:0":
|
63 |
model.half()
|
64 |
+
max_new_tokens = int(model.audio_encoder.config.frame_rate * audio_length_in_s)
|
65 |
+
play_steps = int(model.audio_encoder.config.frame_rate * play_steps_in_s)
|
66 |
inputs = processor(text=text_prompt, padding=True, return_tensors="pt")
|
67 |
streamer = MusicgenStreamer(model, device=device, play_steps=play_steps)
|
68 |
+
Thread(target=model.generate, kwargs=dict(**inputs.to(device), streamer=streamer, max_new_tokens=max_new_tokens)).start()
|
|
|
|
|
69 |
set_seed(seed)
|
70 |
for new_audio in streamer:
|
71 |
+
print(f"Sample of length: {round(new_audio.shape[0] / model.audio_encoder.config.sampling_rate, 2)} seconds")
|
72 |
+
yield model.audio_encoder.config.sampling_rate, new_audio
|
73 |
|
74 |
demo = gr.Interface(
|
75 |
fn=generate_audio,
|