File size: 4,155 Bytes
bd282c4
 
 
 
 
736efbe
bd282c4
 
 
 
 
 
 
 
 
 
 
 
 
 
736efbe
ffe0082
b65af55
 
c41a0f5
bd282c4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dcb4762
 
 
bd282c4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dcb4762
 
 
bd282c4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
import os
import torch
import torchaudio
import numpy as np
from omegaconf import OmegaConf
from huggingface_hub import hf_hub_download
from torch.nn.functional import pad, normalize, softmax

from manipulate_model.model import Model



def get_config_and_model(model_root="manipulate_model/demo-model/audio"):
    config_path = os.path.join(model_root, "config.yaml")
    config = OmegaConf.load(config_path)
    if isinstance(config.model.encoder, str):
        config.model.encoder = OmegaConf.load(config.model.encoder)
    if isinstance(config.model.decoder, str):
        config.model.decoder = OmegaConf.load(config.model.decoder)

    model = Model(config=config)
    model_file = hf_hub_download("arnabdas8901/manipulation_detection_transformer", filename= "weights.pt")
    weights = torch.load(model_file,  map_location=torch.device("cpu"))
    model.load_state_dict(weights["model_state_dict"])
    print("### Model loaded from :", model_file)

    return config, model


def load_audio(file_path, config):
    # Load audio
    # Parameters
    # ----------
    # file_path : str
    #     Path to audio file
    # Returns
    # -------
    # torch.Tensor

    audio = None

    if file_path.endswith(".wav") or file_path.endswith(".flac"):
        audio, sample_rate = torchaudio.load(file_path)
        if sample_rate != config.data.sr:
            print("requires resampling")
            audio = torchaudio.functional.resample(audio, sample_rate, config.data.sr)
    elif file_path.endswith(".mp3"):
        pass
    elif file_path.endswith(".mp4"):
        #_, audio, _ = read_video(file_path)
        pass

    return preprocess_audio(audio, config)


def preprocess_audio(audio, config, step_size=1):
    # Preprocess audio
    # Parameters
    # ----------
    # audio : torch.Tensor
    #     Audio signal
    # config : OmegaConf
    #     Configuration object
    # Returns
    # -------
    # torch.Tensor : Normalized audio signal

    window_size = config.data.window_size
    sr = config.data.sr
    fps = config.data.fps
    if audio.shape[0] > 1:
        print("Warning: multi channel audio")
        audio = audio[0].unsqueeze(0)
    audio_len = audio.shape[1]
    step_size = step_size * (sr // fps)
    window_size = window_size * (sr // fps)
    audio = pad(audio, (window_size, window_size), "constant", 0)

    sliced_audio = []

    for i in range(0, audio_len + window_size, step_size):
        audio_slice = audio[:, i : i + window_size]

        if audio_slice.shape[1] < window_size:
            audio_slice = pad(
                audio_slice, (0, window_size - audio_slice.shape[1]), "constant", 0
            )

        audio_slice = normalize(audio_slice, dim=1)
        sliced_audio.append(audio_slice)

    sliced_audio = torch.stack(sliced_audio).squeeze()

    return sliced_audio


def infere(model, x, config, device="cpu", bs=8):
    print(x)
    model.eval()

    x = load_audio(x, config)

    # Inference (x is a stack of windows)
    frame_predictions = []

    with torch.no_grad():
        n_iter = x.shape[0]

        for i in range(0, n_iter, bs):
            input_batch = x[i: i + bs]
            input_batch = input_batch.to(device)

            output = softmax(model(input_batch), dim=1)
            frame_predictions.append(output.cpu().numpy())

        frame_predictions = np.concatenate(frame_predictions, axis=0)[:,0]


    return frame_predictions

def convert_frame_predictions_to_timestamps(frame_predictions, fps, window_size):
    # Convert frame predictions to timestamps
    # Parameters
    # ----------
    # frame_predictions : np.ndarray
    #     Frame predictions
    # fps : int
    #     Frames per second
    # Returns
    # -------
    # np.ndarray : Timestamps

    frame_predictions = (
        frame_predictions[
            int(window_size / 2) : -int(window_size / 2), 0
        ]  # removes the padding, does not consider step size as of now
        .round()
        .astype(int)
    )
    timestamps = []

    for i, frame_prediction in enumerate(frame_predictions):
        if frame_prediction == 1:
            timestamps.append(i / fps)

    return timestamps