Upload 2 files
Browse files- app.py +36 -0
- requirements.txt +5 -0
app.py
ADDED
|
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import torch
|
| 3 |
+
import librosa
|
| 4 |
+
from transformers import WhisperForConditionalGeneration, WhisperProcessor
|
| 5 |
+
|
| 6 |
+
MODEL = "steja/whisper-large-sindhi" # Ya whisper-small-sindhi agar GPU na mile
|
| 7 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 8 |
+
|
| 9 |
+
# Model & processor load
|
| 10 |
+
processor = WhisperProcessor.from_pretrained(MODEL)
|
| 11 |
+
model = WhisperForConditionalGeneration.from_pretrained(MODEL).to(device)
|
| 12 |
+
|
| 13 |
+
def transcribe(audio_file):
|
| 14 |
+
# audio_file is (sample_rate, numpy array)
|
| 15 |
+
sr, audio = audio_file
|
| 16 |
+
if sr != 16000:
|
| 17 |
+
audio = librosa.resample(audio, orig_sr=sr, target_sr=16000)
|
| 18 |
+
sr = 16000
|
| 19 |
+
|
| 20 |
+
inputs = processor(audio, sampling_rate=sr, return_tensors="pt")
|
| 21 |
+
input_features = inputs.input_features.to(device)
|
| 22 |
+
|
| 23 |
+
# Generate prediction
|
| 24 |
+
pred_ids = model.generate(input_features)
|
| 25 |
+
text = processor.batch_decode(pred_ids, skip_special_tokens=True)[0]
|
| 26 |
+
return text
|
| 27 |
+
|
| 28 |
+
iface = gr.Interface(
|
| 29 |
+
fn=transcribe,
|
| 30 |
+
inputs=gr.Audio(sources=["upload", "microphone"], type="numpy"),
|
| 31 |
+
outputs="text",
|
| 32 |
+
title="Sindhi Speech-to-Text (Whisper)",
|
| 33 |
+
description="Upload or record Sindhi audio to get transcription using steja/whisper-large-sindhi."
|
| 34 |
+
)
|
| 35 |
+
|
| 36 |
+
iface.launch()
|
requirements.txt
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
transformers
|
| 2 |
+
torch
|
| 3 |
+
torchaudio
|
| 4 |
+
librosa
|
| 5 |
+
gradio
|