first commit
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .gitignore +186 -0
- .vscode/settings.json +7 -0
- LICENSE +21 -0
- README-ja.md +54 -0
- README.md +52 -8
- bin/.gitignore +2 -0
- configs/32k-768.json +47 -0
- configs/32k.json +47 -0
- configs/40k-768.json +47 -0
- configs/40k.json +47 -0
- configs/48k-768.json +47 -0
- configs/48k.json +47 -0
- dev.py +3 -0
- launch.py +139 -0
- lib/rvc/attentions.py +415 -0
- lib/rvc/checkpoints.py +149 -0
- lib/rvc/commons.py +163 -0
- lib/rvc/config.py +71 -0
- lib/rvc/data_utils.py +515 -0
- lib/rvc/losses.py +58 -0
- lib/rvc/mel_processing.py +113 -0
- lib/rvc/models.py +853 -0
- lib/rvc/modules.py +518 -0
- lib/rvc/pipeline.py +453 -0
- lib/rvc/preprocessing/extract_f0.py +221 -0
- lib/rvc/preprocessing/extract_feature.py +217 -0
- lib/rvc/preprocessing/slicer.py +179 -0
- lib/rvc/preprocessing/split.py +195 -0
- lib/rvc/train.py +998 -0
- lib/rvc/transforms.py +207 -0
- lib/rvc/utils.py +225 -0
- models/checkpoints/.gitignore +2 -0
- models/embeddings/.gitignore +2 -0
- models/pretrained/.gitignore +2 -0
- models/training/.gitignore +6 -0
- models/training/models/.gitignore +2 -0
- models/training/mute/0_gt_wavs/mute32k.wav +3 -0
- models/training/mute/0_gt_wavs/mute40k.wav +3 -0
- models/training/mute/0_gt_wavs/mute48k.wav +3 -0
- models/training/mute/1_16k_wavs/mute.wav +3 -0
- models/training/mute/2a_f0/mute.wav.npy +3 -0
- models/training/mute/2b_f0nsf/mute.wav.npy +3 -0
- models/training/mute/3_feature256/mute.npy +3 -0
- modules/cmd_opts.py +22 -0
- modules/core.py +156 -0
- modules/merge.py +81 -0
- modules/models.py +266 -0
- modules/separate.py +82 -0
- modules/server/model.py +451 -0
- modules/shared.py +44 -0
.gitignore
ADDED
|
@@ -0,0 +1,186 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
.DS_Store
|
| 2 |
+
|
| 3 |
+
tmp/
|
| 4 |
+
|
| 5 |
+
|
| 6 |
+
### Generated by gibo (https://github.com/simonwhitaker/gibo)
|
| 7 |
+
### https://raw.github.com/github/gitignore/4488915eec0b3a45b5c63ead28f286819c0917de/Global/VisualStudioCode.gitignore
|
| 8 |
+
|
| 9 |
+
.vscode/*
|
| 10 |
+
!.vscode/settings.json
|
| 11 |
+
!.vscode/tasks.json
|
| 12 |
+
!.vscode/launch.json
|
| 13 |
+
!.vscode/extensions.json
|
| 14 |
+
!.vscode/*.code-snippets
|
| 15 |
+
|
| 16 |
+
# Local History for Visual Studio Code
|
| 17 |
+
.history/
|
| 18 |
+
|
| 19 |
+
# Built Visual Studio Code Extensions
|
| 20 |
+
*.vsix
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
### https://raw.github.com/github/gitignore/4488915eec0b3a45b5c63ead28f286819c0917de/Python.gitignore
|
| 24 |
+
|
| 25 |
+
# Byte-compiled / optimized / DLL files
|
| 26 |
+
__pycache__/
|
| 27 |
+
*.py[cod]
|
| 28 |
+
*$py.class
|
| 29 |
+
|
| 30 |
+
# C extensions
|
| 31 |
+
*.so
|
| 32 |
+
|
| 33 |
+
# Distribution / packaging
|
| 34 |
+
.Python
|
| 35 |
+
build/
|
| 36 |
+
develop-eggs/
|
| 37 |
+
dist/
|
| 38 |
+
downloads/
|
| 39 |
+
eggs/
|
| 40 |
+
.eggs/
|
| 41 |
+
# lib/
|
| 42 |
+
lib64/
|
| 43 |
+
parts/
|
| 44 |
+
sdist/
|
| 45 |
+
var/
|
| 46 |
+
wheels/
|
| 47 |
+
share/python-wheels/
|
| 48 |
+
*.egg-info/
|
| 49 |
+
.installed.cfg
|
| 50 |
+
*.egg
|
| 51 |
+
MANIFEST
|
| 52 |
+
|
| 53 |
+
# PyInstaller
|
| 54 |
+
# Usually these files are written by a python script from a template
|
| 55 |
+
# before PyInstaller builds the exe, so as to inject date/other infos into it.
|
| 56 |
+
*.manifest
|
| 57 |
+
*.spec
|
| 58 |
+
|
| 59 |
+
# Installer logs
|
| 60 |
+
pip-log.txt
|
| 61 |
+
pip-delete-this-directory.txt
|
| 62 |
+
|
| 63 |
+
# Unit test / coverage reports
|
| 64 |
+
htmlcov/
|
| 65 |
+
.tox/
|
| 66 |
+
.nox/
|
| 67 |
+
.coverage
|
| 68 |
+
.coverage.*
|
| 69 |
+
.cache
|
| 70 |
+
nosetests.xml
|
| 71 |
+
coverage.xml
|
| 72 |
+
*.cover
|
| 73 |
+
*.py,cover
|
| 74 |
+
.hypothesis/
|
| 75 |
+
.pytest_cache/
|
| 76 |
+
cover/
|
| 77 |
+
|
| 78 |
+
# Translations
|
| 79 |
+
*.mo
|
| 80 |
+
*.pot
|
| 81 |
+
|
| 82 |
+
# Django stuff:
|
| 83 |
+
*.log
|
| 84 |
+
local_settings.py
|
| 85 |
+
db.sqlite3
|
| 86 |
+
db.sqlite3-journal
|
| 87 |
+
|
| 88 |
+
# Flask stuff:
|
| 89 |
+
instance/
|
| 90 |
+
.webassets-cache
|
| 91 |
+
|
| 92 |
+
# Scrapy stuff:
|
| 93 |
+
.scrapy
|
| 94 |
+
|
| 95 |
+
# Sphinx documentation
|
| 96 |
+
docs/_build/
|
| 97 |
+
|
| 98 |
+
# PyBuilder
|
| 99 |
+
.pybuilder/
|
| 100 |
+
target/
|
| 101 |
+
|
| 102 |
+
# Jupyter Notebook
|
| 103 |
+
.ipynb_checkpoints
|
| 104 |
+
|
| 105 |
+
# IPython
|
| 106 |
+
profile_default/
|
| 107 |
+
ipython_config.py
|
| 108 |
+
|
| 109 |
+
# pyenv
|
| 110 |
+
# For a library or package, you might want to ignore these files since the code is
|
| 111 |
+
# intended to run in multiple environments; otherwise, check them in:
|
| 112 |
+
# .python-version
|
| 113 |
+
|
| 114 |
+
# pipenv
|
| 115 |
+
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
|
| 116 |
+
# However, in case of collaboration, if having platform-specific dependencies or dependencies
|
| 117 |
+
# having no cross-platform support, pipenv may install dependencies that don't work, or not
|
| 118 |
+
# install all needed dependencies.
|
| 119 |
+
#Pipfile.lock
|
| 120 |
+
|
| 121 |
+
# poetry
|
| 122 |
+
# Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control.
|
| 123 |
+
# This is especially recommended for binary packages to ensure reproducibility, and is more
|
| 124 |
+
# commonly ignored for libraries.
|
| 125 |
+
# https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control
|
| 126 |
+
#poetry.lock
|
| 127 |
+
|
| 128 |
+
# pdm
|
| 129 |
+
# Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control.
|
| 130 |
+
#pdm.lock
|
| 131 |
+
# pdm stores project-wide configurations in .pdm.toml, but it is recommended to not include it
|
| 132 |
+
# in version control.
|
| 133 |
+
# https://pdm.fming.dev/#use-with-ide
|
| 134 |
+
.pdm.toml
|
| 135 |
+
|
| 136 |
+
# PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm
|
| 137 |
+
__pypackages__/
|
| 138 |
+
|
| 139 |
+
# Celery stuff
|
| 140 |
+
celerybeat-schedule
|
| 141 |
+
celerybeat.pid
|
| 142 |
+
|
| 143 |
+
# SageMath parsed files
|
| 144 |
+
*.sage.py
|
| 145 |
+
|
| 146 |
+
# Environments
|
| 147 |
+
.env
|
| 148 |
+
.venv
|
| 149 |
+
env/
|
| 150 |
+
venv/
|
| 151 |
+
ENV/
|
| 152 |
+
env.bak/
|
| 153 |
+
venv.bak/
|
| 154 |
+
|
| 155 |
+
# Spyder project settings
|
| 156 |
+
.spyderproject
|
| 157 |
+
.spyproject
|
| 158 |
+
|
| 159 |
+
# Rope project settings
|
| 160 |
+
.ropeproject
|
| 161 |
+
|
| 162 |
+
# mkdocs documentation
|
| 163 |
+
/site
|
| 164 |
+
|
| 165 |
+
# mypy
|
| 166 |
+
.mypy_cache/
|
| 167 |
+
.dmypy.json
|
| 168 |
+
dmypy.json
|
| 169 |
+
|
| 170 |
+
# Pyre type checker
|
| 171 |
+
.pyre/
|
| 172 |
+
|
| 173 |
+
# pytype static type analyzer
|
| 174 |
+
.pytype/
|
| 175 |
+
|
| 176 |
+
# Cython debug symbols
|
| 177 |
+
cython_debug/
|
| 178 |
+
|
| 179 |
+
# PyCharm
|
| 180 |
+
# JetBrains specific template is maintained in a separate JetBrains.gitignore that can
|
| 181 |
+
# be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
|
| 182 |
+
# and can be added to the global gitignore or merged into this file. For a more nuclear
|
| 183 |
+
# option (not recommended) you can uncomment the following to ignore the entire idea folder.
|
| 184 |
+
#.idea/
|
| 185 |
+
|
| 186 |
+
|
.vscode/settings.json
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"python.formatting.provider": "black",
|
| 3 |
+
"editor.codeActionsOnSave": {
|
| 4 |
+
"source.organizeImports": true
|
| 5 |
+
},
|
| 6 |
+
"editor.formatOnSave": true,
|
| 7 |
+
}
|
LICENSE
ADDED
|
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
MIT License
|
| 2 |
+
|
| 3 |
+
Copyright (c) 2023 ddPn08
|
| 4 |
+
|
| 5 |
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
| 6 |
+
of this software and associated documentation files (the "Software"), to deal
|
| 7 |
+
in the Software without restriction, including without limitation the rights
|
| 8 |
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
| 9 |
+
copies of the Software, and to permit persons to whom the Software is
|
| 10 |
+
furnished to do so, subject to the following conditions:
|
| 11 |
+
|
| 12 |
+
The above copyright notice and this permission notice shall be included in all
|
| 13 |
+
copies or substantial portions of the Software.
|
| 14 |
+
|
| 15 |
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
| 16 |
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
| 17 |
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
| 18 |
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
| 19 |
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
| 20 |
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
| 21 |
+
SOFTWARE.
|
README-ja.md
ADDED
|
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
<h1 align="center">RVC-WebUI</h1>
|
| 2 |
+
<div align="center">
|
| 3 |
+
<p>
|
| 4 |
+
|
| 5 |
+
[`liujing04/Retrieval-based-Voice-Conversion-WebUI`](https://github.com/liujing04/Retrieval-based-Voice-Conversion-WebUI) の再構築プロジェクト
|
| 6 |
+
|
| 7 |
+
</p>
|
| 8 |
+
</div>
|
| 9 |
+
|
| 10 |
+
---
|
| 11 |
+
|
| 12 |
+
<div align="center">
|
| 13 |
+
<p>
|
| 14 |
+
|
| 15 |
+
[日本語](README-ja.md) | [English](README.md)
|
| 16 |
+
|
| 17 |
+
</p>
|
| 18 |
+
</div>
|
| 19 |
+
|
| 20 |
+
<br >
|
| 21 |
+
|
| 22 |
+
# 起動
|
| 23 |
+
|
| 24 |
+
## Windows
|
| 25 |
+
`webui-user.bat` をダブルクリックして、webuiを起動します。
|
| 26 |
+
|
| 27 |
+
## Linux or Mac
|
| 28 |
+
`webui.sh` を実行して、webuiを起動します。
|
| 29 |
+
|
| 30 |
+
<br >
|
| 31 |
+
|
| 32 |
+
```
|
| 33 |
+
テスト環境: Windows 10, Python 3.10.9, torch 2.0.0+cu118
|
| 34 |
+
```
|
| 35 |
+
|
| 36 |
+
<br >
|
| 37 |
+
|
| 38 |
+
# トラブルシューティング
|
| 39 |
+
|
| 40 |
+
## `error: Microsoft Visual C++ 14.0 or greater is required.`
|
| 41 |
+
|
| 42 |
+
Microsoft C++ Build Tools がインストールされている必要があります。
|
| 43 |
+
|
| 44 |
+
### Step 1: インストーラーをダウンロード
|
| 45 |
+
[Download](https://visualstudio.microsoft.com/ja/thank-you-downloading-visual-studio/?sku=BuildTools&rel=16)
|
| 46 |
+
|
| 47 |
+
### Step 2: `C++ Build Tools` をインストール
|
| 48 |
+
インストーラーを実行し、`Workloads` タブで `C++ Build Tools` を選択します。
|
| 49 |
+
|
| 50 |
+
<br >
|
| 51 |
+
|
| 52 |
+
# クレジット
|
| 53 |
+
- [`liujing04/Retrieval-based-Voice-Conversion-WebUI`](https://github.com/liujing04/Retrieval-based-Voice-Conversion-WebUI)
|
| 54 |
+
- [`teftef6220/Voice_Separation_and_Selection`](https://github.com/teftef6220/Voice_Separation_and_Selection)
|
README.md
CHANGED
|
@@ -1,10 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
---
|
| 2 |
-
title: Rvc Webui
|
| 3 |
-
emoji: 😻
|
| 4 |
-
colorFrom: purple
|
| 5 |
-
colorTo: pink
|
| 6 |
-
sdk: docker
|
| 7 |
-
pinned: false
|
| 8 |
-
---
|
| 9 |
|
| 10 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
<h1 align="center">RVC-WebUI</h1>
|
| 2 |
+
<div align="center">
|
| 3 |
+
<p>
|
| 4 |
+
|
| 5 |
+
[`liujing04/Retrieval-based-Voice-Conversion-WebUI`](https://github.com/liujing04/Retrieval-based-Voice-Conversion-WebUI) reconstruction project
|
| 6 |
+
|
| 7 |
+
</p>
|
| 8 |
+
</div>
|
| 9 |
+
|
| 10 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
|
| 12 |
+
<div align="center">
|
| 13 |
+
<p>
|
| 14 |
+
|
| 15 |
+
[日本語](README-ja.md) | [English](README.md)
|
| 16 |
+
|
| 17 |
+
</p>
|
| 18 |
+
</div>
|
| 19 |
+
|
| 20 |
+
<br >
|
| 21 |
+
|
| 22 |
+
# Launch
|
| 23 |
+
|
| 24 |
+
## Windows
|
| 25 |
+
Double click `webui-user.bat` to start the webui.
|
| 26 |
+
|
| 27 |
+
## Linux or Mac
|
| 28 |
+
Run `webui.sh` to start the webui.
|
| 29 |
+
|
| 30 |
+
<br >
|
| 31 |
+
|
| 32 |
+
```
|
| 33 |
+
Tested environment: Windows 10, Python 3.10.9, torch 2.0.0+cu118
|
| 34 |
+
```
|
| 35 |
+
|
| 36 |
+
<br >
|
| 37 |
+
|
| 38 |
+
# Troubleshooting
|
| 39 |
+
|
| 40 |
+
## `error: Microsoft Visual C++ 14.0 or greater is required.`
|
| 41 |
+
|
| 42 |
+
Microsoft C++ Build Tools must be installed.
|
| 43 |
+
|
| 44 |
+
### Step 1: Download the installer
|
| 45 |
+
[Download](https://visualstudio.microsoft.com/ja/thank-you-downloading-visual-studio/?sku=BuildTools&rel=16)
|
| 46 |
+
|
| 47 |
+
### Step 2: Install `C++ Build Tools`
|
| 48 |
+
Run the installer and select `C++ Build Tools` in the `Workloads` tab.
|
| 49 |
+
|
| 50 |
+
<br >
|
| 51 |
+
|
| 52 |
+
# Credits
|
| 53 |
+
- [`liujing04/Retrieval-based-Voice-Conversion-WebUI`](https://github.com/liujing04/Retrieval-based-Voice-Conversion-WebUI)
|
| 54 |
+
- [`teftef6220/Voice_Separation_and_Selection`](https://github.com/teftef6220/Voice_Separation_and_Selection)
|
bin/.gitignore
ADDED
|
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
|
|
|
| 1 |
+
*
|
| 2 |
+
!.gitignore
|
configs/32k-768.json
ADDED
|
@@ -0,0 +1,47 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"train": {
|
| 3 |
+
"log_interval": 200,
|
| 4 |
+
"seed": 1234,
|
| 5 |
+
"epochs": 20000,
|
| 6 |
+
"learning_rate": 1e-4,
|
| 7 |
+
"betas": [0.8, 0.99],
|
| 8 |
+
"eps": 1e-9,
|
| 9 |
+
"batch_size": 4,
|
| 10 |
+
"fp16_run": true,
|
| 11 |
+
"lr_decay": 0.999875,
|
| 12 |
+
"segment_size": 12800,
|
| 13 |
+
"init_lr_ratio": 1,
|
| 14 |
+
"warmup_epochs": 0,
|
| 15 |
+
"c_mel": 45,
|
| 16 |
+
"c_kl": 1.0
|
| 17 |
+
},
|
| 18 |
+
"data": {
|
| 19 |
+
"max_wav_value": 32768.0,
|
| 20 |
+
"sampling_rate": 32000,
|
| 21 |
+
"filter_length": 1024,
|
| 22 |
+
"hop_length": 320,
|
| 23 |
+
"win_length": 1024,
|
| 24 |
+
"n_mel_channels": 80,
|
| 25 |
+
"mel_fmin": 0.0,
|
| 26 |
+
"mel_fmax": null
|
| 27 |
+
},
|
| 28 |
+
"model": {
|
| 29 |
+
"inter_channels": 192,
|
| 30 |
+
"hidden_channels": 192,
|
| 31 |
+
"filter_channels": 768,
|
| 32 |
+
"n_heads": 2,
|
| 33 |
+
"n_layers": 6,
|
| 34 |
+
"kernel_size": 3,
|
| 35 |
+
"p_dropout": 0,
|
| 36 |
+
"resblock": "1",
|
| 37 |
+
"resblock_kernel_sizes": [3,7,11],
|
| 38 |
+
"resblock_dilation_sizes": [[1,3,5], [1,3,5], [1,3,5]],
|
| 39 |
+
"upsample_rates": [10,4,2,2,2],
|
| 40 |
+
"upsample_initial_channel": 512,
|
| 41 |
+
"upsample_kernel_sizes": [16,16,4,4,4],
|
| 42 |
+
"use_spectral_norm": false,
|
| 43 |
+
"gin_channels": 256,
|
| 44 |
+
"emb_channels": 768,
|
| 45 |
+
"spk_embed_dim": 109
|
| 46 |
+
}
|
| 47 |
+
}
|
configs/32k.json
ADDED
|
@@ -0,0 +1,47 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"train": {
|
| 3 |
+
"log_interval": 200,
|
| 4 |
+
"seed": 1234,
|
| 5 |
+
"epochs": 20000,
|
| 6 |
+
"learning_rate": 1e-4,
|
| 7 |
+
"betas": [0.8, 0.99],
|
| 8 |
+
"eps": 1e-9,
|
| 9 |
+
"batch_size": 4,
|
| 10 |
+
"fp16_run": true,
|
| 11 |
+
"lr_decay": 0.999875,
|
| 12 |
+
"segment_size": 12800,
|
| 13 |
+
"init_lr_ratio": 1,
|
| 14 |
+
"warmup_epochs": 0,
|
| 15 |
+
"c_mel": 45,
|
| 16 |
+
"c_kl": 1.0
|
| 17 |
+
},
|
| 18 |
+
"data": {
|
| 19 |
+
"max_wav_value": 32768.0,
|
| 20 |
+
"sampling_rate": 32000,
|
| 21 |
+
"filter_length": 1024,
|
| 22 |
+
"hop_length": 320,
|
| 23 |
+
"win_length": 1024,
|
| 24 |
+
"n_mel_channels": 80,
|
| 25 |
+
"mel_fmin": 0.0,
|
| 26 |
+
"mel_fmax": null
|
| 27 |
+
},
|
| 28 |
+
"model": {
|
| 29 |
+
"inter_channels": 192,
|
| 30 |
+
"hidden_channels": 192,
|
| 31 |
+
"filter_channels": 768,
|
| 32 |
+
"n_heads": 2,
|
| 33 |
+
"n_layers": 6,
|
| 34 |
+
"kernel_size": 3,
|
| 35 |
+
"p_dropout": 0,
|
| 36 |
+
"resblock": "1",
|
| 37 |
+
"resblock_kernel_sizes": [3,7,11],
|
| 38 |
+
"resblock_dilation_sizes": [[1,3,5], [1,3,5], [1,3,5]],
|
| 39 |
+
"upsample_rates": [10,4,2,2,2],
|
| 40 |
+
"upsample_initial_channel": 512,
|
| 41 |
+
"upsample_kernel_sizes": [16,16,4,4,4],
|
| 42 |
+
"use_spectral_norm": false,
|
| 43 |
+
"gin_channels": 256,
|
| 44 |
+
"emb_channels": 256,
|
| 45 |
+
"spk_embed_dim": 109
|
| 46 |
+
}
|
| 47 |
+
}
|
configs/40k-768.json
ADDED
|
@@ -0,0 +1,47 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"train": {
|
| 3 |
+
"log_interval": 200,
|
| 4 |
+
"seed": 1234,
|
| 5 |
+
"epochs": 20000,
|
| 6 |
+
"learning_rate": 1e-4,
|
| 7 |
+
"betas": [0.8, 0.99],
|
| 8 |
+
"eps": 1e-9,
|
| 9 |
+
"batch_size": 4,
|
| 10 |
+
"fp16_run": true,
|
| 11 |
+
"lr_decay": 0.999875,
|
| 12 |
+
"segment_size": 12800,
|
| 13 |
+
"init_lr_ratio": 1,
|
| 14 |
+
"warmup_epochs": 0,
|
| 15 |
+
"c_mel": 45,
|
| 16 |
+
"c_kl": 1.0
|
| 17 |
+
},
|
| 18 |
+
"data": {
|
| 19 |
+
"max_wav_value": 32768.0,
|
| 20 |
+
"sampling_rate": 40000,
|
| 21 |
+
"filter_length": 2048,
|
| 22 |
+
"hop_length": 400,
|
| 23 |
+
"win_length": 2048,
|
| 24 |
+
"n_mel_channels": 125,
|
| 25 |
+
"mel_fmin": 0.0,
|
| 26 |
+
"mel_fmax": null
|
| 27 |
+
},
|
| 28 |
+
"model": {
|
| 29 |
+
"inter_channels": 192,
|
| 30 |
+
"hidden_channels": 192,
|
| 31 |
+
"filter_channels": 768,
|
| 32 |
+
"n_heads": 2,
|
| 33 |
+
"n_layers": 6,
|
| 34 |
+
"kernel_size": 3,
|
| 35 |
+
"p_dropout": 0,
|
| 36 |
+
"resblock": "1",
|
| 37 |
+
"resblock_kernel_sizes": [3,7,11],
|
| 38 |
+
"resblock_dilation_sizes": [[1,3,5], [1,3,5], [1,3,5]],
|
| 39 |
+
"upsample_rates": [10,10,2,2],
|
| 40 |
+
"upsample_initial_channel": 512,
|
| 41 |
+
"upsample_kernel_sizes": [16,16,4,4],
|
| 42 |
+
"use_spectral_norm": false,
|
| 43 |
+
"gin_channels": 256,
|
| 44 |
+
"emb_channels": 768,
|
| 45 |
+
"spk_embed_dim": 109
|
| 46 |
+
}
|
| 47 |
+
}
|
configs/40k.json
ADDED
|
@@ -0,0 +1,47 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"train": {
|
| 3 |
+
"log_interval": 200,
|
| 4 |
+
"seed": 1234,
|
| 5 |
+
"epochs": 20000,
|
| 6 |
+
"learning_rate": 1e-4,
|
| 7 |
+
"betas": [0.8, 0.99],
|
| 8 |
+
"eps": 1e-9,
|
| 9 |
+
"batch_size": 4,
|
| 10 |
+
"fp16_run": true,
|
| 11 |
+
"lr_decay": 0.999875,
|
| 12 |
+
"segment_size": 12800,
|
| 13 |
+
"init_lr_ratio": 1,
|
| 14 |
+
"warmup_epochs": 0,
|
| 15 |
+
"c_mel": 45,
|
| 16 |
+
"c_kl": 1.0
|
| 17 |
+
},
|
| 18 |
+
"data": {
|
| 19 |
+
"max_wav_value": 32768.0,
|
| 20 |
+
"sampling_rate": 40000,
|
| 21 |
+
"filter_length": 2048,
|
| 22 |
+
"hop_length": 400,
|
| 23 |
+
"win_length": 2048,
|
| 24 |
+
"n_mel_channels": 125,
|
| 25 |
+
"mel_fmin": 0.0,
|
| 26 |
+
"mel_fmax": null
|
| 27 |
+
},
|
| 28 |
+
"model": {
|
| 29 |
+
"inter_channels": 192,
|
| 30 |
+
"hidden_channels": 192,
|
| 31 |
+
"filter_channels": 768,
|
| 32 |
+
"n_heads": 2,
|
| 33 |
+
"n_layers": 6,
|
| 34 |
+
"kernel_size": 3,
|
| 35 |
+
"p_dropout": 0,
|
| 36 |
+
"resblock": "1",
|
| 37 |
+
"resblock_kernel_sizes": [3,7,11],
|
| 38 |
+
"resblock_dilation_sizes": [[1,3,5], [1,3,5], [1,3,5]],
|
| 39 |
+
"upsample_rates": [10,10,2,2],
|
| 40 |
+
"upsample_initial_channel": 512,
|
| 41 |
+
"upsample_kernel_sizes": [16,16,4,4],
|
| 42 |
+
"use_spectral_norm": false,
|
| 43 |
+
"gin_channels": 256,
|
| 44 |
+
"emb_channels": 256,
|
| 45 |
+
"spk_embed_dim": 109
|
| 46 |
+
}
|
| 47 |
+
}
|
configs/48k-768.json
ADDED
|
@@ -0,0 +1,47 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"train": {
|
| 3 |
+
"log_interval": 200,
|
| 4 |
+
"seed": 1234,
|
| 5 |
+
"epochs": 20000,
|
| 6 |
+
"learning_rate": 1e-4,
|
| 7 |
+
"betas": [0.8, 0.99],
|
| 8 |
+
"eps": 1e-9,
|
| 9 |
+
"batch_size": 4,
|
| 10 |
+
"fp16_run": true,
|
| 11 |
+
"lr_decay": 0.999875,
|
| 12 |
+
"segment_size": 11520,
|
| 13 |
+
"init_lr_ratio": 1,
|
| 14 |
+
"warmup_epochs": 0,
|
| 15 |
+
"c_mel": 45,
|
| 16 |
+
"c_kl": 1.0
|
| 17 |
+
},
|
| 18 |
+
"data": {
|
| 19 |
+
"max_wav_value": 32768.0,
|
| 20 |
+
"sampling_rate": 48000,
|
| 21 |
+
"filter_length": 2048,
|
| 22 |
+
"hop_length": 480,
|
| 23 |
+
"win_length": 2048,
|
| 24 |
+
"n_mel_channels": 128,
|
| 25 |
+
"mel_fmin": 0.0,
|
| 26 |
+
"mel_fmax": null
|
| 27 |
+
},
|
| 28 |
+
"model": {
|
| 29 |
+
"inter_channels": 192,
|
| 30 |
+
"hidden_channels": 192,
|
| 31 |
+
"filter_channels": 768,
|
| 32 |
+
"n_heads": 2,
|
| 33 |
+
"n_layers": 6,
|
| 34 |
+
"kernel_size": 3,
|
| 35 |
+
"p_dropout": 0,
|
| 36 |
+
"resblock": "1",
|
| 37 |
+
"resblock_kernel_sizes": [3,7,11],
|
| 38 |
+
"resblock_dilation_sizes": [[1,3,5], [1,3,5], [1,3,5]],
|
| 39 |
+
"upsample_rates": [10,6,2,2,2],
|
| 40 |
+
"upsample_initial_channel": 512,
|
| 41 |
+
"upsample_kernel_sizes": [16,16,4,4,4],
|
| 42 |
+
"use_spectral_norm": false,
|
| 43 |
+
"gin_channels": 256,
|
| 44 |
+
"emb_channels": 768,
|
| 45 |
+
"spk_embed_dim": 109
|
| 46 |
+
}
|
| 47 |
+
}
|
configs/48k.json
ADDED
|
@@ -0,0 +1,47 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"train": {
|
| 3 |
+
"log_interval": 200,
|
| 4 |
+
"seed": 1234,
|
| 5 |
+
"epochs": 20000,
|
| 6 |
+
"learning_rate": 1e-4,
|
| 7 |
+
"betas": [0.8, 0.99],
|
| 8 |
+
"eps": 1e-9,
|
| 9 |
+
"batch_size": 4,
|
| 10 |
+
"fp16_run": true,
|
| 11 |
+
"lr_decay": 0.999875,
|
| 12 |
+
"segment_size": 11520,
|
| 13 |
+
"init_lr_ratio": 1,
|
| 14 |
+
"warmup_epochs": 0,
|
| 15 |
+
"c_mel": 45,
|
| 16 |
+
"c_kl": 1.0
|
| 17 |
+
},
|
| 18 |
+
"data": {
|
| 19 |
+
"max_wav_value": 32768.0,
|
| 20 |
+
"sampling_rate": 48000,
|
| 21 |
+
"filter_length": 2048,
|
| 22 |
+
"hop_length": 480,
|
| 23 |
+
"win_length": 2048,
|
| 24 |
+
"n_mel_channels": 128,
|
| 25 |
+
"mel_fmin": 0.0,
|
| 26 |
+
"mel_fmax": null
|
| 27 |
+
},
|
| 28 |
+
"model": {
|
| 29 |
+
"inter_channels": 192,
|
| 30 |
+
"hidden_channels": 192,
|
| 31 |
+
"filter_channels": 768,
|
| 32 |
+
"n_heads": 2,
|
| 33 |
+
"n_layers": 6,
|
| 34 |
+
"kernel_size": 3,
|
| 35 |
+
"p_dropout": 0,
|
| 36 |
+
"resblock": "1",
|
| 37 |
+
"resblock_kernel_sizes": [3,7,11],
|
| 38 |
+
"resblock_dilation_sizes": [[1,3,5], [1,3,5], [1,3,5]],
|
| 39 |
+
"upsample_rates": [10,6,2,2,2],
|
| 40 |
+
"upsample_initial_channel": 512,
|
| 41 |
+
"upsample_kernel_sizes": [16,16,4,4,4],
|
| 42 |
+
"use_spectral_norm": false,
|
| 43 |
+
"gin_channels": 256,
|
| 44 |
+
"emb_channels": 256,
|
| 45 |
+
"spk_embed_dim": 109
|
| 46 |
+
}
|
| 47 |
+
}
|
dev.py
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import modules.ui as ui
|
| 2 |
+
|
| 3 |
+
demo = ui.create_ui()
|
launch.py
ADDED
|
@@ -0,0 +1,139 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import importlib.util
|
| 2 |
+
import os
|
| 3 |
+
import shlex
|
| 4 |
+
import subprocess
|
| 5 |
+
import sys
|
| 6 |
+
|
| 7 |
+
commandline_args = os.environ.get("COMMANDLINE_ARGS", "")
|
| 8 |
+
sys.argv += shlex.split(commandline_args)
|
| 9 |
+
|
| 10 |
+
python = sys.executable
|
| 11 |
+
git = os.environ.get("GIT", "git")
|
| 12 |
+
index_url = os.environ.get("INDEX_URL", "")
|
| 13 |
+
stored_commit_hash = None
|
| 14 |
+
skip_install = False
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
def run(command, desc=None, errdesc=None, custom_env=None):
|
| 18 |
+
if desc is not None:
|
| 19 |
+
print(desc)
|
| 20 |
+
|
| 21 |
+
result = subprocess.run(
|
| 22 |
+
command,
|
| 23 |
+
stdout=subprocess.PIPE,
|
| 24 |
+
stderr=subprocess.PIPE,
|
| 25 |
+
shell=True,
|
| 26 |
+
env=os.environ if custom_env is None else custom_env,
|
| 27 |
+
)
|
| 28 |
+
|
| 29 |
+
if result.returncode != 0:
|
| 30 |
+
message = f"""{errdesc or 'Error running command'}.
|
| 31 |
+
Command: {command}
|
| 32 |
+
Error code: {result.returncode}
|
| 33 |
+
stdout: {result.stdout.decode(encoding="utf8", errors="ignore") if len(result.stdout)>0 else '<empty>'}
|
| 34 |
+
stderr: {result.stderr.decode(encoding="utf8", errors="ignore") if len(result.stderr)>0 else '<empty>'}
|
| 35 |
+
"""
|
| 36 |
+
raise RuntimeError(message)
|
| 37 |
+
|
| 38 |
+
return result.stdout.decode(encoding="utf8", errors="ignore")
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
def check_run(command):
|
| 42 |
+
result = subprocess.run(
|
| 43 |
+
command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, shell=True
|
| 44 |
+
)
|
| 45 |
+
return result.returncode == 0
|
| 46 |
+
|
| 47 |
+
|
| 48 |
+
def is_installed(package):
|
| 49 |
+
try:
|
| 50 |
+
spec = importlib.util.find_spec(package)
|
| 51 |
+
except ModuleNotFoundError:
|
| 52 |
+
return False
|
| 53 |
+
|
| 54 |
+
return spec is not None
|
| 55 |
+
|
| 56 |
+
|
| 57 |
+
def commit_hash():
|
| 58 |
+
global stored_commit_hash
|
| 59 |
+
|
| 60 |
+
if stored_commit_hash is not None:
|
| 61 |
+
return stored_commit_hash
|
| 62 |
+
|
| 63 |
+
try:
|
| 64 |
+
stored_commit_hash = run(f"{git} rev-parse HEAD").strip()
|
| 65 |
+
except Exception:
|
| 66 |
+
stored_commit_hash = "<none>"
|
| 67 |
+
|
| 68 |
+
return stored_commit_hash
|
| 69 |
+
|
| 70 |
+
|
| 71 |
+
def run_pip(args, desc=None):
|
| 72 |
+
if skip_install:
|
| 73 |
+
return
|
| 74 |
+
|
| 75 |
+
index_url_line = f" --index-url {index_url}" if index_url != "" else ""
|
| 76 |
+
return run(
|
| 77 |
+
f'"{python}" -m pip {args} --prefer-binary{index_url_line}',
|
| 78 |
+
desc=f"Installing {desc}",
|
| 79 |
+
errdesc=f"Couldn't install {desc}",
|
| 80 |
+
)
|
| 81 |
+
|
| 82 |
+
|
| 83 |
+
def run_python(code, desc=None, errdesc=None):
|
| 84 |
+
return run(f'"{python}" -c "{code}"', desc, errdesc)
|
| 85 |
+
|
| 86 |
+
|
| 87 |
+
def extract_arg(args, name):
|
| 88 |
+
return [x for x in args if x != name], name in args
|
| 89 |
+
|
| 90 |
+
|
| 91 |
+
def prepare_environment():
|
| 92 |
+
commit = commit_hash()
|
| 93 |
+
|
| 94 |
+
print(f"Python {sys.version}")
|
| 95 |
+
print(f"Commit hash: {commit}")
|
| 96 |
+
|
| 97 |
+
torch_command = os.environ.get(
|
| 98 |
+
"TORCH_COMMAND",
|
| 99 |
+
"pip install torch torchaudio --extra-index-url https://download.pytorch.org/whl/cu118",
|
| 100 |
+
)
|
| 101 |
+
|
| 102 |
+
sys.argv, skip_install = extract_arg(sys.argv, "--skip-install")
|
| 103 |
+
if skip_install:
|
| 104 |
+
return
|
| 105 |
+
|
| 106 |
+
sys.argv, reinstall_torch = extract_arg(sys.argv, "--reinstall-torch")
|
| 107 |
+
ngrok = "--ngrok" in sys.argv
|
| 108 |
+
|
| 109 |
+
if reinstall_torch or not is_installed("torch") or not is_installed("torchaudio"):
|
| 110 |
+
run(
|
| 111 |
+
f'"{python}" -m {torch_command}',
|
| 112 |
+
"Installing torch and torchaudio",
|
| 113 |
+
"Couldn't install torch",
|
| 114 |
+
)
|
| 115 |
+
|
| 116 |
+
if not is_installed("pyngrok") and ngrok:
|
| 117 |
+
run_pip("install pyngrok", "ngrok")
|
| 118 |
+
|
| 119 |
+
run(
|
| 120 |
+
f'"{python}" -m pip install -r requirements.txt',
|
| 121 |
+
desc=f"Installing requirements",
|
| 122 |
+
errdesc=f"Couldn't install requirements",
|
| 123 |
+
)
|
| 124 |
+
|
| 125 |
+
|
| 126 |
+
def start():
|
| 127 |
+
os.environ["PATH"] = (
|
| 128 |
+
os.path.join(os.path.dirname(__file__), "bin")
|
| 129 |
+
+ os.pathsep
|
| 130 |
+
+ os.environ.get("PATH", "")
|
| 131 |
+
)
|
| 132 |
+
subprocess.run(
|
| 133 |
+
[python, "webui.py", *sys.argv[1:]],
|
| 134 |
+
)
|
| 135 |
+
|
| 136 |
+
|
| 137 |
+
if __name__ == "__main__":
|
| 138 |
+
prepare_environment()
|
| 139 |
+
start()
|
lib/rvc/attentions.py
ADDED
|
@@ -0,0 +1,415 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import math
|
| 2 |
+
|
| 3 |
+
import torch
|
| 4 |
+
from torch import nn
|
| 5 |
+
from torch.nn import functional as F
|
| 6 |
+
|
| 7 |
+
from . import commons
|
| 8 |
+
from .modules import LayerNorm
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
class Encoder(nn.Module):
|
| 12 |
+
def __init__(
|
| 13 |
+
self,
|
| 14 |
+
hidden_channels,
|
| 15 |
+
filter_channels,
|
| 16 |
+
n_heads,
|
| 17 |
+
n_layers,
|
| 18 |
+
kernel_size=1,
|
| 19 |
+
p_dropout=0.0,
|
| 20 |
+
window_size=10,
|
| 21 |
+
**kwargs
|
| 22 |
+
):
|
| 23 |
+
super().__init__()
|
| 24 |
+
self.hidden_channels = hidden_channels
|
| 25 |
+
self.filter_channels = filter_channels
|
| 26 |
+
self.n_heads = n_heads
|
| 27 |
+
self.n_layers = n_layers
|
| 28 |
+
self.kernel_size = kernel_size
|
| 29 |
+
self.p_dropout = p_dropout
|
| 30 |
+
self.window_size = window_size
|
| 31 |
+
|
| 32 |
+
self.drop = nn.Dropout(p_dropout)
|
| 33 |
+
self.attn_layers = nn.ModuleList()
|
| 34 |
+
self.norm_layers_1 = nn.ModuleList()
|
| 35 |
+
self.ffn_layers = nn.ModuleList()
|
| 36 |
+
self.norm_layers_2 = nn.ModuleList()
|
| 37 |
+
for i in range(self.n_layers):
|
| 38 |
+
self.attn_layers.append(
|
| 39 |
+
MultiHeadAttention(
|
| 40 |
+
hidden_channels,
|
| 41 |
+
hidden_channels,
|
| 42 |
+
n_heads,
|
| 43 |
+
p_dropout=p_dropout,
|
| 44 |
+
window_size=window_size,
|
| 45 |
+
)
|
| 46 |
+
)
|
| 47 |
+
self.norm_layers_1.append(LayerNorm(hidden_channels))
|
| 48 |
+
self.ffn_layers.append(
|
| 49 |
+
FFN(
|
| 50 |
+
hidden_channels,
|
| 51 |
+
hidden_channels,
|
| 52 |
+
filter_channels,
|
| 53 |
+
kernel_size,
|
| 54 |
+
p_dropout=p_dropout,
|
| 55 |
+
)
|
| 56 |
+
)
|
| 57 |
+
self.norm_layers_2.append(LayerNorm(hidden_channels))
|
| 58 |
+
|
| 59 |
+
def forward(self, x, x_mask):
|
| 60 |
+
attn_mask = x_mask.unsqueeze(2) * x_mask.unsqueeze(-1)
|
| 61 |
+
x = x * x_mask
|
| 62 |
+
for i in range(self.n_layers):
|
| 63 |
+
y = self.attn_layers[i](x, x, attn_mask)
|
| 64 |
+
y = self.drop(y)
|
| 65 |
+
x = self.norm_layers_1[i](x + y)
|
| 66 |
+
|
| 67 |
+
y = self.ffn_layers[i](x, x_mask)
|
| 68 |
+
y = self.drop(y)
|
| 69 |
+
x = self.norm_layers_2[i](x + y)
|
| 70 |
+
x = x * x_mask
|
| 71 |
+
return x
|
| 72 |
+
|
| 73 |
+
|
| 74 |
+
class Decoder(nn.Module):
|
| 75 |
+
def __init__(
|
| 76 |
+
self,
|
| 77 |
+
hidden_channels,
|
| 78 |
+
filter_channels,
|
| 79 |
+
n_heads,
|
| 80 |
+
n_layers,
|
| 81 |
+
kernel_size=1,
|
| 82 |
+
p_dropout=0.0,
|
| 83 |
+
proximal_bias=False,
|
| 84 |
+
proximal_init=True,
|
| 85 |
+
**kwargs
|
| 86 |
+
):
|
| 87 |
+
super().__init__()
|
| 88 |
+
self.hidden_channels = hidden_channels
|
| 89 |
+
self.filter_channels = filter_channels
|
| 90 |
+
self.n_heads = n_heads
|
| 91 |
+
self.n_layers = n_layers
|
| 92 |
+
self.kernel_size = kernel_size
|
| 93 |
+
self.p_dropout = p_dropout
|
| 94 |
+
self.proximal_bias = proximal_bias
|
| 95 |
+
self.proximal_init = proximal_init
|
| 96 |
+
|
| 97 |
+
self.drop = nn.Dropout(p_dropout)
|
| 98 |
+
self.self_attn_layers = nn.ModuleList()
|
| 99 |
+
self.norm_layers_0 = nn.ModuleList()
|
| 100 |
+
self.encdec_attn_layers = nn.ModuleList()
|
| 101 |
+
self.norm_layers_1 = nn.ModuleList()
|
| 102 |
+
self.ffn_layers = nn.ModuleList()
|
| 103 |
+
self.norm_layers_2 = nn.ModuleList()
|
| 104 |
+
for i in range(self.n_layers):
|
| 105 |
+
self.self_attn_layers.append(
|
| 106 |
+
MultiHeadAttention(
|
| 107 |
+
hidden_channels,
|
| 108 |
+
hidden_channels,
|
| 109 |
+
n_heads,
|
| 110 |
+
p_dropout=p_dropout,
|
| 111 |
+
proximal_bias=proximal_bias,
|
| 112 |
+
proximal_init=proximal_init,
|
| 113 |
+
)
|
| 114 |
+
)
|
| 115 |
+
self.norm_layers_0.append(LayerNorm(hidden_channels))
|
| 116 |
+
self.encdec_attn_layers.append(
|
| 117 |
+
MultiHeadAttention(
|
| 118 |
+
hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout
|
| 119 |
+
)
|
| 120 |
+
)
|
| 121 |
+
self.norm_layers_1.append(LayerNorm(hidden_channels))
|
| 122 |
+
self.ffn_layers.append(
|
| 123 |
+
FFN(
|
| 124 |
+
hidden_channels,
|
| 125 |
+
hidden_channels,
|
| 126 |
+
filter_channels,
|
| 127 |
+
kernel_size,
|
| 128 |
+
p_dropout=p_dropout,
|
| 129 |
+
causal=True,
|
| 130 |
+
)
|
| 131 |
+
)
|
| 132 |
+
self.norm_layers_2.append(LayerNorm(hidden_channels))
|
| 133 |
+
|
| 134 |
+
def forward(self, x, x_mask, h, h_mask):
|
| 135 |
+
"""
|
| 136 |
+
x: decoder input
|
| 137 |
+
h: encoder output
|
| 138 |
+
"""
|
| 139 |
+
self_attn_mask = commons.subsequent_mask(x_mask.size(2)).to(
|
| 140 |
+
device=x.device, dtype=x.dtype
|
| 141 |
+
)
|
| 142 |
+
encdec_attn_mask = h_mask.unsqueeze(2) * x_mask.unsqueeze(-1)
|
| 143 |
+
x = x * x_mask
|
| 144 |
+
for i in range(self.n_layers):
|
| 145 |
+
y = self.self_attn_layers[i](x, x, self_attn_mask)
|
| 146 |
+
y = self.drop(y)
|
| 147 |
+
x = self.norm_layers_0[i](x + y)
|
| 148 |
+
|
| 149 |
+
y = self.encdec_attn_layers[i](x, h, encdec_attn_mask)
|
| 150 |
+
y = self.drop(y)
|
| 151 |
+
x = self.norm_layers_1[i](x + y)
|
| 152 |
+
|
| 153 |
+
y = self.ffn_layers[i](x, x_mask)
|
| 154 |
+
y = self.drop(y)
|
| 155 |
+
x = self.norm_layers_2[i](x + y)
|
| 156 |
+
x = x * x_mask
|
| 157 |
+
return x
|
| 158 |
+
|
| 159 |
+
|
| 160 |
+
class MultiHeadAttention(nn.Module):
|
| 161 |
+
def __init__(
|
| 162 |
+
self,
|
| 163 |
+
channels,
|
| 164 |
+
out_channels,
|
| 165 |
+
n_heads,
|
| 166 |
+
p_dropout=0.0,
|
| 167 |
+
window_size=None,
|
| 168 |
+
heads_share=True,
|
| 169 |
+
block_length=None,
|
| 170 |
+
proximal_bias=False,
|
| 171 |
+
proximal_init=False,
|
| 172 |
+
):
|
| 173 |
+
super().__init__()
|
| 174 |
+
assert channels % n_heads == 0
|
| 175 |
+
|
| 176 |
+
self.channels = channels
|
| 177 |
+
self.out_channels = out_channels
|
| 178 |
+
self.n_heads = n_heads
|
| 179 |
+
self.p_dropout = p_dropout
|
| 180 |
+
self.window_size = window_size
|
| 181 |
+
self.heads_share = heads_share
|
| 182 |
+
self.block_length = block_length
|
| 183 |
+
self.proximal_bias = proximal_bias
|
| 184 |
+
self.proximal_init = proximal_init
|
| 185 |
+
self.attn = None
|
| 186 |
+
|
| 187 |
+
self.k_channels = channels // n_heads
|
| 188 |
+
self.conv_q = nn.Conv1d(channels, channels, 1)
|
| 189 |
+
self.conv_k = nn.Conv1d(channels, channels, 1)
|
| 190 |
+
self.conv_v = nn.Conv1d(channels, channels, 1)
|
| 191 |
+
self.conv_o = nn.Conv1d(channels, out_channels, 1)
|
| 192 |
+
self.drop = nn.Dropout(p_dropout)
|
| 193 |
+
|
| 194 |
+
if window_size is not None:
|
| 195 |
+
n_heads_rel = 1 if heads_share else n_heads
|
| 196 |
+
rel_stddev = self.k_channels**-0.5
|
| 197 |
+
self.emb_rel_k = nn.Parameter(
|
| 198 |
+
torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels)
|
| 199 |
+
* rel_stddev
|
| 200 |
+
)
|
| 201 |
+
self.emb_rel_v = nn.Parameter(
|
| 202 |
+
torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels)
|
| 203 |
+
* rel_stddev
|
| 204 |
+
)
|
| 205 |
+
|
| 206 |
+
nn.init.xavier_uniform_(self.conv_q.weight)
|
| 207 |
+
nn.init.xavier_uniform_(self.conv_k.weight)
|
| 208 |
+
nn.init.xavier_uniform_(self.conv_v.weight)
|
| 209 |
+
if proximal_init:
|
| 210 |
+
with torch.no_grad():
|
| 211 |
+
self.conv_k.weight.copy_(self.conv_q.weight)
|
| 212 |
+
self.conv_k.bias.copy_(self.conv_q.bias)
|
| 213 |
+
|
| 214 |
+
def forward(self, x, c, attn_mask=None):
|
| 215 |
+
q = self.conv_q(x)
|
| 216 |
+
k = self.conv_k(c)
|
| 217 |
+
v = self.conv_v(c)
|
| 218 |
+
|
| 219 |
+
x, self.attn = self.attention(q, k, v, mask=attn_mask)
|
| 220 |
+
|
| 221 |
+
x = self.conv_o(x)
|
| 222 |
+
return x
|
| 223 |
+
|
| 224 |
+
def attention(self, query, key, value, mask=None):
|
| 225 |
+
# reshape [b, d, t] -> [b, n_h, t, d_k]
|
| 226 |
+
b, d, t_s, t_t = (*key.size(), query.size(2))
|
| 227 |
+
query = query.view(b, self.n_heads, self.k_channels, t_t).transpose(2, 3)
|
| 228 |
+
key = key.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3)
|
| 229 |
+
value = value.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3)
|
| 230 |
+
|
| 231 |
+
scores = torch.matmul(query / math.sqrt(self.k_channels), key.transpose(-2, -1))
|
| 232 |
+
if self.window_size is not None:
|
| 233 |
+
assert (
|
| 234 |
+
t_s == t_t
|
| 235 |
+
), "Relative attention is only available for self-attention."
|
| 236 |
+
key_relative_embeddings = self._get_relative_embeddings(self.emb_rel_k, t_s)
|
| 237 |
+
rel_logits = self._matmul_with_relative_keys(
|
| 238 |
+
query / math.sqrt(self.k_channels), key_relative_embeddings
|
| 239 |
+
)
|
| 240 |
+
scores_local = self._relative_position_to_absolute_position(rel_logits)
|
| 241 |
+
scores = scores + scores_local
|
| 242 |
+
if self.proximal_bias:
|
| 243 |
+
assert t_s == t_t, "Proximal bias is only available for self-attention."
|
| 244 |
+
scores = scores + self._attention_bias_proximal(t_s).to(
|
| 245 |
+
device=scores.device, dtype=scores.dtype
|
| 246 |
+
)
|
| 247 |
+
if mask is not None:
|
| 248 |
+
scores = scores.masked_fill(mask == 0, -1e4)
|
| 249 |
+
if self.block_length is not None:
|
| 250 |
+
assert (
|
| 251 |
+
t_s == t_t
|
| 252 |
+
), "Local attention is only available for self-attention."
|
| 253 |
+
block_mask = (
|
| 254 |
+
torch.ones_like(scores)
|
| 255 |
+
.triu(-self.block_length)
|
| 256 |
+
.tril(self.block_length)
|
| 257 |
+
)
|
| 258 |
+
scores = scores.masked_fill(block_mask == 0, -1e4)
|
| 259 |
+
p_attn = F.softmax(scores, dim=-1) # [b, n_h, t_t, t_s]
|
| 260 |
+
p_attn = self.drop(p_attn)
|
| 261 |
+
output = torch.matmul(p_attn, value)
|
| 262 |
+
if self.window_size is not None:
|
| 263 |
+
relative_weights = self._absolute_position_to_relative_position(p_attn)
|
| 264 |
+
value_relative_embeddings = self._get_relative_embeddings(
|
| 265 |
+
self.emb_rel_v, t_s
|
| 266 |
+
)
|
| 267 |
+
output = output + self._matmul_with_relative_values(
|
| 268 |
+
relative_weights, value_relative_embeddings
|
| 269 |
+
)
|
| 270 |
+
output = (
|
| 271 |
+
output.transpose(2, 3).contiguous().view(b, d, t_t)
|
| 272 |
+
) # [b, n_h, t_t, d_k] -> [b, d, t_t]
|
| 273 |
+
return output, p_attn
|
| 274 |
+
|
| 275 |
+
def _matmul_with_relative_values(self, x, y):
|
| 276 |
+
"""
|
| 277 |
+
x: [b, h, l, m]
|
| 278 |
+
y: [h or 1, m, d]
|
| 279 |
+
ret: [b, h, l, d]
|
| 280 |
+
"""
|
| 281 |
+
ret = torch.matmul(x, y.unsqueeze(0))
|
| 282 |
+
return ret
|
| 283 |
+
|
| 284 |
+
def _matmul_with_relative_keys(self, x, y):
|
| 285 |
+
"""
|
| 286 |
+
x: [b, h, l, d]
|
| 287 |
+
y: [h or 1, m, d]
|
| 288 |
+
ret: [b, h, l, m]
|
| 289 |
+
"""
|
| 290 |
+
ret = torch.matmul(x, y.unsqueeze(0).transpose(-2, -1))
|
| 291 |
+
return ret
|
| 292 |
+
|
| 293 |
+
def _get_relative_embeddings(self, relative_embeddings, length):
|
| 294 |
+
max_relative_position = 2 * self.window_size + 1
|
| 295 |
+
# Pad first before slice to avoid using cond ops.
|
| 296 |
+
pad_length = max(length - (self.window_size + 1), 0)
|
| 297 |
+
slice_start_position = max((self.window_size + 1) - length, 0)
|
| 298 |
+
slice_end_position = slice_start_position + 2 * length - 1
|
| 299 |
+
if pad_length > 0:
|
| 300 |
+
padded_relative_embeddings = F.pad(
|
| 301 |
+
relative_embeddings,
|
| 302 |
+
commons.convert_pad_shape([[0, 0], [pad_length, pad_length], [0, 0]]),
|
| 303 |
+
)
|
| 304 |
+
else:
|
| 305 |
+
padded_relative_embeddings = relative_embeddings
|
| 306 |
+
used_relative_embeddings = padded_relative_embeddings[
|
| 307 |
+
:, slice_start_position:slice_end_position
|
| 308 |
+
]
|
| 309 |
+
return used_relative_embeddings
|
| 310 |
+
|
| 311 |
+
def _relative_position_to_absolute_position(self, x):
|
| 312 |
+
"""
|
| 313 |
+
x: [b, h, l, 2*l-1]
|
| 314 |
+
ret: [b, h, l, l]
|
| 315 |
+
"""
|
| 316 |
+
batch, heads, length, _ = x.size()
|
| 317 |
+
# Concat columns of pad to shift from relative to absolute indexing.
|
| 318 |
+
x = F.pad(x, commons.convert_pad_shape([[0, 0], [0, 0], [0, 0], [0, 1]]))
|
| 319 |
+
|
| 320 |
+
# Concat extra elements so to add up to shape (len+1, 2*len-1).
|
| 321 |
+
x_flat = x.view([batch, heads, length * 2 * length])
|
| 322 |
+
x_flat = F.pad(
|
| 323 |
+
x_flat, commons.convert_pad_shape([[0, 0], [0, 0], [0, length - 1]])
|
| 324 |
+
)
|
| 325 |
+
|
| 326 |
+
# Reshape and slice out the padded elements.
|
| 327 |
+
x_final = x_flat.view([batch, heads, length + 1, 2 * length - 1])[
|
| 328 |
+
:, :, :length, length - 1 :
|
| 329 |
+
]
|
| 330 |
+
return x_final
|
| 331 |
+
|
| 332 |
+
def _absolute_position_to_relative_position(self, x):
|
| 333 |
+
"""
|
| 334 |
+
x: [b, h, l, l]
|
| 335 |
+
ret: [b, h, l, 2*l-1]
|
| 336 |
+
"""
|
| 337 |
+
batch, heads, length, _ = x.size()
|
| 338 |
+
# padd along column
|
| 339 |
+
x = F.pad(
|
| 340 |
+
x, commons.convert_pad_shape([[0, 0], [0, 0], [0, 0], [0, length - 1]])
|
| 341 |
+
)
|
| 342 |
+
x_flat = x.view([batch, heads, length**2 + length * (length - 1)])
|
| 343 |
+
# add 0's in the beginning that will skew the elements after reshape
|
| 344 |
+
x_flat = F.pad(x_flat, commons.convert_pad_shape([[0, 0], [0, 0], [length, 0]]))
|
| 345 |
+
x_final = x_flat.view([batch, heads, length, 2 * length])[:, :, :, 1:]
|
| 346 |
+
return x_final
|
| 347 |
+
|
| 348 |
+
def _attention_bias_proximal(self, length):
|
| 349 |
+
"""Bias for self-attention to encourage attention to close positions.
|
| 350 |
+
Args:
|
| 351 |
+
length: an integer scalar.
|
| 352 |
+
Returns:
|
| 353 |
+
a Tensor with shape [1, 1, length, length]
|
| 354 |
+
"""
|
| 355 |
+
r = torch.arange(length, dtype=torch.float32)
|
| 356 |
+
diff = torch.unsqueeze(r, 0) - torch.unsqueeze(r, 1)
|
| 357 |
+
return torch.unsqueeze(torch.unsqueeze(-torch.log1p(torch.abs(diff)), 0), 0)
|
| 358 |
+
|
| 359 |
+
|
| 360 |
+
class FFN(nn.Module):
|
| 361 |
+
def __init__(
|
| 362 |
+
self,
|
| 363 |
+
in_channels,
|
| 364 |
+
out_channels,
|
| 365 |
+
filter_channels,
|
| 366 |
+
kernel_size,
|
| 367 |
+
p_dropout=0.0,
|
| 368 |
+
activation=None,
|
| 369 |
+
causal=False,
|
| 370 |
+
):
|
| 371 |
+
super().__init__()
|
| 372 |
+
self.in_channels = in_channels
|
| 373 |
+
self.out_channels = out_channels
|
| 374 |
+
self.filter_channels = filter_channels
|
| 375 |
+
self.kernel_size = kernel_size
|
| 376 |
+
self.p_dropout = p_dropout
|
| 377 |
+
self.activation = activation
|
| 378 |
+
self.causal = causal
|
| 379 |
+
|
| 380 |
+
if causal:
|
| 381 |
+
self.padding = self._causal_padding
|
| 382 |
+
else:
|
| 383 |
+
self.padding = self._same_padding
|
| 384 |
+
|
| 385 |
+
self.conv_1 = nn.Conv1d(in_channels, filter_channels, kernel_size)
|
| 386 |
+
self.conv_2 = nn.Conv1d(filter_channels, out_channels, kernel_size)
|
| 387 |
+
self.drop = nn.Dropout(p_dropout)
|
| 388 |
+
|
| 389 |
+
def forward(self, x, x_mask):
|
| 390 |
+
x = self.conv_1(self.padding(x * x_mask))
|
| 391 |
+
if self.activation == "gelu":
|
| 392 |
+
x = x * torch.sigmoid(1.702 * x)
|
| 393 |
+
else:
|
| 394 |
+
x = torch.relu(x)
|
| 395 |
+
x = self.drop(x)
|
| 396 |
+
x = self.conv_2(self.padding(x * x_mask))
|
| 397 |
+
return x * x_mask
|
| 398 |
+
|
| 399 |
+
def _causal_padding(self, x):
|
| 400 |
+
if self.kernel_size == 1:
|
| 401 |
+
return x
|
| 402 |
+
pad_l = self.kernel_size - 1
|
| 403 |
+
pad_r = 0
|
| 404 |
+
padding = [[0, 0], [0, 0], [pad_l, pad_r]]
|
| 405 |
+
x = F.pad(x, commons.convert_pad_shape(padding))
|
| 406 |
+
return x
|
| 407 |
+
|
| 408 |
+
def _same_padding(self, x):
|
| 409 |
+
if self.kernel_size == 1:
|
| 410 |
+
return x
|
| 411 |
+
pad_l = (self.kernel_size - 1) // 2
|
| 412 |
+
pad_r = self.kernel_size // 2
|
| 413 |
+
padding = [[0, 0], [0, 0], [pad_l, pad_r]]
|
| 414 |
+
x = F.pad(x, commons.convert_pad_shape(padding))
|
| 415 |
+
return x
|
lib/rvc/checkpoints.py
ADDED
|
@@ -0,0 +1,149 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
from collections import OrderedDict
|
| 3 |
+
from typing import *
|
| 4 |
+
|
| 5 |
+
import torch
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
def write_config(state_dict: Dict[str, Any], cfg: Dict[str, Any]):
|
| 9 |
+
state_dict["config"] = []
|
| 10 |
+
for key, x in cfg.items():
|
| 11 |
+
state_dict["config"].append(x)
|
| 12 |
+
state_dict["params"] = cfg
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
def create_trained_model(
|
| 16 |
+
weights: Dict[str, Any],
|
| 17 |
+
version: Literal["v1", "v2"],
|
| 18 |
+
sr: str,
|
| 19 |
+
f0: bool,
|
| 20 |
+
emb_name: str,
|
| 21 |
+
emb_ch: int,
|
| 22 |
+
emb_output_layer: int,
|
| 23 |
+
epoch: int,
|
| 24 |
+
speaker_info: Optional[dict[str, int]]
|
| 25 |
+
):
|
| 26 |
+
state_dict = OrderedDict()
|
| 27 |
+
state_dict["weight"] = {}
|
| 28 |
+
for key in weights.keys():
|
| 29 |
+
if "enc_q" in key:
|
| 30 |
+
continue
|
| 31 |
+
state_dict["weight"][key] = weights[key].half()
|
| 32 |
+
if sr == "40k":
|
| 33 |
+
write_config(
|
| 34 |
+
state_dict,
|
| 35 |
+
{
|
| 36 |
+
"spec_channels": 1025,
|
| 37 |
+
"segment_size": 32,
|
| 38 |
+
"inter_channels": 192,
|
| 39 |
+
"hidden_channels": 192,
|
| 40 |
+
"filter_channels": 768,
|
| 41 |
+
"n_heads": 2,
|
| 42 |
+
"n_layers": 6,
|
| 43 |
+
"kernel_size": 3,
|
| 44 |
+
"p_dropout": 0,
|
| 45 |
+
"resblock": "1",
|
| 46 |
+
"resblock_kernel_sizes": [3, 7, 11],
|
| 47 |
+
"resblock_dilation_sizes": [[1, 3, 5], [1, 3, 5], [1, 3, 5]],
|
| 48 |
+
"upsample_rates": [10, 10, 2, 2],
|
| 49 |
+
"upsample_initial_channel": 512,
|
| 50 |
+
"upsample_kernel_sizes": [16, 16, 4, 4],
|
| 51 |
+
"spk_embed_dim": 109 if speaker_info is None else len(speaker_info),
|
| 52 |
+
"gin_channels": 256,
|
| 53 |
+
"emb_channels": emb_ch,
|
| 54 |
+
"sr": 40000,
|
| 55 |
+
},
|
| 56 |
+
)
|
| 57 |
+
elif sr == "48k":
|
| 58 |
+
write_config(
|
| 59 |
+
state_dict,
|
| 60 |
+
{
|
| 61 |
+
"spec_channels": 1025,
|
| 62 |
+
"segment_size": 32,
|
| 63 |
+
"inter_channels": 192,
|
| 64 |
+
"hidden_channels": 192,
|
| 65 |
+
"filter_channels": 768,
|
| 66 |
+
"n_heads": 2,
|
| 67 |
+
"n_layers": 6,
|
| 68 |
+
"kernel_size": 3,
|
| 69 |
+
"p_dropout": 0,
|
| 70 |
+
"resblock": "1",
|
| 71 |
+
"resblock_kernel_sizes": [3, 7, 11],
|
| 72 |
+
"resblock_dilation_sizes": [[1, 3, 5], [1, 3, 5], [1, 3, 5]],
|
| 73 |
+
"upsample_rates": [10, 6, 2, 2, 2],
|
| 74 |
+
"upsample_initial_channel": 512,
|
| 75 |
+
"upsample_kernel_sizes": [16, 16, 4, 4, 4],
|
| 76 |
+
"spk_embed_dim": 109 if speaker_info is None else len(speaker_info),
|
| 77 |
+
"gin_channels": 256,
|
| 78 |
+
"emb_channels": emb_ch,
|
| 79 |
+
"sr": 48000,
|
| 80 |
+
},
|
| 81 |
+
)
|
| 82 |
+
elif sr == "32k":
|
| 83 |
+
write_config(
|
| 84 |
+
state_dict,
|
| 85 |
+
{
|
| 86 |
+
"spec_channels": 513,
|
| 87 |
+
"segment_size": 32,
|
| 88 |
+
"inter_channels": 192,
|
| 89 |
+
"hidden_channels": 192,
|
| 90 |
+
"filter_channels": 768,
|
| 91 |
+
"n_heads": 2,
|
| 92 |
+
"n_layers": 6,
|
| 93 |
+
"kernel_size": 3,
|
| 94 |
+
"p_dropout": 0,
|
| 95 |
+
"resblock": "1",
|
| 96 |
+
"resblock_kernel_sizes": [3, 7, 11],
|
| 97 |
+
"resblock_dilation_sizes": [[1, 3, 5], [1, 3, 5], [1, 3, 5]],
|
| 98 |
+
"upsample_rates": [10, 4, 2, 2, 2],
|
| 99 |
+
"upsample_initial_channel": 512,
|
| 100 |
+
"upsample_kernel_sizes": [16, 16, 4, 4, 4],
|
| 101 |
+
"spk_embed_dim": 109 if speaker_info is None else len(speaker_info),
|
| 102 |
+
"gin_channels": 256,
|
| 103 |
+
"emb_channels": emb_ch,
|
| 104 |
+
"sr": 32000,
|
| 105 |
+
},
|
| 106 |
+
)
|
| 107 |
+
state_dict["version"] = version
|
| 108 |
+
state_dict["info"] = f"{epoch}epoch"
|
| 109 |
+
state_dict["sr"] = sr
|
| 110 |
+
state_dict["f0"] = 1 if f0 else 0
|
| 111 |
+
state_dict["embedder_name"] = emb_name
|
| 112 |
+
state_dict["embedder_output_layer"] = emb_output_layer
|
| 113 |
+
if not speaker_info is None:
|
| 114 |
+
state_dict["speaker_info"] = {str(v): str(k) for k, v in speaker_info.items()}
|
| 115 |
+
return state_dict
|
| 116 |
+
|
| 117 |
+
|
| 118 |
+
def save(
|
| 119 |
+
model,
|
| 120 |
+
version: Literal["v1", "v2"],
|
| 121 |
+
sr: str,
|
| 122 |
+
f0: bool,
|
| 123 |
+
emb_name: str,
|
| 124 |
+
emb_ch: int,
|
| 125 |
+
emb_output_layer: int,
|
| 126 |
+
filepath: str,
|
| 127 |
+
epoch: int,
|
| 128 |
+
speaker_info: Optional[dict[str, int]]
|
| 129 |
+
):
|
| 130 |
+
if hasattr(model, "module"):
|
| 131 |
+
state_dict = model.module.state_dict()
|
| 132 |
+
else:
|
| 133 |
+
state_dict = model.state_dict()
|
| 134 |
+
|
| 135 |
+
print(f"save: emb_name: {emb_name} {emb_ch}")
|
| 136 |
+
|
| 137 |
+
state_dict = create_trained_model(
|
| 138 |
+
state_dict,
|
| 139 |
+
version,
|
| 140 |
+
sr,
|
| 141 |
+
f0,
|
| 142 |
+
emb_name,
|
| 143 |
+
emb_ch,
|
| 144 |
+
emb_output_layer,
|
| 145 |
+
epoch,
|
| 146 |
+
speaker_info
|
| 147 |
+
)
|
| 148 |
+
os.makedirs(os.path.dirname(filepath), exist_ok=True)
|
| 149 |
+
torch.save(state_dict, filepath)
|
lib/rvc/commons.py
ADDED
|
@@ -0,0 +1,163 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import math
|
| 2 |
+
|
| 3 |
+
import torch
|
| 4 |
+
from torch.nn import functional as F
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
def init_weights(m, mean=0.0, std=0.01):
|
| 8 |
+
classname = m.__class__.__name__
|
| 9 |
+
if classname.find("Conv") != -1:
|
| 10 |
+
m.weight.data.normal_(mean, std)
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
def get_padding(kernel_size, dilation=1):
|
| 14 |
+
return int((kernel_size * dilation - dilation) / 2)
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
def convert_pad_shape(pad_shape):
|
| 18 |
+
l = pad_shape[::-1]
|
| 19 |
+
pad_shape = [item for sublist in l for item in sublist]
|
| 20 |
+
return pad_shape
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
def kl_divergence(m_p, logs_p, m_q, logs_q):
|
| 24 |
+
"""KL(P||Q)"""
|
| 25 |
+
kl = (logs_q - logs_p) - 0.5
|
| 26 |
+
kl += (
|
| 27 |
+
0.5 * (torch.exp(2.0 * logs_p) + ((m_p - m_q) ** 2)) * torch.exp(-2.0 * logs_q)
|
| 28 |
+
)
|
| 29 |
+
return kl
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
def rand_gumbel(shape):
|
| 33 |
+
"""Sample from the Gumbel distribution, protect from overflows."""
|
| 34 |
+
uniform_samples = torch.rand(shape) * 0.99998 + 0.00001
|
| 35 |
+
return -torch.log(-torch.log(uniform_samples))
|
| 36 |
+
|
| 37 |
+
|
| 38 |
+
def rand_gumbel_like(x):
|
| 39 |
+
g = rand_gumbel(x.size()).to(dtype=x.dtype, device=x.device)
|
| 40 |
+
return g
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
def slice_segments(x, ids_str, segment_size=4):
|
| 44 |
+
ret = torch.zeros_like(x[:, :, :segment_size])
|
| 45 |
+
for i in range(x.size(0)):
|
| 46 |
+
idx_str = ids_str[i]
|
| 47 |
+
idx_end = idx_str + segment_size
|
| 48 |
+
ret[i] = x[i, :, idx_str:idx_end]
|
| 49 |
+
return ret
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
def slice_segments2(x, ids_str, segment_size=4):
|
| 53 |
+
ret = torch.zeros_like(x[:, :segment_size])
|
| 54 |
+
for i in range(x.size(0)):
|
| 55 |
+
idx_str = ids_str[i]
|
| 56 |
+
idx_end = idx_str + segment_size
|
| 57 |
+
ret[i] = x[i, idx_str:idx_end]
|
| 58 |
+
return ret
|
| 59 |
+
|
| 60 |
+
|
| 61 |
+
def rand_slice_segments(x, x_lengths=None, segment_size=4):
|
| 62 |
+
b, d, t = x.size()
|
| 63 |
+
if x_lengths is None:
|
| 64 |
+
x_lengths = t
|
| 65 |
+
ids_str_max = x_lengths - segment_size + 1
|
| 66 |
+
ids_str = (torch.rand([b]).to(device=x.device) * ids_str_max).to(dtype=torch.long)
|
| 67 |
+
ret = slice_segments(x, ids_str, segment_size)
|
| 68 |
+
return ret, ids_str
|
| 69 |
+
|
| 70 |
+
|
| 71 |
+
def get_timing_signal_1d(length, channels, min_timescale=1.0, max_timescale=1.0e4):
|
| 72 |
+
position = torch.arange(length, dtype=torch.float)
|
| 73 |
+
num_timescales = channels // 2
|
| 74 |
+
log_timescale_increment = math.log(float(max_timescale) / float(min_timescale)) / (
|
| 75 |
+
num_timescales - 1
|
| 76 |
+
)
|
| 77 |
+
inv_timescales = min_timescale * torch.exp(
|
| 78 |
+
torch.arange(num_timescales, dtype=torch.float) * -log_timescale_increment
|
| 79 |
+
)
|
| 80 |
+
scaled_time = position.unsqueeze(0) * inv_timescales.unsqueeze(1)
|
| 81 |
+
signal = torch.cat([torch.sin(scaled_time), torch.cos(scaled_time)], 0)
|
| 82 |
+
signal = F.pad(signal, [0, 0, 0, channels % 2])
|
| 83 |
+
signal = signal.view(1, channels, length)
|
| 84 |
+
return signal
|
| 85 |
+
|
| 86 |
+
|
| 87 |
+
def add_timing_signal_1d(x, min_timescale=1.0, max_timescale=1.0e4):
|
| 88 |
+
b, channels, length = x.size()
|
| 89 |
+
signal = get_timing_signal_1d(length, channels, min_timescale, max_timescale)
|
| 90 |
+
return x + signal.to(dtype=x.dtype, device=x.device)
|
| 91 |
+
|
| 92 |
+
|
| 93 |
+
def cat_timing_signal_1d(x, min_timescale=1.0, max_timescale=1.0e4, axis=1):
|
| 94 |
+
b, channels, length = x.size()
|
| 95 |
+
signal = get_timing_signal_1d(length, channels, min_timescale, max_timescale)
|
| 96 |
+
return torch.cat([x, signal.to(dtype=x.dtype, device=x.device)], axis)
|
| 97 |
+
|
| 98 |
+
|
| 99 |
+
def subsequent_mask(length):
|
| 100 |
+
mask = torch.tril(torch.ones(length, length)).unsqueeze(0).unsqueeze(0)
|
| 101 |
+
return mask
|
| 102 |
+
|
| 103 |
+
|
| 104 |
+
@torch.jit.script
|
| 105 |
+
def fused_add_tanh_sigmoid_multiply(input_a, input_b, n_channels):
|
| 106 |
+
n_channels_int = n_channels[0]
|
| 107 |
+
in_act = input_a + input_b
|
| 108 |
+
t_act = torch.tanh(in_act[:, :n_channels_int, :])
|
| 109 |
+
s_act = torch.sigmoid(in_act[:, n_channels_int:, :])
|
| 110 |
+
acts = t_act * s_act
|
| 111 |
+
return acts
|
| 112 |
+
|
| 113 |
+
|
| 114 |
+
def convert_pad_shape(pad_shape):
|
| 115 |
+
l = pad_shape[::-1]
|
| 116 |
+
pad_shape = [item for sublist in l for item in sublist]
|
| 117 |
+
return pad_shape
|
| 118 |
+
|
| 119 |
+
|
| 120 |
+
def shift_1d(x):
|
| 121 |
+
x = F.pad(x, convert_pad_shape([[0, 0], [0, 0], [1, 0]]))[:, :, :-1]
|
| 122 |
+
return x
|
| 123 |
+
|
| 124 |
+
|
| 125 |
+
def sequence_mask(length, max_length=None):
|
| 126 |
+
if max_length is None:
|
| 127 |
+
max_length = length.max()
|
| 128 |
+
x = torch.arange(max_length, dtype=length.dtype, device=length.device)
|
| 129 |
+
return x.unsqueeze(0) < length.unsqueeze(1)
|
| 130 |
+
|
| 131 |
+
|
| 132 |
+
def generate_path(duration, mask):
|
| 133 |
+
"""
|
| 134 |
+
duration: [b, 1, t_x]
|
| 135 |
+
mask: [b, 1, t_y, t_x]
|
| 136 |
+
"""
|
| 137 |
+
b, _, t_y, t_x = mask.shape
|
| 138 |
+
cum_duration = torch.cumsum(duration, -1)
|
| 139 |
+
|
| 140 |
+
cum_duration_flat = cum_duration.view(b * t_x)
|
| 141 |
+
path = sequence_mask(cum_duration_flat, t_y).to(mask.dtype)
|
| 142 |
+
path = path.view(b, t_x, t_y)
|
| 143 |
+
path = path - F.pad(path, convert_pad_shape([[0, 0], [1, 0], [0, 0]]))[:, :-1]
|
| 144 |
+
path = path.unsqueeze(1).transpose(2, 3) * mask
|
| 145 |
+
return path
|
| 146 |
+
|
| 147 |
+
|
| 148 |
+
def clip_grad_value_(parameters, clip_value, norm_type=2):
|
| 149 |
+
if isinstance(parameters, torch.Tensor):
|
| 150 |
+
parameters = [parameters]
|
| 151 |
+
parameters = list(filter(lambda p: p.grad is not None, parameters))
|
| 152 |
+
norm_type = float(norm_type)
|
| 153 |
+
if clip_value is not None:
|
| 154 |
+
clip_value = float(clip_value)
|
| 155 |
+
|
| 156 |
+
total_norm = 0
|
| 157 |
+
for p in parameters:
|
| 158 |
+
param_norm = p.grad.data.norm(norm_type)
|
| 159 |
+
total_norm += param_norm.item() ** norm_type
|
| 160 |
+
if clip_value is not None:
|
| 161 |
+
p.grad.data.clamp_(min=-clip_value, max=clip_value)
|
| 162 |
+
total_norm = total_norm ** (1.0 / norm_type)
|
| 163 |
+
return total_norm
|
lib/rvc/config.py
ADDED
|
@@ -0,0 +1,71 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import *
|
| 2 |
+
|
| 3 |
+
from pydantic import BaseModel
|
| 4 |
+
|
| 5 |
+
|
| 6 |
+
class TrainConfigTrain(BaseModel):
|
| 7 |
+
log_interval: int
|
| 8 |
+
seed: int
|
| 9 |
+
epochs: int
|
| 10 |
+
learning_rate: float
|
| 11 |
+
betas: List[float]
|
| 12 |
+
eps: float
|
| 13 |
+
batch_size: int
|
| 14 |
+
fp16_run: bool
|
| 15 |
+
lr_decay: float
|
| 16 |
+
segment_size: int
|
| 17 |
+
init_lr_ratio: int
|
| 18 |
+
warmup_epochs: int
|
| 19 |
+
c_mel: int
|
| 20 |
+
c_kl: float
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
class TrainConfigData(BaseModel):
|
| 24 |
+
max_wav_value: float
|
| 25 |
+
sampling_rate: int
|
| 26 |
+
filter_length: int
|
| 27 |
+
hop_length: int
|
| 28 |
+
win_length: int
|
| 29 |
+
n_mel_channels: int
|
| 30 |
+
mel_fmin: float
|
| 31 |
+
mel_fmax: Any
|
| 32 |
+
|
| 33 |
+
|
| 34 |
+
class TrainConfigModel(BaseModel):
|
| 35 |
+
inter_channels: int
|
| 36 |
+
hidden_channels: int
|
| 37 |
+
filter_channels: int
|
| 38 |
+
n_heads: int
|
| 39 |
+
n_layers: int
|
| 40 |
+
kernel_size: int
|
| 41 |
+
p_dropout: int
|
| 42 |
+
resblock: str
|
| 43 |
+
resblock_kernel_sizes: List[int]
|
| 44 |
+
resblock_dilation_sizes: List[List[int]]
|
| 45 |
+
upsample_rates: List[int]
|
| 46 |
+
upsample_initial_channel: int
|
| 47 |
+
upsample_kernel_sizes: List[int]
|
| 48 |
+
use_spectral_norm: bool
|
| 49 |
+
gin_channels: int
|
| 50 |
+
emb_channels: int
|
| 51 |
+
spk_embed_dim: int
|
| 52 |
+
|
| 53 |
+
|
| 54 |
+
class TrainConfig(BaseModel):
|
| 55 |
+
version: Literal["v1", "v2"] = "v2"
|
| 56 |
+
train: TrainConfigTrain
|
| 57 |
+
data: TrainConfigData
|
| 58 |
+
model: TrainConfigModel
|
| 59 |
+
|
| 60 |
+
|
| 61 |
+
class DatasetMetaItem(BaseModel):
|
| 62 |
+
gt_wav: str
|
| 63 |
+
co256: str
|
| 64 |
+
f0: Optional[str]
|
| 65 |
+
f0nsf: Optional[str]
|
| 66 |
+
speaker_id: int
|
| 67 |
+
|
| 68 |
+
|
| 69 |
+
class DatasetMetadata(BaseModel):
|
| 70 |
+
files: Dict[str, DatasetMetaItem]
|
| 71 |
+
# mute: DatasetMetaItem
|
lib/rvc/data_utils.py
ADDED
|
@@ -0,0 +1,515 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import traceback
|
| 3 |
+
|
| 4 |
+
import numpy as np
|
| 5 |
+
import torch
|
| 6 |
+
import torch.utils.data
|
| 7 |
+
|
| 8 |
+
from .config import DatasetMetadata, DatasetMetaItem, TrainConfigData
|
| 9 |
+
from .mel_processing import spectrogram_torch
|
| 10 |
+
from .utils import load_wav_to_torch
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
class TextAudioLoader(torch.utils.data.Dataset):
|
| 14 |
+
"""
|
| 15 |
+
1) loads audio, text pairs
|
| 16 |
+
2) normalizes text and converts them to sequences of integers
|
| 17 |
+
3) computes spectrograms from audio files.
|
| 18 |
+
"""
|
| 19 |
+
|
| 20 |
+
def __init__(self, dataset_meta: DatasetMetadata, data: TrainConfigData):
|
| 21 |
+
self.dataset_meta = dataset_meta
|
| 22 |
+
self.max_wav_value = data.max_wav_value
|
| 23 |
+
self.sampling_rate = data.sampling_rate
|
| 24 |
+
self.filter_length = data.filter_length
|
| 25 |
+
self.hop_length = data.hop_length
|
| 26 |
+
self.win_length = data.win_length
|
| 27 |
+
self.sampling_rate = data.sampling_rate
|
| 28 |
+
self.min_text_len = getattr(data, "min_text_len", 1)
|
| 29 |
+
self.max_text_len = getattr(data, "max_text_len", 5000)
|
| 30 |
+
self._filter()
|
| 31 |
+
|
| 32 |
+
def _filter(self):
|
| 33 |
+
"""
|
| 34 |
+
Filter text & store spec lengths
|
| 35 |
+
"""
|
| 36 |
+
# Store spectrogram lengths for Bucketing
|
| 37 |
+
# wav_length ~= file_size / (wav_channels * Bytes per dim) = file_size / (1 * 2)
|
| 38 |
+
# spec_length = wav_length // hop_length
|
| 39 |
+
lengths = []
|
| 40 |
+
for key, data in self.dataset_meta.files.items():
|
| 41 |
+
if (
|
| 42 |
+
self.min_text_len <= len(data.co256)
|
| 43 |
+
and len(data.co256) <= self.max_text_len
|
| 44 |
+
):
|
| 45 |
+
lengths.append(os.path.getsize(data.gt_wav) // (2 * self.hop_length))
|
| 46 |
+
else:
|
| 47 |
+
del self.dataset_meta.files[key]
|
| 48 |
+
self.lengths = lengths
|
| 49 |
+
|
| 50 |
+
def get_sid(self, sid):
|
| 51 |
+
sid = torch.LongTensor([int(sid)])
|
| 52 |
+
return sid
|
| 53 |
+
|
| 54 |
+
def get_audio_text_pair(self, data: DatasetMetaItem):
|
| 55 |
+
# separate filename and text
|
| 56 |
+
file = data.gt_wav
|
| 57 |
+
phone = data.co256
|
| 58 |
+
dv = data.speaker_id
|
| 59 |
+
|
| 60 |
+
phone = self.get_labels(phone)
|
| 61 |
+
spec, wav = self.get_audio(file)
|
| 62 |
+
dv = self.get_sid(dv)
|
| 63 |
+
|
| 64 |
+
len_phone = phone.size()[0]
|
| 65 |
+
len_spec = spec.size()[-1]
|
| 66 |
+
if len_phone != len_spec:
|
| 67 |
+
len_min = min(len_phone, len_spec)
|
| 68 |
+
len_wav = len_min * self.hop_length
|
| 69 |
+
spec = spec[:, :len_min]
|
| 70 |
+
wav = wav[:, :len_wav]
|
| 71 |
+
phone = phone[:len_min, :]
|
| 72 |
+
return (spec, wav, phone, dv)
|
| 73 |
+
|
| 74 |
+
def get_labels(self, phone):
|
| 75 |
+
phone = np.load(phone)
|
| 76 |
+
phone = np.repeat(phone, 2, axis=0)
|
| 77 |
+
n_num = min(phone.shape[0], 900) # DistributedBucketSampler
|
| 78 |
+
phone = phone[:n_num, :]
|
| 79 |
+
phone = torch.FloatTensor(phone)
|
| 80 |
+
return phone
|
| 81 |
+
|
| 82 |
+
def get_audio(self, filename):
|
| 83 |
+
audio, sampling_rate = load_wav_to_torch(filename)
|
| 84 |
+
if sampling_rate != self.sampling_rate:
|
| 85 |
+
raise ValueError(
|
| 86 |
+
"{} SR doesn't match target {} SR".format(
|
| 87 |
+
sampling_rate, self.sampling_rate
|
| 88 |
+
)
|
| 89 |
+
)
|
| 90 |
+
# audio_norm = audio / self.max_wav_value
|
| 91 |
+
audio_norm = audio.unsqueeze(0)
|
| 92 |
+
spec_filename = filename.replace(".wav", ".spec.pt")
|
| 93 |
+
if os.path.exists(spec_filename):
|
| 94 |
+
try:
|
| 95 |
+
spec = torch.load(spec_filename)
|
| 96 |
+
except:
|
| 97 |
+
print(spec_filename, traceback.format_exc())
|
| 98 |
+
spec = spectrogram_torch(
|
| 99 |
+
audio_norm,
|
| 100 |
+
self.filter_length,
|
| 101 |
+
self.sampling_rate,
|
| 102 |
+
self.hop_length,
|
| 103 |
+
self.win_length,
|
| 104 |
+
center=False,
|
| 105 |
+
)
|
| 106 |
+
spec = torch.squeeze(spec, 0)
|
| 107 |
+
torch.save(spec, spec_filename, _use_new_zipfile_serialization=False)
|
| 108 |
+
else:
|
| 109 |
+
spec = spectrogram_torch(
|
| 110 |
+
audio_norm,
|
| 111 |
+
self.filter_length,
|
| 112 |
+
self.sampling_rate,
|
| 113 |
+
self.hop_length,
|
| 114 |
+
self.win_length,
|
| 115 |
+
center=False,
|
| 116 |
+
)
|
| 117 |
+
spec = torch.squeeze(spec, 0)
|
| 118 |
+
torch.save(spec, spec_filename, _use_new_zipfile_serialization=False)
|
| 119 |
+
return spec, audio_norm
|
| 120 |
+
|
| 121 |
+
def __getitem__(self, index):
|
| 122 |
+
_, data = list(self.dataset_meta.files.items())[index]
|
| 123 |
+
return self.get_audio_text_pair(data)
|
| 124 |
+
|
| 125 |
+
def __len__(self):
|
| 126 |
+
return len(self.dataset_meta.files)
|
| 127 |
+
|
| 128 |
+
|
| 129 |
+
class TextAudioLoaderMultiNSFsid(torch.utils.data.Dataset):
|
| 130 |
+
"""
|
| 131 |
+
1) loads audio, text pairs
|
| 132 |
+
2) normalizes text and converts them to sequences of integers
|
| 133 |
+
3) computes spectrograms from audio files.
|
| 134 |
+
"""
|
| 135 |
+
|
| 136 |
+
def __init__(self, dataset_meta: DatasetMetadata, data: TrainConfigData):
|
| 137 |
+
self.dataset_meta = dataset_meta
|
| 138 |
+
self.max_wav_value = data.max_wav_value
|
| 139 |
+
self.sampling_rate = data.sampling_rate
|
| 140 |
+
self.filter_length = data.filter_length
|
| 141 |
+
self.hop_length = data.hop_length
|
| 142 |
+
self.win_length = data.win_length
|
| 143 |
+
self.sampling_rate = data.sampling_rate
|
| 144 |
+
self.min_text_len = getattr(data, "min_text_len", 1)
|
| 145 |
+
self.max_text_len = getattr(data, "max_text_len", 5000)
|
| 146 |
+
self._filter()
|
| 147 |
+
|
| 148 |
+
def _filter(self):
|
| 149 |
+
"""
|
| 150 |
+
Filter text & store spec lengths
|
| 151 |
+
"""
|
| 152 |
+
# Store spectrogram lengths for Bucketing
|
| 153 |
+
# wav_length ~= file_size / (wav_channels * Bytes per dim) = file_size / (1 * 2)
|
| 154 |
+
# spec_length = wav_length // hop_length
|
| 155 |
+
lengths = []
|
| 156 |
+
for key, data in self.dataset_meta.files.items():
|
| 157 |
+
if (
|
| 158 |
+
self.min_text_len <= len(data.co256)
|
| 159 |
+
and len(data.co256) <= self.max_text_len
|
| 160 |
+
):
|
| 161 |
+
lengths.append(os.path.getsize(data.gt_wav) // (2 * self.hop_length))
|
| 162 |
+
else:
|
| 163 |
+
del self.dataset_meta.files[key]
|
| 164 |
+
self.lengths = lengths
|
| 165 |
+
|
| 166 |
+
def get_sid(self, sid):
|
| 167 |
+
sid = torch.LongTensor([int(sid)])
|
| 168 |
+
return sid
|
| 169 |
+
|
| 170 |
+
def get_audio_text_pair(self, data: DatasetMetaItem):
|
| 171 |
+
# separate filename and text
|
| 172 |
+
file = data.gt_wav
|
| 173 |
+
phone = data.co256
|
| 174 |
+
pitch = data.f0
|
| 175 |
+
pitchf = data.f0nsf
|
| 176 |
+
dv = data.speaker_id
|
| 177 |
+
|
| 178 |
+
phone, pitch, pitchf = self.get_labels(phone, pitch, pitchf)
|
| 179 |
+
spec, wav = self.get_audio(file)
|
| 180 |
+
dv = self.get_sid(dv)
|
| 181 |
+
|
| 182 |
+
len_phone = phone.size()[0]
|
| 183 |
+
len_spec = spec.size()[-1]
|
| 184 |
+
# print(123,phone.shape,pitch.shape,spec.shape)
|
| 185 |
+
if len_phone != len_spec:
|
| 186 |
+
len_min = min(len_phone, len_spec)
|
| 187 |
+
# amor
|
| 188 |
+
len_wav = len_min * self.hop_length
|
| 189 |
+
|
| 190 |
+
spec = spec[:, :len_min]
|
| 191 |
+
wav = wav[:, :len_wav]
|
| 192 |
+
|
| 193 |
+
phone = phone[:len_min, :]
|
| 194 |
+
pitch = pitch[:len_min]
|
| 195 |
+
pitchf = pitchf[:len_min]
|
| 196 |
+
|
| 197 |
+
return (spec, wav, phone, pitch, pitchf, dv)
|
| 198 |
+
|
| 199 |
+
def get_labels(self, phone, pitch, pitchf):
|
| 200 |
+
phone = np.load(phone)
|
| 201 |
+
phone = np.repeat(phone, 2, axis=0)
|
| 202 |
+
pitch = np.load(pitch)
|
| 203 |
+
pitchf = np.load(pitchf)
|
| 204 |
+
n_num = min(phone.shape[0], 900) # DistributedBucketSampler
|
| 205 |
+
# print(234,phone.shape,pitch.shape)
|
| 206 |
+
phone = phone[:n_num, :]
|
| 207 |
+
pitch = pitch[:n_num]
|
| 208 |
+
pitchf = pitchf[:n_num]
|
| 209 |
+
phone = torch.FloatTensor(phone)
|
| 210 |
+
pitch = torch.LongTensor(pitch)
|
| 211 |
+
pitchf = torch.FloatTensor(pitchf)
|
| 212 |
+
return phone, pitch, pitchf
|
| 213 |
+
|
| 214 |
+
def get_audio(self, filename):
|
| 215 |
+
audio, sampling_rate = load_wav_to_torch(filename)
|
| 216 |
+
if sampling_rate != self.sampling_rate:
|
| 217 |
+
raise ValueError(
|
| 218 |
+
"{} SR doesn't match target {} SR".format(
|
| 219 |
+
sampling_rate, self.sampling_rate
|
| 220 |
+
)
|
| 221 |
+
)
|
| 222 |
+
# audio_norm = audio / self.max_wav_value
|
| 223 |
+
audio_norm = audio.unsqueeze(0)
|
| 224 |
+
spec_filename = filename.replace(".wav", ".spec.pt")
|
| 225 |
+
if os.path.exists(spec_filename):
|
| 226 |
+
try:
|
| 227 |
+
spec = torch.load(spec_filename)
|
| 228 |
+
except:
|
| 229 |
+
print(spec_filename, traceback.format_exc())
|
| 230 |
+
spec = spectrogram_torch(
|
| 231 |
+
audio_norm,
|
| 232 |
+
self.filter_length,
|
| 233 |
+
self.sampling_rate,
|
| 234 |
+
self.hop_length,
|
| 235 |
+
self.win_length,
|
| 236 |
+
center=False,
|
| 237 |
+
)
|
| 238 |
+
spec = torch.squeeze(spec, 0)
|
| 239 |
+
torch.save(spec, spec_filename, _use_new_zipfile_serialization=False)
|
| 240 |
+
else:
|
| 241 |
+
spec = spectrogram_torch(
|
| 242 |
+
audio_norm,
|
| 243 |
+
self.filter_length,
|
| 244 |
+
self.sampling_rate,
|
| 245 |
+
self.hop_length,
|
| 246 |
+
self.win_length,
|
| 247 |
+
center=False,
|
| 248 |
+
)
|
| 249 |
+
spec = torch.squeeze(spec, 0)
|
| 250 |
+
torch.save(spec, spec_filename, _use_new_zipfile_serialization=False)
|
| 251 |
+
return spec, audio_norm
|
| 252 |
+
|
| 253 |
+
def __getitem__(self, index):
|
| 254 |
+
_, data = list(self.dataset_meta.files.items())[index]
|
| 255 |
+
return self.get_audio_text_pair(data)
|
| 256 |
+
|
| 257 |
+
def __len__(self):
|
| 258 |
+
return len(self.dataset_meta.files)
|
| 259 |
+
|
| 260 |
+
|
| 261 |
+
class TextAudioCollateMultiNSFsid:
|
| 262 |
+
"""Zero-pads model inputs and targets"""
|
| 263 |
+
|
| 264 |
+
def __init__(self, return_ids=False):
|
| 265 |
+
self.return_ids = return_ids
|
| 266 |
+
|
| 267 |
+
def __call__(self, batch):
|
| 268 |
+
"""Collate's training batch from normalized text and aduio
|
| 269 |
+
PARAMS
|
| 270 |
+
------
|
| 271 |
+
batch: [text_normalized, spec_normalized, wav_normalized]
|
| 272 |
+
"""
|
| 273 |
+
# Right zero-pad all one-hot text sequences to max input length
|
| 274 |
+
_, ids_sorted_decreasing = torch.sort(
|
| 275 |
+
torch.LongTensor([x[0].size(1) for x in batch]), dim=0, descending=True
|
| 276 |
+
)
|
| 277 |
+
|
| 278 |
+
max_spec_len = max([x[0].size(1) for x in batch])
|
| 279 |
+
max_wave_len = max([x[1].size(1) for x in batch])
|
| 280 |
+
spec_lengths = torch.LongTensor(len(batch))
|
| 281 |
+
wave_lengths = torch.LongTensor(len(batch))
|
| 282 |
+
spec_padded = torch.FloatTensor(len(batch), batch[0][0].size(0), max_spec_len)
|
| 283 |
+
wave_padded = torch.FloatTensor(len(batch), 1, max_wave_len)
|
| 284 |
+
spec_padded.zero_()
|
| 285 |
+
wave_padded.zero_()
|
| 286 |
+
|
| 287 |
+
max_phone_len = max([x[2].size(0) for x in batch])
|
| 288 |
+
phone_lengths = torch.LongTensor(len(batch))
|
| 289 |
+
phone_padded = torch.FloatTensor(
|
| 290 |
+
len(batch), max_phone_len, batch[0][2].shape[1]
|
| 291 |
+
) # (spec, wav, phone, pitch)
|
| 292 |
+
pitch_padded = torch.LongTensor(len(batch), max_phone_len)
|
| 293 |
+
pitchf_padded = torch.FloatTensor(len(batch), max_phone_len)
|
| 294 |
+
phone_padded.zero_()
|
| 295 |
+
pitch_padded.zero_()
|
| 296 |
+
pitchf_padded.zero_()
|
| 297 |
+
# dv = torch.FloatTensor(len(batch), 256)#gin=256
|
| 298 |
+
sid = torch.LongTensor(len(batch))
|
| 299 |
+
|
| 300 |
+
for i in range(len(ids_sorted_decreasing)):
|
| 301 |
+
row = batch[ids_sorted_decreasing[i]]
|
| 302 |
+
|
| 303 |
+
spec = row[0]
|
| 304 |
+
spec_padded[i, :, : spec.size(1)] = spec
|
| 305 |
+
spec_lengths[i] = spec.size(1)
|
| 306 |
+
|
| 307 |
+
wave = row[1]
|
| 308 |
+
wave_padded[i, :, : wave.size(1)] = wave
|
| 309 |
+
wave_lengths[i] = wave.size(1)
|
| 310 |
+
|
| 311 |
+
phone = row[2]
|
| 312 |
+
phone_padded[i, : phone.size(0), :] = phone
|
| 313 |
+
phone_lengths[i] = phone.size(0)
|
| 314 |
+
|
| 315 |
+
pitch = row[3]
|
| 316 |
+
pitch_padded[i, : pitch.size(0)] = pitch
|
| 317 |
+
pitchf = row[4]
|
| 318 |
+
pitchf_padded[i, : pitchf.size(0)] = pitchf
|
| 319 |
+
|
| 320 |
+
# dv[i] = row[5]
|
| 321 |
+
sid[i] = row[5]
|
| 322 |
+
|
| 323 |
+
return (
|
| 324 |
+
phone_padded,
|
| 325 |
+
phone_lengths,
|
| 326 |
+
pitch_padded,
|
| 327 |
+
pitchf_padded,
|
| 328 |
+
spec_padded,
|
| 329 |
+
spec_lengths,
|
| 330 |
+
wave_padded,
|
| 331 |
+
wave_lengths,
|
| 332 |
+
# dv
|
| 333 |
+
sid,
|
| 334 |
+
)
|
| 335 |
+
|
| 336 |
+
|
| 337 |
+
class TextAudioCollate:
|
| 338 |
+
"""Zero-pads model inputs and targets"""
|
| 339 |
+
|
| 340 |
+
def __init__(self, return_ids=False):
|
| 341 |
+
self.return_ids = return_ids
|
| 342 |
+
|
| 343 |
+
def __call__(self, batch):
|
| 344 |
+
"""Collate's training batch from normalized text and aduio
|
| 345 |
+
PARAMS
|
| 346 |
+
------
|
| 347 |
+
batch: [text_normalized, spec_normalized, wav_normalized]
|
| 348 |
+
"""
|
| 349 |
+
# Right zero-pad all one-hot text sequences to max input length
|
| 350 |
+
_, ids_sorted_decreasing = torch.sort(
|
| 351 |
+
torch.LongTensor([x[0].size(1) for x in batch]), dim=0, descending=True
|
| 352 |
+
)
|
| 353 |
+
|
| 354 |
+
max_spec_len = max([x[0].size(1) for x in batch])
|
| 355 |
+
max_wave_len = max([x[1].size(1) for x in batch])
|
| 356 |
+
spec_lengths = torch.LongTensor(len(batch))
|
| 357 |
+
wave_lengths = torch.LongTensor(len(batch))
|
| 358 |
+
spec_padded = torch.FloatTensor(len(batch), batch[0][0].size(0), max_spec_len)
|
| 359 |
+
wave_padded = torch.FloatTensor(len(batch), 1, max_wave_len)
|
| 360 |
+
spec_padded.zero_()
|
| 361 |
+
wave_padded.zero_()
|
| 362 |
+
|
| 363 |
+
max_phone_len = max([x[2].size(0) for x in batch])
|
| 364 |
+
phone_lengths = torch.LongTensor(len(batch))
|
| 365 |
+
phone_padded = torch.FloatTensor(
|
| 366 |
+
len(batch), max_phone_len, batch[0][2].shape[1]
|
| 367 |
+
)
|
| 368 |
+
phone_padded.zero_()
|
| 369 |
+
sid = torch.LongTensor(len(batch))
|
| 370 |
+
|
| 371 |
+
for i in range(len(ids_sorted_decreasing)):
|
| 372 |
+
row = batch[ids_sorted_decreasing[i]]
|
| 373 |
+
|
| 374 |
+
spec = row[0]
|
| 375 |
+
spec_padded[i, :, : spec.size(1)] = spec
|
| 376 |
+
spec_lengths[i] = spec.size(1)
|
| 377 |
+
|
| 378 |
+
wave = row[1]
|
| 379 |
+
wave_padded[i, :, : wave.size(1)] = wave
|
| 380 |
+
wave_lengths[i] = wave.size(1)
|
| 381 |
+
|
| 382 |
+
phone = row[2]
|
| 383 |
+
phone_padded[i, : phone.size(0), :] = phone
|
| 384 |
+
phone_lengths[i] = phone.size(0)
|
| 385 |
+
|
| 386 |
+
sid[i] = row[3]
|
| 387 |
+
|
| 388 |
+
return (
|
| 389 |
+
phone_padded,
|
| 390 |
+
phone_lengths,
|
| 391 |
+
spec_padded,
|
| 392 |
+
spec_lengths,
|
| 393 |
+
wave_padded,
|
| 394 |
+
wave_lengths,
|
| 395 |
+
sid,
|
| 396 |
+
)
|
| 397 |
+
|
| 398 |
+
|
| 399 |
+
class DistributedBucketSampler(torch.utils.data.distributed.DistributedSampler):
|
| 400 |
+
"""
|
| 401 |
+
Maintain similar input lengths in a batch.
|
| 402 |
+
Length groups are specified by boundaries.
|
| 403 |
+
Ex) boundaries = [b1, b2, b3] -> any batch is included either {x | b1 < length(x) <=b2} or {x | b2 < length(x) <= b3}.
|
| 404 |
+
|
| 405 |
+
It removes samples which are not included in the boundaries.
|
| 406 |
+
Ex) boundaries = [b1, b2, b3] -> any x s.t. length(x) <= b1 or length(x) > b3 are discarded.
|
| 407 |
+
"""
|
| 408 |
+
|
| 409 |
+
def __init__(
|
| 410 |
+
self,
|
| 411 |
+
dataset,
|
| 412 |
+
batch_size,
|
| 413 |
+
boundaries,
|
| 414 |
+
num_replicas=None,
|
| 415 |
+
rank=None,
|
| 416 |
+
shuffle=True,
|
| 417 |
+
):
|
| 418 |
+
super().__init__(dataset, num_replicas=num_replicas, rank=rank, shuffle=shuffle)
|
| 419 |
+
self.lengths = dataset.lengths
|
| 420 |
+
self.batch_size = batch_size
|
| 421 |
+
self.boundaries = boundaries
|
| 422 |
+
|
| 423 |
+
self.buckets, self.num_samples_per_bucket = self._create_buckets()
|
| 424 |
+
self.total_size = sum(self.num_samples_per_bucket)
|
| 425 |
+
self.num_samples = self.total_size // self.num_replicas
|
| 426 |
+
|
| 427 |
+
def _create_buckets(self):
|
| 428 |
+
buckets = [[] for _ in range(len(self.boundaries) - 1)]
|
| 429 |
+
for i in range(len(self.lengths)):
|
| 430 |
+
length = self.lengths[i]
|
| 431 |
+
idx_bucket = self._bisect(length)
|
| 432 |
+
if idx_bucket != -1:
|
| 433 |
+
buckets[idx_bucket].append(i)
|
| 434 |
+
|
| 435 |
+
for i in range(len(buckets) - 1, -1, -1): #
|
| 436 |
+
if len(buckets[i]) == 0:
|
| 437 |
+
buckets.pop(i)
|
| 438 |
+
self.boundaries.pop(i + 1)
|
| 439 |
+
|
| 440 |
+
num_samples_per_bucket = []
|
| 441 |
+
for i in range(len(buckets)):
|
| 442 |
+
len_bucket = len(buckets[i])
|
| 443 |
+
total_batch_size = self.num_replicas * self.batch_size
|
| 444 |
+
rem = (
|
| 445 |
+
total_batch_size - (len_bucket % total_batch_size)
|
| 446 |
+
) % total_batch_size
|
| 447 |
+
num_samples_per_bucket.append(len_bucket + rem)
|
| 448 |
+
return buckets, num_samples_per_bucket
|
| 449 |
+
|
| 450 |
+
def __iter__(self):
|
| 451 |
+
# deterministically shuffle based on epoch
|
| 452 |
+
g = torch.Generator()
|
| 453 |
+
g.manual_seed(self.epoch)
|
| 454 |
+
|
| 455 |
+
indices = []
|
| 456 |
+
if self.shuffle:
|
| 457 |
+
for bucket in self.buckets:
|
| 458 |
+
indices.append(torch.randperm(len(bucket), generator=g).tolist())
|
| 459 |
+
else:
|
| 460 |
+
for bucket in self.buckets:
|
| 461 |
+
indices.append(list(range(len(bucket))))
|
| 462 |
+
|
| 463 |
+
batches = []
|
| 464 |
+
for i in range(len(self.buckets)):
|
| 465 |
+
bucket = self.buckets[i]
|
| 466 |
+
len_bucket = len(bucket)
|
| 467 |
+
ids_bucket = indices[i]
|
| 468 |
+
num_samples_bucket = self.num_samples_per_bucket[i]
|
| 469 |
+
|
| 470 |
+
# add extra samples to make it evenly divisible
|
| 471 |
+
rem = num_samples_bucket - len_bucket
|
| 472 |
+
ids_bucket = (
|
| 473 |
+
ids_bucket
|
| 474 |
+
+ ids_bucket * (rem // len_bucket)
|
| 475 |
+
+ ids_bucket[: (rem % len_bucket)]
|
| 476 |
+
)
|
| 477 |
+
|
| 478 |
+
# subsample
|
| 479 |
+
ids_bucket = ids_bucket[self.rank :: self.num_replicas]
|
| 480 |
+
|
| 481 |
+
# batching
|
| 482 |
+
for j in range(len(ids_bucket) // self.batch_size):
|
| 483 |
+
batch = [
|
| 484 |
+
bucket[idx]
|
| 485 |
+
for idx in ids_bucket[
|
| 486 |
+
j * self.batch_size : (j + 1) * self.batch_size
|
| 487 |
+
]
|
| 488 |
+
]
|
| 489 |
+
batches.append(batch)
|
| 490 |
+
|
| 491 |
+
if self.shuffle:
|
| 492 |
+
batch_ids = torch.randperm(len(batches), generator=g).tolist()
|
| 493 |
+
batches = [batches[i] for i in batch_ids]
|
| 494 |
+
self.batches = batches
|
| 495 |
+
|
| 496 |
+
assert len(self.batches) * self.batch_size == self.num_samples
|
| 497 |
+
return iter(self.batches)
|
| 498 |
+
|
| 499 |
+
def _bisect(self, x, lo=0, hi=None):
|
| 500 |
+
if hi is None:
|
| 501 |
+
hi = len(self.boundaries) - 1
|
| 502 |
+
|
| 503 |
+
if hi > lo:
|
| 504 |
+
mid = (hi + lo) // 2
|
| 505 |
+
if self.boundaries[mid] < x and x <= self.boundaries[mid + 1]:
|
| 506 |
+
return mid
|
| 507 |
+
elif x <= self.boundaries[mid]:
|
| 508 |
+
return self._bisect(x, lo, mid)
|
| 509 |
+
else:
|
| 510 |
+
return self._bisect(x, mid + 1, hi)
|
| 511 |
+
else:
|
| 512 |
+
return -1
|
| 513 |
+
|
| 514 |
+
def __len__(self):
|
| 515 |
+
return self.num_samples // self.batch_size
|
lib/rvc/losses.py
ADDED
|
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
|
| 3 |
+
|
| 4 |
+
def feature_loss(fmap_r, fmap_g):
|
| 5 |
+
loss = 0
|
| 6 |
+
for dr, dg in zip(fmap_r, fmap_g):
|
| 7 |
+
for rl, gl in zip(dr, dg):
|
| 8 |
+
rl = rl.float().detach()
|
| 9 |
+
gl = gl.float()
|
| 10 |
+
loss += torch.mean(torch.abs(rl - gl))
|
| 11 |
+
|
| 12 |
+
return loss * 2
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
def discriminator_loss(disc_real_outputs, disc_generated_outputs):
|
| 16 |
+
loss = 0
|
| 17 |
+
r_losses = []
|
| 18 |
+
g_losses = []
|
| 19 |
+
for dr, dg in zip(disc_real_outputs, disc_generated_outputs):
|
| 20 |
+
dr = dr.float()
|
| 21 |
+
dg = dg.float()
|
| 22 |
+
r_loss = torch.mean((1 - dr) ** 2)
|
| 23 |
+
g_loss = torch.mean(dg**2)
|
| 24 |
+
loss += r_loss + g_loss
|
| 25 |
+
r_losses.append(r_loss.item())
|
| 26 |
+
g_losses.append(g_loss.item())
|
| 27 |
+
|
| 28 |
+
return loss, r_losses, g_losses
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
def generator_loss(disc_outputs):
|
| 32 |
+
loss = 0
|
| 33 |
+
gen_losses = []
|
| 34 |
+
for dg in disc_outputs:
|
| 35 |
+
dg = dg.float()
|
| 36 |
+
l = torch.mean((1 - dg) ** 2)
|
| 37 |
+
gen_losses.append(l)
|
| 38 |
+
loss += l
|
| 39 |
+
|
| 40 |
+
return loss, gen_losses
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
def kl_loss(z_p, logs_q, m_p, logs_p, z_mask):
|
| 44 |
+
"""
|
| 45 |
+
z_p, logs_q: [b, h, t_t]
|
| 46 |
+
m_p, logs_p: [b, h, t_t]
|
| 47 |
+
"""
|
| 48 |
+
z_p = z_p.float()
|
| 49 |
+
logs_q = logs_q.float()
|
| 50 |
+
m_p = m_p.float()
|
| 51 |
+
logs_p = logs_p.float()
|
| 52 |
+
z_mask = z_mask.float()
|
| 53 |
+
|
| 54 |
+
kl = logs_p - logs_q - 0.5
|
| 55 |
+
kl += 0.5 * ((z_p - m_p) ** 2) * torch.exp(-2.0 * logs_p)
|
| 56 |
+
kl = torch.sum(kl * z_mask)
|
| 57 |
+
l = kl / torch.sum(z_mask)
|
| 58 |
+
return l
|
lib/rvc/mel_processing.py
ADDED
|
@@ -0,0 +1,113 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torch.utils.data
|
| 3 |
+
from librosa.filters import mel as librosa_mel_fn
|
| 4 |
+
|
| 5 |
+
MAX_WAV_VALUE = 32768.0
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
def dynamic_range_compression_torch(x, C=1, clip_val=1e-5):
|
| 9 |
+
"""
|
| 10 |
+
PARAMS
|
| 11 |
+
------
|
| 12 |
+
C: compression factor
|
| 13 |
+
"""
|
| 14 |
+
return torch.log(torch.clamp(x, min=clip_val) * C)
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
def dynamic_range_decompression_torch(x, C=1):
|
| 18 |
+
"""
|
| 19 |
+
PARAMS
|
| 20 |
+
------
|
| 21 |
+
C: compression factor used to compress
|
| 22 |
+
"""
|
| 23 |
+
return torch.exp(x) / C
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
def spectral_normalize_torch(magnitudes):
|
| 27 |
+
return dynamic_range_compression_torch(magnitudes)
|
| 28 |
+
|
| 29 |
+
|
| 30 |
+
def spectral_de_normalize_torch(magnitudes):
|
| 31 |
+
return dynamic_range_decompression_torch(magnitudes)
|
| 32 |
+
|
| 33 |
+
|
| 34 |
+
mel_basis = {}
|
| 35 |
+
hann_window = {}
|
| 36 |
+
|
| 37 |
+
|
| 38 |
+
def spectrogram_torch(y, n_fft, sampling_rate, hop_size, win_size, center=False):
|
| 39 |
+
if torch.min(y) < -1.07:
|
| 40 |
+
print("min value is ", torch.min(y))
|
| 41 |
+
if torch.max(y) > 1.07:
|
| 42 |
+
print("max value is ", torch.max(y))
|
| 43 |
+
|
| 44 |
+
global hann_window
|
| 45 |
+
dtype_device = str(y.dtype) + "_" + str(y.device)
|
| 46 |
+
wnsize_dtype_device = str(win_size) + "_" + dtype_device
|
| 47 |
+
if wnsize_dtype_device not in hann_window:
|
| 48 |
+
hann_window[wnsize_dtype_device] = torch.hann_window(win_size).to(
|
| 49 |
+
dtype=y.dtype, device=y.device
|
| 50 |
+
)
|
| 51 |
+
|
| 52 |
+
y = torch.nn.functional.pad(
|
| 53 |
+
y.unsqueeze(1),
|
| 54 |
+
(int((n_fft - hop_size) / 2), int((n_fft - hop_size) / 2)),
|
| 55 |
+
mode="reflect",
|
| 56 |
+
)
|
| 57 |
+
y = y.squeeze(1)
|
| 58 |
+
|
| 59 |
+
# mps does not support torch.stft.
|
| 60 |
+
if y.device.type == "mps":
|
| 61 |
+
i = y.cpu()
|
| 62 |
+
win = hann_window[wnsize_dtype_device].cpu()
|
| 63 |
+
else:
|
| 64 |
+
i = y
|
| 65 |
+
win = hann_window[wnsize_dtype_device]
|
| 66 |
+
spec = torch.stft(
|
| 67 |
+
i,
|
| 68 |
+
n_fft,
|
| 69 |
+
hop_length=hop_size,
|
| 70 |
+
win_length=win_size,
|
| 71 |
+
window=win,
|
| 72 |
+
center=center,
|
| 73 |
+
pad_mode="reflect",
|
| 74 |
+
normalized=False,
|
| 75 |
+
onesided=True,
|
| 76 |
+
return_complex=False,
|
| 77 |
+
).to(device=y.device)
|
| 78 |
+
|
| 79 |
+
spec = torch.sqrt(spec.pow(2).sum(-1) + 1e-6)
|
| 80 |
+
return spec
|
| 81 |
+
|
| 82 |
+
|
| 83 |
+
def spec_to_mel_torch(spec, n_fft, num_mels, sampling_rate, fmin, fmax):
|
| 84 |
+
global mel_basis
|
| 85 |
+
dtype_device = str(spec.dtype) + "_" + str(spec.device)
|
| 86 |
+
fmax_dtype_device = str(fmax) + "_" + dtype_device
|
| 87 |
+
if fmax_dtype_device not in mel_basis:
|
| 88 |
+
mel = librosa_mel_fn(sampling_rate, n_fft, num_mels, fmin, fmax)
|
| 89 |
+
mel_basis[fmax_dtype_device] = torch.from_numpy(mel).to(
|
| 90 |
+
dtype=spec.dtype, device=spec.device
|
| 91 |
+
)
|
| 92 |
+
melspec = torch.matmul(mel_basis[fmax_dtype_device], spec)
|
| 93 |
+
melspec = spectral_normalize_torch(melspec)
|
| 94 |
+
return melspec
|
| 95 |
+
|
| 96 |
+
|
| 97 |
+
def mel_spectrogram_torch(
|
| 98 |
+
y, n_fft, num_mels, sampling_rate, hop_size, win_size, fmin, fmax, center=False
|
| 99 |
+
):
|
| 100 |
+
"""Convert waveform into Mel-frequency Log-amplitude spectrogram.
|
| 101 |
+
|
| 102 |
+
Args:
|
| 103 |
+
y :: (B, T) - Waveforms
|
| 104 |
+
Returns:
|
| 105 |
+
melspec :: (B, Freq, Frame) - Mel-frequency Log-amplitude spectrogram
|
| 106 |
+
"""
|
| 107 |
+
# Linear-frequency Linear-amplitude spectrogram :: (B, T) -> (B, Freq, Frame)
|
| 108 |
+
spec = spectrogram_torch(y, n_fft, sampling_rate, hop_size, win_size, center)
|
| 109 |
+
|
| 110 |
+
# Mel-frequency Log-amplitude spectrogram :: (B, Freq, Frame) -> (B, Freq=num_mels, Frame)
|
| 111 |
+
melspec = spec_to_mel_torch(spec, n_fft, num_mels, sampling_rate, fmin, fmax)
|
| 112 |
+
|
| 113 |
+
return melspec
|
lib/rvc/models.py
ADDED
|
@@ -0,0 +1,853 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import math
|
| 2 |
+
|
| 3 |
+
import numpy as np
|
| 4 |
+
import torch
|
| 5 |
+
from torch import nn
|
| 6 |
+
from torch.nn import Conv1d, Conv2d, ConvTranspose1d
|
| 7 |
+
from torch.nn import functional as F
|
| 8 |
+
from torch.nn.utils import remove_weight_norm, spectral_norm, weight_norm
|
| 9 |
+
|
| 10 |
+
from . import attentions, commons, modules
|
| 11 |
+
from .commons import get_padding, init_weights
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
class TextEncoder(nn.Module):
|
| 15 |
+
def __init__(
|
| 16 |
+
self,
|
| 17 |
+
out_channels: int,
|
| 18 |
+
hidden_channels: int,
|
| 19 |
+
filter_channels: int,
|
| 20 |
+
emb_channels: int,
|
| 21 |
+
n_heads: int,
|
| 22 |
+
n_layers: int,
|
| 23 |
+
kernel_size: int,
|
| 24 |
+
p_dropout: int,
|
| 25 |
+
f0: bool = True,
|
| 26 |
+
):
|
| 27 |
+
super().__init__()
|
| 28 |
+
self.out_channels = out_channels
|
| 29 |
+
self.hidden_channels = hidden_channels
|
| 30 |
+
self.filter_channels = filter_channels
|
| 31 |
+
self.emb_channels = emb_channels
|
| 32 |
+
self.n_heads = n_heads
|
| 33 |
+
self.n_layers = n_layers
|
| 34 |
+
self.kernel_size = kernel_size
|
| 35 |
+
self.p_dropout = p_dropout
|
| 36 |
+
self.emb_phone = nn.Linear(emb_channels, hidden_channels)
|
| 37 |
+
self.lrelu = nn.LeakyReLU(0.1, inplace=True)
|
| 38 |
+
if f0 == True:
|
| 39 |
+
self.emb_pitch = nn.Embedding(256, hidden_channels) # pitch 256
|
| 40 |
+
self.encoder = attentions.Encoder(
|
| 41 |
+
hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout
|
| 42 |
+
)
|
| 43 |
+
self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
|
| 44 |
+
|
| 45 |
+
def forward(self, phone, pitch, lengths):
|
| 46 |
+
if pitch == None:
|
| 47 |
+
x = self.emb_phone(phone)
|
| 48 |
+
else:
|
| 49 |
+
x = self.emb_phone(phone) + self.emb_pitch(pitch)
|
| 50 |
+
x = x * math.sqrt(self.hidden_channels) # [b, t, h]
|
| 51 |
+
x = self.lrelu(x)
|
| 52 |
+
x = torch.transpose(x, 1, -1) # [b, h, t]
|
| 53 |
+
x_mask = torch.unsqueeze(commons.sequence_mask(lengths, x.size(2)), 1).to(
|
| 54 |
+
x.dtype
|
| 55 |
+
)
|
| 56 |
+
x = self.encoder(x * x_mask, x_mask)
|
| 57 |
+
stats = self.proj(x) * x_mask
|
| 58 |
+
|
| 59 |
+
m, logs = torch.split(stats, self.out_channels, dim=1)
|
| 60 |
+
return m, logs, x_mask
|
| 61 |
+
|
| 62 |
+
|
| 63 |
+
class ResidualCouplingBlock(nn.Module):
|
| 64 |
+
def __init__(
|
| 65 |
+
self,
|
| 66 |
+
channels,
|
| 67 |
+
hidden_channels,
|
| 68 |
+
kernel_size,
|
| 69 |
+
dilation_rate,
|
| 70 |
+
n_layers,
|
| 71 |
+
n_flows=4,
|
| 72 |
+
gin_channels=0,
|
| 73 |
+
):
|
| 74 |
+
super().__init__()
|
| 75 |
+
self.channels = channels
|
| 76 |
+
self.hidden_channels = hidden_channels
|
| 77 |
+
self.kernel_size = kernel_size
|
| 78 |
+
self.dilation_rate = dilation_rate
|
| 79 |
+
self.n_layers = n_layers
|
| 80 |
+
self.n_flows = n_flows
|
| 81 |
+
self.gin_channels = gin_channels
|
| 82 |
+
|
| 83 |
+
self.flows = nn.ModuleList()
|
| 84 |
+
for i in range(n_flows):
|
| 85 |
+
self.flows.append(
|
| 86 |
+
modules.ResidualCouplingLayer(
|
| 87 |
+
channels,
|
| 88 |
+
hidden_channels,
|
| 89 |
+
kernel_size,
|
| 90 |
+
dilation_rate,
|
| 91 |
+
n_layers,
|
| 92 |
+
gin_channels=gin_channels,
|
| 93 |
+
mean_only=True,
|
| 94 |
+
)
|
| 95 |
+
)
|
| 96 |
+
self.flows.append(modules.Flip())
|
| 97 |
+
|
| 98 |
+
def forward(self, x, x_mask, g=None, reverse=False):
|
| 99 |
+
if not reverse:
|
| 100 |
+
for flow in self.flows:
|
| 101 |
+
x, _ = flow(x, x_mask, g=g, reverse=reverse)
|
| 102 |
+
else:
|
| 103 |
+
for flow in reversed(self.flows):
|
| 104 |
+
x = flow(x, x_mask, g=g, reverse=reverse)
|
| 105 |
+
return x
|
| 106 |
+
|
| 107 |
+
def remove_weight_norm(self):
|
| 108 |
+
for i in range(self.n_flows):
|
| 109 |
+
self.flows[i * 2].remove_weight_norm()
|
| 110 |
+
|
| 111 |
+
|
| 112 |
+
class PosteriorEncoder(nn.Module):
|
| 113 |
+
def __init__(
|
| 114 |
+
self,
|
| 115 |
+
in_channels,
|
| 116 |
+
out_channels,
|
| 117 |
+
hidden_channels,
|
| 118 |
+
kernel_size,
|
| 119 |
+
dilation_rate,
|
| 120 |
+
n_layers,
|
| 121 |
+
gin_channels=0,
|
| 122 |
+
):
|
| 123 |
+
super().__init__()
|
| 124 |
+
self.in_channels = in_channels
|
| 125 |
+
self.out_channels = out_channels
|
| 126 |
+
self.hidden_channels = hidden_channels
|
| 127 |
+
self.kernel_size = kernel_size
|
| 128 |
+
self.dilation_rate = dilation_rate
|
| 129 |
+
self.n_layers = n_layers
|
| 130 |
+
self.gin_channels = gin_channels
|
| 131 |
+
|
| 132 |
+
self.pre = nn.Conv1d(in_channels, hidden_channels, 1)
|
| 133 |
+
self.enc = modules.WN(
|
| 134 |
+
hidden_channels,
|
| 135 |
+
kernel_size,
|
| 136 |
+
dilation_rate,
|
| 137 |
+
n_layers,
|
| 138 |
+
gin_channels=gin_channels,
|
| 139 |
+
)
|
| 140 |
+
self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
|
| 141 |
+
|
| 142 |
+
def forward(self, x, x_lengths, g=None):
|
| 143 |
+
x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(
|
| 144 |
+
x.dtype
|
| 145 |
+
)
|
| 146 |
+
x = self.pre(x) * x_mask
|
| 147 |
+
x = self.enc(x, x_mask, g=g)
|
| 148 |
+
stats = self.proj(x) * x_mask
|
| 149 |
+
m, logs = torch.split(stats, self.out_channels, dim=1)
|
| 150 |
+
z = (m + torch.randn_like(m) * torch.exp(logs)) * x_mask
|
| 151 |
+
return z, m, logs, x_mask
|
| 152 |
+
|
| 153 |
+
def remove_weight_norm(self):
|
| 154 |
+
self.enc.remove_weight_norm()
|
| 155 |
+
|
| 156 |
+
|
| 157 |
+
class Generator(torch.nn.Module):
|
| 158 |
+
def __init__(
|
| 159 |
+
self,
|
| 160 |
+
initial_channel,
|
| 161 |
+
resblock,
|
| 162 |
+
resblock_kernel_sizes,
|
| 163 |
+
resblock_dilation_sizes,
|
| 164 |
+
upsample_rates,
|
| 165 |
+
upsample_initial_channel,
|
| 166 |
+
upsample_kernel_sizes,
|
| 167 |
+
gin_channels=0,
|
| 168 |
+
):
|
| 169 |
+
super(Generator, self).__init__()
|
| 170 |
+
self.num_kernels = len(resblock_kernel_sizes)
|
| 171 |
+
self.num_upsamples = len(upsample_rates)
|
| 172 |
+
self.conv_pre = Conv1d(
|
| 173 |
+
initial_channel, upsample_initial_channel, 7, 1, padding=3
|
| 174 |
+
)
|
| 175 |
+
resblock = modules.ResBlock1 if resblock == "1" else modules.ResBlock2
|
| 176 |
+
|
| 177 |
+
self.ups = nn.ModuleList()
|
| 178 |
+
for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
|
| 179 |
+
self.ups.append(
|
| 180 |
+
weight_norm(
|
| 181 |
+
ConvTranspose1d(
|
| 182 |
+
upsample_initial_channel // (2**i),
|
| 183 |
+
upsample_initial_channel // (2 ** (i + 1)),
|
| 184 |
+
k,
|
| 185 |
+
u,
|
| 186 |
+
padding=(k - u) // 2,
|
| 187 |
+
)
|
| 188 |
+
)
|
| 189 |
+
)
|
| 190 |
+
|
| 191 |
+
self.resblocks = nn.ModuleList()
|
| 192 |
+
for i in range(len(self.ups)):
|
| 193 |
+
ch = upsample_initial_channel // (2 ** (i + 1))
|
| 194 |
+
for j, (k, d) in enumerate(
|
| 195 |
+
zip(resblock_kernel_sizes, resblock_dilation_sizes)
|
| 196 |
+
):
|
| 197 |
+
self.resblocks.append(resblock(ch, k, d))
|
| 198 |
+
|
| 199 |
+
self.conv_post = Conv1d(ch, 1, 7, 1, padding=3, bias=False)
|
| 200 |
+
self.ups.apply(init_weights)
|
| 201 |
+
|
| 202 |
+
if gin_channels != 0:
|
| 203 |
+
self.cond = nn.Conv1d(gin_channels, upsample_initial_channel, 1)
|
| 204 |
+
|
| 205 |
+
def forward(self, x, g=None):
|
| 206 |
+
x = self.conv_pre(x)
|
| 207 |
+
if g is not None:
|
| 208 |
+
x = x + self.cond(g)
|
| 209 |
+
|
| 210 |
+
for i in range(self.num_upsamples):
|
| 211 |
+
x = F.leaky_relu(x, modules.LRELU_SLOPE)
|
| 212 |
+
x = self.ups[i](x)
|
| 213 |
+
xs = None
|
| 214 |
+
for j in range(self.num_kernels):
|
| 215 |
+
if xs is None:
|
| 216 |
+
xs = self.resblocks[i * self.num_kernels + j](x)
|
| 217 |
+
else:
|
| 218 |
+
xs += self.resblocks[i * self.num_kernels + j](x)
|
| 219 |
+
x = xs / self.num_kernels
|
| 220 |
+
x = F.leaky_relu(x)
|
| 221 |
+
x = self.conv_post(x)
|
| 222 |
+
x = torch.tanh(x)
|
| 223 |
+
|
| 224 |
+
return x
|
| 225 |
+
|
| 226 |
+
def remove_weight_norm(self):
|
| 227 |
+
for l in self.ups:
|
| 228 |
+
remove_weight_norm(l)
|
| 229 |
+
for l in self.resblocks:
|
| 230 |
+
l.remove_weight_norm()
|
| 231 |
+
|
| 232 |
+
|
| 233 |
+
class SineGen(torch.nn.Module):
|
| 234 |
+
"""Definition of sine generator
|
| 235 |
+
SineGen(samp_rate, harmonic_num = 0,
|
| 236 |
+
sine_amp = 0.1, noise_std = 0.003,
|
| 237 |
+
voiced_threshold = 0,
|
| 238 |
+
flag_for_pulse=False)
|
| 239 |
+
samp_rate: sampling rate in Hz
|
| 240 |
+
harmonic_num: number of harmonic overtones (default 0)
|
| 241 |
+
sine_amp: amplitude of sine-wavefrom (default 0.1)
|
| 242 |
+
noise_std: std of Gaussian noise (default 0.003)
|
| 243 |
+
voiced_thoreshold: F0 threshold for U/V classification (default 0)
|
| 244 |
+
flag_for_pulse: this SinGen is used inside PulseGen (default False)
|
| 245 |
+
Note: when flag_for_pulse is True, the first time step of a voiced
|
| 246 |
+
segment is always sin(np.pi) or cos(0)
|
| 247 |
+
"""
|
| 248 |
+
|
| 249 |
+
def __init__(
|
| 250 |
+
self,
|
| 251 |
+
samp_rate,
|
| 252 |
+
harmonic_num=0,
|
| 253 |
+
sine_amp=0.1,
|
| 254 |
+
noise_std=0.003,
|
| 255 |
+
voiced_threshold=0,
|
| 256 |
+
flag_for_pulse=False,
|
| 257 |
+
):
|
| 258 |
+
super(SineGen, self).__init__()
|
| 259 |
+
self.sine_amp = sine_amp
|
| 260 |
+
self.noise_std = noise_std
|
| 261 |
+
self.harmonic_num = harmonic_num
|
| 262 |
+
self.dim = self.harmonic_num + 1
|
| 263 |
+
self.sampling_rate = samp_rate
|
| 264 |
+
self.voiced_threshold = voiced_threshold
|
| 265 |
+
|
| 266 |
+
def _f02uv(self, f0):
|
| 267 |
+
# generate uv signal
|
| 268 |
+
uv = torch.ones_like(f0)
|
| 269 |
+
uv = uv * (f0 > self.voiced_threshold)
|
| 270 |
+
return uv
|
| 271 |
+
|
| 272 |
+
def forward(self, f0, upp):
|
| 273 |
+
"""sine_tensor, uv = forward(f0)
|
| 274 |
+
input F0: tensor(batchsize=1, length, dim=1)
|
| 275 |
+
f0 for unvoiced steps should be 0
|
| 276 |
+
output sine_tensor: tensor(batchsize=1, length, dim)
|
| 277 |
+
output uv: tensor(batchsize=1, length, 1)
|
| 278 |
+
"""
|
| 279 |
+
with torch.no_grad():
|
| 280 |
+
f0 = f0[:, None].transpose(1, 2)
|
| 281 |
+
f0_buf = torch.zeros(f0.shape[0], f0.shape[1], self.dim, device=f0.device)
|
| 282 |
+
# fundamental component
|
| 283 |
+
f0_buf[:, :, 0] = f0[:, :, 0]
|
| 284 |
+
for idx in np.arange(self.harmonic_num):
|
| 285 |
+
f0_buf[:, :, idx + 1] = f0_buf[:, :, 0] * (
|
| 286 |
+
idx + 2
|
| 287 |
+
) # idx + 2: the (idx+1)-th overtone, (idx+2)-th harmonic
|
| 288 |
+
rad_values = (f0_buf / self.sampling_rate) % 1 ###%1意味着n_har的乘积无法后处理优化
|
| 289 |
+
rand_ini = torch.rand(
|
| 290 |
+
f0_buf.shape[0], f0_buf.shape[2], device=f0_buf.device
|
| 291 |
+
)
|
| 292 |
+
rand_ini[:, 0] = 0
|
| 293 |
+
rad_values[:, 0, :] = rad_values[:, 0, :] + rand_ini
|
| 294 |
+
tmp_over_one = torch.cumsum(rad_values, 1) # % 1 #####%1意味着后面的cumsum无法再优化
|
| 295 |
+
tmp_over_one *= upp
|
| 296 |
+
tmp_over_one = F.interpolate(
|
| 297 |
+
tmp_over_one.transpose(2, 1),
|
| 298 |
+
scale_factor=upp,
|
| 299 |
+
mode="linear",
|
| 300 |
+
align_corners=True,
|
| 301 |
+
).transpose(2, 1)
|
| 302 |
+
rad_values = F.interpolate(
|
| 303 |
+
rad_values.transpose(2, 1), scale_factor=upp, mode="nearest"
|
| 304 |
+
).transpose(
|
| 305 |
+
2, 1
|
| 306 |
+
) #######
|
| 307 |
+
tmp_over_one %= 1
|
| 308 |
+
tmp_over_one_idx = (tmp_over_one[:, 1:, :] - tmp_over_one[:, :-1, :]) < 0
|
| 309 |
+
cumsum_shift = torch.zeros_like(rad_values)
|
| 310 |
+
cumsum_shift[:, 1:, :] = tmp_over_one_idx * -1.0
|
| 311 |
+
sine_waves = torch.sin(
|
| 312 |
+
torch.cumsum(rad_values + cumsum_shift, dim=1) * 2 * np.pi
|
| 313 |
+
)
|
| 314 |
+
sine_waves = sine_waves * self.sine_amp
|
| 315 |
+
uv = self._f02uv(f0)
|
| 316 |
+
uv = F.interpolate(
|
| 317 |
+
uv.transpose(2, 1), scale_factor=upp, mode="nearest"
|
| 318 |
+
).transpose(2, 1)
|
| 319 |
+
noise_amp = uv * self.noise_std + (1 - uv) * self.sine_amp / 3
|
| 320 |
+
noise = noise_amp * torch.randn_like(sine_waves)
|
| 321 |
+
sine_waves = sine_waves * uv + noise
|
| 322 |
+
return sine_waves, uv, noise
|
| 323 |
+
|
| 324 |
+
|
| 325 |
+
class SourceModuleHnNSF(torch.nn.Module):
|
| 326 |
+
"""SourceModule for hn-nsf
|
| 327 |
+
SourceModule(sampling_rate, harmonic_num=0, sine_amp=0.1,
|
| 328 |
+
add_noise_std=0.003, voiced_threshod=0)
|
| 329 |
+
sampling_rate: sampling_rate in Hz
|
| 330 |
+
harmonic_num: number of harmonic above F0 (default: 0)
|
| 331 |
+
sine_amp: amplitude of sine source signal (default: 0.1)
|
| 332 |
+
add_noise_std: std of additive Gaussian noise (default: 0.003)
|
| 333 |
+
note that amplitude of noise in unvoiced is decided
|
| 334 |
+
by sine_amp
|
| 335 |
+
voiced_threshold: threhold to set U/V given F0 (default: 0)
|
| 336 |
+
Sine_source, noise_source = SourceModuleHnNSF(F0_sampled)
|
| 337 |
+
F0_sampled (batchsize, length, 1)
|
| 338 |
+
Sine_source (batchsize, length, 1)
|
| 339 |
+
noise_source (batchsize, length 1)
|
| 340 |
+
uv (batchsize, length, 1)
|
| 341 |
+
"""
|
| 342 |
+
|
| 343 |
+
def __init__(
|
| 344 |
+
self,
|
| 345 |
+
sampling_rate,
|
| 346 |
+
harmonic_num=0,
|
| 347 |
+
sine_amp=0.1,
|
| 348 |
+
add_noise_std=0.003,
|
| 349 |
+
voiced_threshod=0,
|
| 350 |
+
is_half=True,
|
| 351 |
+
):
|
| 352 |
+
super(SourceModuleHnNSF, self).__init__()
|
| 353 |
+
|
| 354 |
+
self.sine_amp = sine_amp
|
| 355 |
+
self.noise_std = add_noise_std
|
| 356 |
+
self.is_half = is_half
|
| 357 |
+
# to produce sine waveforms
|
| 358 |
+
self.l_sin_gen = SineGen(
|
| 359 |
+
sampling_rate, harmonic_num, sine_amp, add_noise_std, voiced_threshod
|
| 360 |
+
)
|
| 361 |
+
|
| 362 |
+
# to merge source harmonics into a single excitation
|
| 363 |
+
self.l_linear = torch.nn.Linear(harmonic_num + 1, 1)
|
| 364 |
+
self.l_tanh = torch.nn.Tanh()
|
| 365 |
+
|
| 366 |
+
def forward(self, x, upp=None):
|
| 367 |
+
sine_wavs, uv, _ = self.l_sin_gen(x, upp)
|
| 368 |
+
if self.is_half == True:
|
| 369 |
+
sine_wavs = sine_wavs.half()
|
| 370 |
+
sine_merge = self.l_tanh(self.l_linear(sine_wavs))
|
| 371 |
+
return sine_merge, None, None # noise, uv
|
| 372 |
+
|
| 373 |
+
|
| 374 |
+
class GeneratorNSF(torch.nn.Module):
|
| 375 |
+
def __init__(
|
| 376 |
+
self,
|
| 377 |
+
initial_channel,
|
| 378 |
+
resblock,
|
| 379 |
+
resblock_kernel_sizes,
|
| 380 |
+
resblock_dilation_sizes,
|
| 381 |
+
upsample_rates,
|
| 382 |
+
upsample_initial_channel,
|
| 383 |
+
upsample_kernel_sizes,
|
| 384 |
+
gin_channels,
|
| 385 |
+
sr,
|
| 386 |
+
is_half=False,
|
| 387 |
+
):
|
| 388 |
+
super(GeneratorNSF, self).__init__()
|
| 389 |
+
self.num_kernels = len(resblock_kernel_sizes)
|
| 390 |
+
self.num_upsamples = len(upsample_rates)
|
| 391 |
+
|
| 392 |
+
self.f0_upsamp = torch.nn.Upsample(scale_factor=np.prod(upsample_rates))
|
| 393 |
+
self.m_source = SourceModuleHnNSF(
|
| 394 |
+
sampling_rate=sr, harmonic_num=0, is_half=is_half
|
| 395 |
+
)
|
| 396 |
+
self.noise_convs = nn.ModuleList()
|
| 397 |
+
self.conv_pre = Conv1d(
|
| 398 |
+
initial_channel, upsample_initial_channel, 7, 1, padding=3
|
| 399 |
+
)
|
| 400 |
+
resblock = modules.ResBlock1 if resblock == "1" else modules.ResBlock2
|
| 401 |
+
|
| 402 |
+
self.ups = nn.ModuleList()
|
| 403 |
+
for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
|
| 404 |
+
c_cur = upsample_initial_channel // (2 ** (i + 1))
|
| 405 |
+
self.ups.append(
|
| 406 |
+
weight_norm(
|
| 407 |
+
ConvTranspose1d(
|
| 408 |
+
upsample_initial_channel // (2**i),
|
| 409 |
+
upsample_initial_channel // (2 ** (i + 1)),
|
| 410 |
+
k,
|
| 411 |
+
u,
|
| 412 |
+
padding=(k - u) // 2,
|
| 413 |
+
)
|
| 414 |
+
)
|
| 415 |
+
)
|
| 416 |
+
if i + 1 < len(upsample_rates):
|
| 417 |
+
stride_f0 = np.prod(upsample_rates[i + 1 :])
|
| 418 |
+
self.noise_convs.append(
|
| 419 |
+
Conv1d(
|
| 420 |
+
1,
|
| 421 |
+
c_cur,
|
| 422 |
+
kernel_size=stride_f0 * 2,
|
| 423 |
+
stride=stride_f0,
|
| 424 |
+
padding=stride_f0 // 2,
|
| 425 |
+
)
|
| 426 |
+
)
|
| 427 |
+
else:
|
| 428 |
+
self.noise_convs.append(Conv1d(1, c_cur, kernel_size=1))
|
| 429 |
+
|
| 430 |
+
self.resblocks = nn.ModuleList()
|
| 431 |
+
for i in range(len(self.ups)):
|
| 432 |
+
ch = upsample_initial_channel // (2 ** (i + 1))
|
| 433 |
+
for j, (k, d) in enumerate(
|
| 434 |
+
zip(resblock_kernel_sizes, resblock_dilation_sizes)
|
| 435 |
+
):
|
| 436 |
+
self.resblocks.append(resblock(ch, k, d))
|
| 437 |
+
|
| 438 |
+
self.conv_post = Conv1d(ch, 1, 7, 1, padding=3, bias=False)
|
| 439 |
+
self.ups.apply(init_weights)
|
| 440 |
+
|
| 441 |
+
if gin_channels != 0:
|
| 442 |
+
self.cond = nn.Conv1d(gin_channels, upsample_initial_channel, 1)
|
| 443 |
+
|
| 444 |
+
self.upp = np.prod(upsample_rates)
|
| 445 |
+
|
| 446 |
+
def forward(self, x, f0, g=None):
|
| 447 |
+
har_source, noi_source, uv = self.m_source(f0, self.upp)
|
| 448 |
+
har_source = har_source.transpose(1, 2)
|
| 449 |
+
x = self.conv_pre(x)
|
| 450 |
+
if g is not None:
|
| 451 |
+
x = x + self.cond(g)
|
| 452 |
+
|
| 453 |
+
for i in range(self.num_upsamples):
|
| 454 |
+
x = F.leaky_relu(x, modules.LRELU_SLOPE)
|
| 455 |
+
x = self.ups[i](x)
|
| 456 |
+
x_source = self.noise_convs[i](har_source)
|
| 457 |
+
x = x + x_source
|
| 458 |
+
xs = None
|
| 459 |
+
for j in range(self.num_kernels):
|
| 460 |
+
if xs is None:
|
| 461 |
+
xs = self.resblocks[i * self.num_kernels + j](x)
|
| 462 |
+
else:
|
| 463 |
+
xs += self.resblocks[i * self.num_kernels + j](x)
|
| 464 |
+
x = xs / self.num_kernels
|
| 465 |
+
x = F.leaky_relu(x)
|
| 466 |
+
x = self.conv_post(x)
|
| 467 |
+
x = torch.tanh(x)
|
| 468 |
+
return x
|
| 469 |
+
|
| 470 |
+
def remove_weight_norm(self):
|
| 471 |
+
for l in self.ups:
|
| 472 |
+
remove_weight_norm(l)
|
| 473 |
+
for l in self.resblocks:
|
| 474 |
+
l.remove_weight_norm()
|
| 475 |
+
|
| 476 |
+
|
| 477 |
+
sr2sr = {
|
| 478 |
+
"32k": 32000,
|
| 479 |
+
"40k": 40000,
|
| 480 |
+
"48k": 48000,
|
| 481 |
+
}
|
| 482 |
+
|
| 483 |
+
|
| 484 |
+
class SynthesizerTrnMs256NSFSid(nn.Module):
|
| 485 |
+
def __init__(
|
| 486 |
+
self,
|
| 487 |
+
spec_channels,
|
| 488 |
+
segment_size,
|
| 489 |
+
inter_channels,
|
| 490 |
+
hidden_channels,
|
| 491 |
+
filter_channels,
|
| 492 |
+
n_heads,
|
| 493 |
+
n_layers,
|
| 494 |
+
kernel_size,
|
| 495 |
+
p_dropout,
|
| 496 |
+
resblock,
|
| 497 |
+
resblock_kernel_sizes,
|
| 498 |
+
resblock_dilation_sizes,
|
| 499 |
+
upsample_rates,
|
| 500 |
+
upsample_initial_channel,
|
| 501 |
+
upsample_kernel_sizes,
|
| 502 |
+
spk_embed_dim,
|
| 503 |
+
gin_channels,
|
| 504 |
+
emb_channels,
|
| 505 |
+
sr,
|
| 506 |
+
**kwargs
|
| 507 |
+
):
|
| 508 |
+
super().__init__()
|
| 509 |
+
if type(sr) == type("strr"):
|
| 510 |
+
sr = sr2sr[sr]
|
| 511 |
+
self.spec_channels = spec_channels
|
| 512 |
+
self.inter_channels = inter_channels
|
| 513 |
+
self.hidden_channels = hidden_channels
|
| 514 |
+
self.filter_channels = filter_channels
|
| 515 |
+
self.n_heads = n_heads
|
| 516 |
+
self.n_layers = n_layers
|
| 517 |
+
self.kernel_size = kernel_size
|
| 518 |
+
self.p_dropout = p_dropout
|
| 519 |
+
self.resblock = resblock
|
| 520 |
+
self.resblock_kernel_sizes = resblock_kernel_sizes
|
| 521 |
+
self.resblock_dilation_sizes = resblock_dilation_sizes
|
| 522 |
+
self.upsample_rates = upsample_rates
|
| 523 |
+
self.upsample_initial_channel = upsample_initial_channel
|
| 524 |
+
self.upsample_kernel_sizes = upsample_kernel_sizes
|
| 525 |
+
self.segment_size = segment_size
|
| 526 |
+
self.gin_channels = gin_channels
|
| 527 |
+
self.emb_channels = emb_channels
|
| 528 |
+
self.sr = sr
|
| 529 |
+
# self.hop_length = hop_length#
|
| 530 |
+
self.spk_embed_dim = spk_embed_dim
|
| 531 |
+
self.enc_p = TextEncoder(
|
| 532 |
+
inter_channels,
|
| 533 |
+
hidden_channels,
|
| 534 |
+
filter_channels,
|
| 535 |
+
emb_channels,
|
| 536 |
+
n_heads,
|
| 537 |
+
n_layers,
|
| 538 |
+
kernel_size,
|
| 539 |
+
p_dropout,
|
| 540 |
+
)
|
| 541 |
+
self.dec = GeneratorNSF(
|
| 542 |
+
inter_channels,
|
| 543 |
+
resblock,
|
| 544 |
+
resblock_kernel_sizes,
|
| 545 |
+
resblock_dilation_sizes,
|
| 546 |
+
upsample_rates,
|
| 547 |
+
upsample_initial_channel,
|
| 548 |
+
upsample_kernel_sizes,
|
| 549 |
+
gin_channels=gin_channels,
|
| 550 |
+
sr=sr,
|
| 551 |
+
is_half=kwargs["is_half"],
|
| 552 |
+
)
|
| 553 |
+
self.enc_q = PosteriorEncoder(
|
| 554 |
+
spec_channels,
|
| 555 |
+
inter_channels,
|
| 556 |
+
hidden_channels,
|
| 557 |
+
5,
|
| 558 |
+
1,
|
| 559 |
+
16,
|
| 560 |
+
gin_channels=gin_channels,
|
| 561 |
+
)
|
| 562 |
+
self.flow = ResidualCouplingBlock(
|
| 563 |
+
inter_channels, hidden_channels, 5, 1, 3, gin_channels=gin_channels
|
| 564 |
+
)
|
| 565 |
+
self.emb_g = nn.Embedding(self.spk_embed_dim, gin_channels)
|
| 566 |
+
print(
|
| 567 |
+
"gin_channels:",
|
| 568 |
+
gin_channels,
|
| 569 |
+
"self.spk_embed_dim:",
|
| 570 |
+
self.spk_embed_dim,
|
| 571 |
+
"emb_channels:",
|
| 572 |
+
emb_channels,
|
| 573 |
+
)
|
| 574 |
+
|
| 575 |
+
def remove_weight_norm(self):
|
| 576 |
+
self.dec.remove_weight_norm()
|
| 577 |
+
self.flow.remove_weight_norm()
|
| 578 |
+
self.enc_q.remove_weight_norm()
|
| 579 |
+
|
| 580 |
+
def forward(
|
| 581 |
+
self, phone, phone_lengths, pitch, pitchf, y, y_lengths, ds
|
| 582 |
+
): # 这里ds是id,[bs,1]
|
| 583 |
+
# print(1,pitch.shape)#[bs,t]
|
| 584 |
+
g = self.emb_g(ds).unsqueeze(-1) # [b, 256, 1]##1是t,广播的
|
| 585 |
+
m_p, logs_p, x_mask = self.enc_p(phone, pitch, phone_lengths)
|
| 586 |
+
z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g)
|
| 587 |
+
z_p = self.flow(z, y_mask, g=g)
|
| 588 |
+
z_slice, ids_slice = commons.rand_slice_segments(
|
| 589 |
+
z, y_lengths, self.segment_size
|
| 590 |
+
)
|
| 591 |
+
# print(-1,pitchf.shape,ids_slice,self.segment_size,self.hop_length,self.segment_size//self.hop_length)
|
| 592 |
+
pitchf = commons.slice_segments2(pitchf, ids_slice, self.segment_size)
|
| 593 |
+
# print(-2,pitchf.shape,z_slice.shape)
|
| 594 |
+
o = self.dec(z_slice, pitchf, g=g)
|
| 595 |
+
return o, ids_slice, x_mask, y_mask, (z, z_p, m_p, logs_p, m_q, logs_q)
|
| 596 |
+
|
| 597 |
+
def infer(self, phone, phone_lengths, pitch, nsff0, sid, max_len=None):
|
| 598 |
+
g = self.emb_g(sid).unsqueeze(-1)
|
| 599 |
+
m_p, logs_p, x_mask = self.enc_p(phone, pitch, phone_lengths)
|
| 600 |
+
z_p = (m_p + torch.exp(logs_p) * torch.randn_like(m_p) * 0.66666) * x_mask
|
| 601 |
+
z = self.flow(z_p, x_mask, g=g, reverse=True)
|
| 602 |
+
o = self.dec((z * x_mask)[:, :, :max_len], nsff0, g=g)
|
| 603 |
+
return o, x_mask, (z, z_p, m_p, logs_p)
|
| 604 |
+
|
| 605 |
+
|
| 606 |
+
class SynthesizerTrnMs256NSFSidNono(nn.Module):
|
| 607 |
+
def __init__(
|
| 608 |
+
self,
|
| 609 |
+
spec_channels,
|
| 610 |
+
segment_size,
|
| 611 |
+
inter_channels,
|
| 612 |
+
hidden_channels,
|
| 613 |
+
filter_channels,
|
| 614 |
+
n_heads,
|
| 615 |
+
n_layers,
|
| 616 |
+
kernel_size,
|
| 617 |
+
p_dropout,
|
| 618 |
+
resblock,
|
| 619 |
+
resblock_kernel_sizes,
|
| 620 |
+
resblock_dilation_sizes,
|
| 621 |
+
upsample_rates,
|
| 622 |
+
upsample_initial_channel,
|
| 623 |
+
upsample_kernel_sizes,
|
| 624 |
+
spk_embed_dim,
|
| 625 |
+
gin_channels,
|
| 626 |
+
emb_channels,
|
| 627 |
+
sr=None,
|
| 628 |
+
**kwargs
|
| 629 |
+
):
|
| 630 |
+
super().__init__()
|
| 631 |
+
self.spec_channels = spec_channels
|
| 632 |
+
self.inter_channels = inter_channels
|
| 633 |
+
self.hidden_channels = hidden_channels
|
| 634 |
+
self.filter_channels = filter_channels
|
| 635 |
+
self.n_heads = n_heads
|
| 636 |
+
self.n_layers = n_layers
|
| 637 |
+
self.kernel_size = kernel_size
|
| 638 |
+
self.p_dropout = p_dropout
|
| 639 |
+
self.resblock = resblock
|
| 640 |
+
self.resblock_kernel_sizes = resblock_kernel_sizes
|
| 641 |
+
self.resblock_dilation_sizes = resblock_dilation_sizes
|
| 642 |
+
self.upsample_rates = upsample_rates
|
| 643 |
+
self.upsample_initial_channel = upsample_initial_channel
|
| 644 |
+
self.upsample_kernel_sizes = upsample_kernel_sizes
|
| 645 |
+
self.segment_size = segment_size
|
| 646 |
+
self.gin_channels = gin_channels
|
| 647 |
+
self.emb_channels = emb_channels
|
| 648 |
+
self.sr = sr
|
| 649 |
+
# self.hop_length = hop_length#
|
| 650 |
+
self.spk_embed_dim = spk_embed_dim
|
| 651 |
+
self.enc_p = TextEncoder(
|
| 652 |
+
inter_channels,
|
| 653 |
+
hidden_channels,
|
| 654 |
+
filter_channels,
|
| 655 |
+
emb_channels,
|
| 656 |
+
n_heads,
|
| 657 |
+
n_layers,
|
| 658 |
+
kernel_size,
|
| 659 |
+
p_dropout,
|
| 660 |
+
f0=False,
|
| 661 |
+
)
|
| 662 |
+
self.dec = Generator(
|
| 663 |
+
inter_channels,
|
| 664 |
+
resblock,
|
| 665 |
+
resblock_kernel_sizes,
|
| 666 |
+
resblock_dilation_sizes,
|
| 667 |
+
upsample_rates,
|
| 668 |
+
upsample_initial_channel,
|
| 669 |
+
upsample_kernel_sizes,
|
| 670 |
+
gin_channels=gin_channels,
|
| 671 |
+
)
|
| 672 |
+
self.enc_q = PosteriorEncoder(
|
| 673 |
+
spec_channels,
|
| 674 |
+
inter_channels,
|
| 675 |
+
hidden_channels,
|
| 676 |
+
5,
|
| 677 |
+
1,
|
| 678 |
+
16,
|
| 679 |
+
gin_channels=gin_channels,
|
| 680 |
+
)
|
| 681 |
+
self.flow = ResidualCouplingBlock(
|
| 682 |
+
inter_channels, hidden_channels, 5, 1, 3, gin_channels=gin_channels
|
| 683 |
+
)
|
| 684 |
+
self.emb_g = nn.Embedding(self.spk_embed_dim, gin_channels)
|
| 685 |
+
print(
|
| 686 |
+
"gin_channels:",
|
| 687 |
+
gin_channels,
|
| 688 |
+
"self.spk_embed_dim:",
|
| 689 |
+
self.spk_embed_dim,
|
| 690 |
+
"emb_channels:",
|
| 691 |
+
emb_channels,
|
| 692 |
+
)
|
| 693 |
+
|
| 694 |
+
def remove_weight_norm(self):
|
| 695 |
+
self.dec.remove_weight_norm()
|
| 696 |
+
self.flow.remove_weight_norm()
|
| 697 |
+
self.enc_q.remove_weight_norm()
|
| 698 |
+
|
| 699 |
+
def forward(self, phone, phone_lengths, y, y_lengths, ds): # 这里ds是id,[bs,1]
|
| 700 |
+
g = self.emb_g(ds).unsqueeze(-1) # [b, 256, 1]##1是t,广播的
|
| 701 |
+
m_p, logs_p, x_mask = self.enc_p(phone, None, phone_lengths)
|
| 702 |
+
z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g)
|
| 703 |
+
z_p = self.flow(z, y_mask, g=g)
|
| 704 |
+
z_slice, ids_slice = commons.rand_slice_segments(
|
| 705 |
+
z, y_lengths, self.segment_size
|
| 706 |
+
)
|
| 707 |
+
o = self.dec(z_slice, g=g)
|
| 708 |
+
return o, ids_slice, x_mask, y_mask, (z, z_p, m_p, logs_p, m_q, logs_q)
|
| 709 |
+
|
| 710 |
+
def infer(self, phone, phone_lengths, sid, max_len=None):
|
| 711 |
+
g = self.emb_g(sid).unsqueeze(-1)
|
| 712 |
+
m_p, logs_p, x_mask = self.enc_p(phone, None, phone_lengths)
|
| 713 |
+
z_p = (m_p + torch.exp(logs_p) * torch.randn_like(m_p) * 0.66666) * x_mask
|
| 714 |
+
z = self.flow(z_p, x_mask, g=g, reverse=True)
|
| 715 |
+
o = self.dec((z * x_mask)[:, :, :max_len], g=g)
|
| 716 |
+
return o, x_mask, (z, z_p, m_p, logs_p)
|
| 717 |
+
|
| 718 |
+
|
| 719 |
+
class DiscriminatorS(torch.nn.Module):
|
| 720 |
+
def __init__(self, use_spectral_norm=False):
|
| 721 |
+
super(DiscriminatorS, self).__init__()
|
| 722 |
+
norm_f = weight_norm if use_spectral_norm == False else spectral_norm
|
| 723 |
+
self.convs = nn.ModuleList(
|
| 724 |
+
[
|
| 725 |
+
norm_f(Conv1d(1, 16, 15, 1, padding=7)),
|
| 726 |
+
norm_f(Conv1d(16, 64, 41, 4, groups=4, padding=20)),
|
| 727 |
+
norm_f(Conv1d(64, 256, 41, 4, groups=16, padding=20)),
|
| 728 |
+
norm_f(Conv1d(256, 1024, 41, 4, groups=64, padding=20)),
|
| 729 |
+
norm_f(Conv1d(1024, 1024, 41, 4, groups=256, padding=20)),
|
| 730 |
+
norm_f(Conv1d(1024, 1024, 5, 1, padding=2)),
|
| 731 |
+
]
|
| 732 |
+
)
|
| 733 |
+
self.conv_post = norm_f(Conv1d(1024, 1, 3, 1, padding=1))
|
| 734 |
+
|
| 735 |
+
def forward(self, x):
|
| 736 |
+
fmap = []
|
| 737 |
+
|
| 738 |
+
for l in self.convs:
|
| 739 |
+
x = l(x)
|
| 740 |
+
x = F.leaky_relu(x, modules.LRELU_SLOPE)
|
| 741 |
+
fmap.append(x)
|
| 742 |
+
x = self.conv_post(x)
|
| 743 |
+
fmap.append(x)
|
| 744 |
+
x = torch.flatten(x, 1, -1)
|
| 745 |
+
|
| 746 |
+
return x, fmap
|
| 747 |
+
|
| 748 |
+
|
| 749 |
+
class DiscriminatorP(torch.nn.Module):
|
| 750 |
+
def __init__(self, period, kernel_size=5, stride=3, use_spectral_norm=False):
|
| 751 |
+
super(DiscriminatorP, self).__init__()
|
| 752 |
+
self.period = period
|
| 753 |
+
self.use_spectral_norm = use_spectral_norm
|
| 754 |
+
norm_f = weight_norm if use_spectral_norm == False else spectral_norm
|
| 755 |
+
self.convs = nn.ModuleList(
|
| 756 |
+
[
|
| 757 |
+
norm_f(
|
| 758 |
+
Conv2d(
|
| 759 |
+
1,
|
| 760 |
+
32,
|
| 761 |
+
(kernel_size, 1),
|
| 762 |
+
(stride, 1),
|
| 763 |
+
padding=(get_padding(kernel_size, 1), 0),
|
| 764 |
+
)
|
| 765 |
+
),
|
| 766 |
+
norm_f(
|
| 767 |
+
Conv2d(
|
| 768 |
+
32,
|
| 769 |
+
128,
|
| 770 |
+
(kernel_size, 1),
|
| 771 |
+
(stride, 1),
|
| 772 |
+
padding=(get_padding(kernel_size, 1), 0),
|
| 773 |
+
)
|
| 774 |
+
),
|
| 775 |
+
norm_f(
|
| 776 |
+
Conv2d(
|
| 777 |
+
128,
|
| 778 |
+
512,
|
| 779 |
+
(kernel_size, 1),
|
| 780 |
+
(stride, 1),
|
| 781 |
+
padding=(get_padding(kernel_size, 1), 0),
|
| 782 |
+
)
|
| 783 |
+
),
|
| 784 |
+
norm_f(
|
| 785 |
+
Conv2d(
|
| 786 |
+
512,
|
| 787 |
+
1024,
|
| 788 |
+
(kernel_size, 1),
|
| 789 |
+
(stride, 1),
|
| 790 |
+
padding=(get_padding(kernel_size, 1), 0),
|
| 791 |
+
)
|
| 792 |
+
),
|
| 793 |
+
norm_f(
|
| 794 |
+
Conv2d(
|
| 795 |
+
1024,
|
| 796 |
+
1024,
|
| 797 |
+
(kernel_size, 1),
|
| 798 |
+
1,
|
| 799 |
+
padding=(get_padding(kernel_size, 1), 0),
|
| 800 |
+
)
|
| 801 |
+
),
|
| 802 |
+
]
|
| 803 |
+
)
|
| 804 |
+
self.conv_post = norm_f(Conv2d(1024, 1, (3, 1), 1, padding=(1, 0)))
|
| 805 |
+
|
| 806 |
+
def forward(self, x):
|
| 807 |
+
fmap = []
|
| 808 |
+
|
| 809 |
+
# 1d to 2d
|
| 810 |
+
b, c, t = x.shape
|
| 811 |
+
if t % self.period != 0: # pad first
|
| 812 |
+
n_pad = self.period - (t % self.period)
|
| 813 |
+
x = F.pad(x, (0, n_pad), "reflect")
|
| 814 |
+
t = t + n_pad
|
| 815 |
+
x = x.view(b, c, t // self.period, self.period)
|
| 816 |
+
|
| 817 |
+
for l in self.convs:
|
| 818 |
+
x = l(x)
|
| 819 |
+
x = F.leaky_relu(x, modules.LRELU_SLOPE)
|
| 820 |
+
fmap.append(x)
|
| 821 |
+
x = self.conv_post(x)
|
| 822 |
+
fmap.append(x)
|
| 823 |
+
x = torch.flatten(x, 1, -1)
|
| 824 |
+
|
| 825 |
+
return x, fmap
|
| 826 |
+
|
| 827 |
+
|
| 828 |
+
class MultiPeriodDiscriminator(torch.nn.Module):
|
| 829 |
+
def __init__(self, use_spectral_norm=False, periods=[2, 3, 5, 7, 11, 17]):
|
| 830 |
+
super(MultiPeriodDiscriminator, self).__init__()
|
| 831 |
+
|
| 832 |
+
discs = [DiscriminatorS(use_spectral_norm=use_spectral_norm)]
|
| 833 |
+
discs = discs + [
|
| 834 |
+
DiscriminatorP(i, use_spectral_norm=use_spectral_norm) for i in periods
|
| 835 |
+
]
|
| 836 |
+
self.discriminators = nn.ModuleList(discs)
|
| 837 |
+
|
| 838 |
+
def forward(self, y, y_hat):
|
| 839 |
+
y_d_rs = [] #
|
| 840 |
+
y_d_gs = []
|
| 841 |
+
fmap_rs = []
|
| 842 |
+
fmap_gs = []
|
| 843 |
+
for i, d in enumerate(self.discriminators):
|
| 844 |
+
y_d_r, fmap_r = d(y)
|
| 845 |
+
y_d_g, fmap_g = d(y_hat)
|
| 846 |
+
# for j in range(len(fmap_r)):
|
| 847 |
+
# print(i,j,y.shape,y_hat.shape,fmap_r[j].shape,fmap_g[j].shape)
|
| 848 |
+
y_d_rs.append(y_d_r)
|
| 849 |
+
y_d_gs.append(y_d_g)
|
| 850 |
+
fmap_rs.append(fmap_r)
|
| 851 |
+
fmap_gs.append(fmap_g)
|
| 852 |
+
|
| 853 |
+
return y_d_rs, y_d_gs, fmap_rs, fmap_gs
|
lib/rvc/modules.py
ADDED
|
@@ -0,0 +1,518 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import math
|
| 2 |
+
|
| 3 |
+
import torch
|
| 4 |
+
from torch import nn
|
| 5 |
+
from torch.nn import Conv1d
|
| 6 |
+
from torch.nn import functional as F
|
| 7 |
+
from torch.nn.utils import remove_weight_norm, weight_norm
|
| 8 |
+
|
| 9 |
+
from . import commons
|
| 10 |
+
from .commons import get_padding, init_weights
|
| 11 |
+
from .transforms import piecewise_rational_quadratic_transform
|
| 12 |
+
|
| 13 |
+
LRELU_SLOPE = 0.1
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
class LayerNorm(nn.Module):
|
| 17 |
+
def __init__(self, channels, eps=1e-5):
|
| 18 |
+
super().__init__()
|
| 19 |
+
self.channels = channels
|
| 20 |
+
self.eps = eps
|
| 21 |
+
|
| 22 |
+
self.gamma = nn.Parameter(torch.ones(channels))
|
| 23 |
+
self.beta = nn.Parameter(torch.zeros(channels))
|
| 24 |
+
|
| 25 |
+
def forward(self, x):
|
| 26 |
+
x = x.transpose(1, -1)
|
| 27 |
+
x = F.layer_norm(x, (self.channels,), self.gamma, self.beta, self.eps)
|
| 28 |
+
return x.transpose(1, -1)
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
class ConvReluNorm(nn.Module):
|
| 32 |
+
def __init__(
|
| 33 |
+
self,
|
| 34 |
+
in_channels,
|
| 35 |
+
hidden_channels,
|
| 36 |
+
out_channels,
|
| 37 |
+
kernel_size,
|
| 38 |
+
n_layers,
|
| 39 |
+
p_dropout,
|
| 40 |
+
):
|
| 41 |
+
super().__init__()
|
| 42 |
+
self.in_channels = in_channels
|
| 43 |
+
self.hidden_channels = hidden_channels
|
| 44 |
+
self.out_channels = out_channels
|
| 45 |
+
self.kernel_size = kernel_size
|
| 46 |
+
self.n_layers = n_layers
|
| 47 |
+
self.p_dropout = p_dropout
|
| 48 |
+
assert n_layers > 1, "Number of layers should be larger than 0."
|
| 49 |
+
|
| 50 |
+
self.conv_layers = nn.ModuleList()
|
| 51 |
+
self.norm_layers = nn.ModuleList()
|
| 52 |
+
self.conv_layers.append(
|
| 53 |
+
nn.Conv1d(
|
| 54 |
+
in_channels, hidden_channels, kernel_size, padding=kernel_size // 2
|
| 55 |
+
)
|
| 56 |
+
)
|
| 57 |
+
self.norm_layers.append(LayerNorm(hidden_channels))
|
| 58 |
+
self.relu_drop = nn.Sequential(nn.ReLU(), nn.Dropout(p_dropout))
|
| 59 |
+
for _ in range(n_layers - 1):
|
| 60 |
+
self.conv_layers.append(
|
| 61 |
+
nn.Conv1d(
|
| 62 |
+
hidden_channels,
|
| 63 |
+
hidden_channels,
|
| 64 |
+
kernel_size,
|
| 65 |
+
padding=kernel_size // 2,
|
| 66 |
+
)
|
| 67 |
+
)
|
| 68 |
+
self.norm_layers.append(LayerNorm(hidden_channels))
|
| 69 |
+
self.proj = nn.Conv1d(hidden_channels, out_channels, 1)
|
| 70 |
+
self.proj.weight.data.zero_()
|
| 71 |
+
self.proj.bias.data.zero_()
|
| 72 |
+
|
| 73 |
+
def forward(self, x, x_mask):
|
| 74 |
+
x_org = x
|
| 75 |
+
for i in range(self.n_layers):
|
| 76 |
+
x = self.conv_layers[i](x * x_mask)
|
| 77 |
+
x = self.norm_layers[i](x)
|
| 78 |
+
x = self.relu_drop(x)
|
| 79 |
+
x = x_org + self.proj(x)
|
| 80 |
+
return x * x_mask
|
| 81 |
+
|
| 82 |
+
|
| 83 |
+
class DDSConv(nn.Module):
|
| 84 |
+
"""
|
| 85 |
+
Dialted and Depth-Separable Convolution
|
| 86 |
+
"""
|
| 87 |
+
|
| 88 |
+
def __init__(self, channels, kernel_size, n_layers, p_dropout=0.0):
|
| 89 |
+
super().__init__()
|
| 90 |
+
self.channels = channels
|
| 91 |
+
self.kernel_size = kernel_size
|
| 92 |
+
self.n_layers = n_layers
|
| 93 |
+
self.p_dropout = p_dropout
|
| 94 |
+
|
| 95 |
+
self.drop = nn.Dropout(p_dropout)
|
| 96 |
+
self.convs_sep = nn.ModuleList()
|
| 97 |
+
self.convs_1x1 = nn.ModuleList()
|
| 98 |
+
self.norms_1 = nn.ModuleList()
|
| 99 |
+
self.norms_2 = nn.ModuleList()
|
| 100 |
+
for i in range(n_layers):
|
| 101 |
+
dilation = kernel_size**i
|
| 102 |
+
padding = (kernel_size * dilation - dilation) // 2
|
| 103 |
+
self.convs_sep.append(
|
| 104 |
+
nn.Conv1d(
|
| 105 |
+
channels,
|
| 106 |
+
channels,
|
| 107 |
+
kernel_size,
|
| 108 |
+
groups=channels,
|
| 109 |
+
dilation=dilation,
|
| 110 |
+
padding=padding,
|
| 111 |
+
)
|
| 112 |
+
)
|
| 113 |
+
self.convs_1x1.append(nn.Conv1d(channels, channels, 1))
|
| 114 |
+
self.norms_1.append(LayerNorm(channels))
|
| 115 |
+
self.norms_2.append(LayerNorm(channels))
|
| 116 |
+
|
| 117 |
+
def forward(self, x, x_mask, g=None):
|
| 118 |
+
if g is not None:
|
| 119 |
+
x = x + g
|
| 120 |
+
for i in range(self.n_layers):
|
| 121 |
+
y = self.convs_sep[i](x * x_mask)
|
| 122 |
+
y = self.norms_1[i](y)
|
| 123 |
+
y = F.gelu(y)
|
| 124 |
+
y = self.convs_1x1[i](y)
|
| 125 |
+
y = self.norms_2[i](y)
|
| 126 |
+
y = F.gelu(y)
|
| 127 |
+
y = self.drop(y)
|
| 128 |
+
x = x + y
|
| 129 |
+
return x * x_mask
|
| 130 |
+
|
| 131 |
+
|
| 132 |
+
class WN(torch.nn.Module):
|
| 133 |
+
def __init__(
|
| 134 |
+
self,
|
| 135 |
+
hidden_channels,
|
| 136 |
+
kernel_size,
|
| 137 |
+
dilation_rate,
|
| 138 |
+
n_layers,
|
| 139 |
+
gin_channels=0,
|
| 140 |
+
p_dropout=0,
|
| 141 |
+
):
|
| 142 |
+
super(WN, self).__init__()
|
| 143 |
+
assert kernel_size % 2 == 1
|
| 144 |
+
self.hidden_channels = hidden_channels
|
| 145 |
+
self.kernel_size = (kernel_size,)
|
| 146 |
+
self.dilation_rate = dilation_rate
|
| 147 |
+
self.n_layers = n_layers
|
| 148 |
+
self.gin_channels = gin_channels
|
| 149 |
+
self.p_dropout = p_dropout
|
| 150 |
+
|
| 151 |
+
self.in_layers = torch.nn.ModuleList()
|
| 152 |
+
self.res_skip_layers = torch.nn.ModuleList()
|
| 153 |
+
self.drop = nn.Dropout(p_dropout)
|
| 154 |
+
|
| 155 |
+
if gin_channels != 0:
|
| 156 |
+
cond_layer = torch.nn.Conv1d(
|
| 157 |
+
gin_channels, 2 * hidden_channels * n_layers, 1
|
| 158 |
+
)
|
| 159 |
+
self.cond_layer = torch.nn.utils.weight_norm(cond_layer, name="weight")
|
| 160 |
+
|
| 161 |
+
for i in range(n_layers):
|
| 162 |
+
dilation = dilation_rate**i
|
| 163 |
+
padding = int((kernel_size * dilation - dilation) / 2)
|
| 164 |
+
in_layer = torch.nn.Conv1d(
|
| 165 |
+
hidden_channels,
|
| 166 |
+
2 * hidden_channels,
|
| 167 |
+
kernel_size,
|
| 168 |
+
dilation=dilation,
|
| 169 |
+
padding=padding,
|
| 170 |
+
)
|
| 171 |
+
in_layer = torch.nn.utils.weight_norm(in_layer, name="weight")
|
| 172 |
+
self.in_layers.append(in_layer)
|
| 173 |
+
|
| 174 |
+
# last one is not necessary
|
| 175 |
+
if i < n_layers - 1:
|
| 176 |
+
res_skip_channels = 2 * hidden_channels
|
| 177 |
+
else:
|
| 178 |
+
res_skip_channels = hidden_channels
|
| 179 |
+
|
| 180 |
+
res_skip_layer = torch.nn.Conv1d(hidden_channels, res_skip_channels, 1)
|
| 181 |
+
res_skip_layer = torch.nn.utils.weight_norm(res_skip_layer, name="weight")
|
| 182 |
+
self.res_skip_layers.append(res_skip_layer)
|
| 183 |
+
|
| 184 |
+
def forward(self, x, x_mask, g=None, **kwargs):
|
| 185 |
+
output = torch.zeros_like(x)
|
| 186 |
+
n_channels_tensor = torch.IntTensor([self.hidden_channels])
|
| 187 |
+
|
| 188 |
+
if g is not None:
|
| 189 |
+
g = self.cond_layer(g)
|
| 190 |
+
|
| 191 |
+
for i in range(self.n_layers):
|
| 192 |
+
x_in = self.in_layers[i](x)
|
| 193 |
+
if g is not None:
|
| 194 |
+
cond_offset = i * 2 * self.hidden_channels
|
| 195 |
+
g_l = g[:, cond_offset : cond_offset + 2 * self.hidden_channels, :]
|
| 196 |
+
else:
|
| 197 |
+
g_l = torch.zeros_like(x_in)
|
| 198 |
+
|
| 199 |
+
acts = commons.fused_add_tanh_sigmoid_multiply(x_in, g_l, n_channels_tensor)
|
| 200 |
+
acts = self.drop(acts)
|
| 201 |
+
|
| 202 |
+
res_skip_acts = self.res_skip_layers[i](acts)
|
| 203 |
+
if i < self.n_layers - 1:
|
| 204 |
+
res_acts = res_skip_acts[:, : self.hidden_channels, :]
|
| 205 |
+
x = (x + res_acts) * x_mask
|
| 206 |
+
output = output + res_skip_acts[:, self.hidden_channels :, :]
|
| 207 |
+
else:
|
| 208 |
+
output = output + res_skip_acts
|
| 209 |
+
return output * x_mask
|
| 210 |
+
|
| 211 |
+
def remove_weight_norm(self):
|
| 212 |
+
if self.gin_channels != 0:
|
| 213 |
+
torch.nn.utils.remove_weight_norm(self.cond_layer)
|
| 214 |
+
for l in self.in_layers:
|
| 215 |
+
torch.nn.utils.remove_weight_norm(l)
|
| 216 |
+
for l in self.res_skip_layers:
|
| 217 |
+
torch.nn.utils.remove_weight_norm(l)
|
| 218 |
+
|
| 219 |
+
|
| 220 |
+
class ResBlock1(torch.nn.Module):
|
| 221 |
+
def __init__(self, channels, kernel_size=3, dilation=(1, 3, 5)):
|
| 222 |
+
super(ResBlock1, self).__init__()
|
| 223 |
+
self.convs1 = nn.ModuleList(
|
| 224 |
+
[
|
| 225 |
+
weight_norm(
|
| 226 |
+
Conv1d(
|
| 227 |
+
channels,
|
| 228 |
+
channels,
|
| 229 |
+
kernel_size,
|
| 230 |
+
1,
|
| 231 |
+
dilation=dilation[0],
|
| 232 |
+
padding=get_padding(kernel_size, dilation[0]),
|
| 233 |
+
)
|
| 234 |
+
),
|
| 235 |
+
weight_norm(
|
| 236 |
+
Conv1d(
|
| 237 |
+
channels,
|
| 238 |
+
channels,
|
| 239 |
+
kernel_size,
|
| 240 |
+
1,
|
| 241 |
+
dilation=dilation[1],
|
| 242 |
+
padding=get_padding(kernel_size, dilation[1]),
|
| 243 |
+
)
|
| 244 |
+
),
|
| 245 |
+
weight_norm(
|
| 246 |
+
Conv1d(
|
| 247 |
+
channels,
|
| 248 |
+
channels,
|
| 249 |
+
kernel_size,
|
| 250 |
+
1,
|
| 251 |
+
dilation=dilation[2],
|
| 252 |
+
padding=get_padding(kernel_size, dilation[2]),
|
| 253 |
+
)
|
| 254 |
+
),
|
| 255 |
+
]
|
| 256 |
+
)
|
| 257 |
+
self.convs1.apply(init_weights)
|
| 258 |
+
|
| 259 |
+
self.convs2 = nn.ModuleList(
|
| 260 |
+
[
|
| 261 |
+
weight_norm(
|
| 262 |
+
Conv1d(
|
| 263 |
+
channels,
|
| 264 |
+
channels,
|
| 265 |
+
kernel_size,
|
| 266 |
+
1,
|
| 267 |
+
dilation=1,
|
| 268 |
+
padding=get_padding(kernel_size, 1),
|
| 269 |
+
)
|
| 270 |
+
),
|
| 271 |
+
weight_norm(
|
| 272 |
+
Conv1d(
|
| 273 |
+
channels,
|
| 274 |
+
channels,
|
| 275 |
+
kernel_size,
|
| 276 |
+
1,
|
| 277 |
+
dilation=1,
|
| 278 |
+
padding=get_padding(kernel_size, 1),
|
| 279 |
+
)
|
| 280 |
+
),
|
| 281 |
+
weight_norm(
|
| 282 |
+
Conv1d(
|
| 283 |
+
channels,
|
| 284 |
+
channels,
|
| 285 |
+
kernel_size,
|
| 286 |
+
1,
|
| 287 |
+
dilation=1,
|
| 288 |
+
padding=get_padding(kernel_size, 1),
|
| 289 |
+
)
|
| 290 |
+
),
|
| 291 |
+
]
|
| 292 |
+
)
|
| 293 |
+
self.convs2.apply(init_weights)
|
| 294 |
+
|
| 295 |
+
def forward(self, x, x_mask=None):
|
| 296 |
+
for c1, c2 in zip(self.convs1, self.convs2):
|
| 297 |
+
xt = F.leaky_relu(x, LRELU_SLOPE)
|
| 298 |
+
if x_mask is not None:
|
| 299 |
+
xt = xt * x_mask
|
| 300 |
+
xt = c1(xt)
|
| 301 |
+
xt = F.leaky_relu(xt, LRELU_SLOPE)
|
| 302 |
+
if x_mask is not None:
|
| 303 |
+
xt = xt * x_mask
|
| 304 |
+
xt = c2(xt)
|
| 305 |
+
x = xt + x
|
| 306 |
+
if x_mask is not None:
|
| 307 |
+
x = x * x_mask
|
| 308 |
+
return x
|
| 309 |
+
|
| 310 |
+
def remove_weight_norm(self):
|
| 311 |
+
for l in self.convs1:
|
| 312 |
+
remove_weight_norm(l)
|
| 313 |
+
for l in self.convs2:
|
| 314 |
+
remove_weight_norm(l)
|
| 315 |
+
|
| 316 |
+
|
| 317 |
+
class ResBlock2(torch.nn.Module):
|
| 318 |
+
def __init__(self, channels, kernel_size=3, dilation=(1, 3)):
|
| 319 |
+
super(ResBlock2, self).__init__()
|
| 320 |
+
self.convs = nn.ModuleList(
|
| 321 |
+
[
|
| 322 |
+
weight_norm(
|
| 323 |
+
Conv1d(
|
| 324 |
+
channels,
|
| 325 |
+
channels,
|
| 326 |
+
kernel_size,
|
| 327 |
+
1,
|
| 328 |
+
dilation=dilation[0],
|
| 329 |
+
padding=get_padding(kernel_size, dilation[0]),
|
| 330 |
+
)
|
| 331 |
+
),
|
| 332 |
+
weight_norm(
|
| 333 |
+
Conv1d(
|
| 334 |
+
channels,
|
| 335 |
+
channels,
|
| 336 |
+
kernel_size,
|
| 337 |
+
1,
|
| 338 |
+
dilation=dilation[1],
|
| 339 |
+
padding=get_padding(kernel_size, dilation[1]),
|
| 340 |
+
)
|
| 341 |
+
),
|
| 342 |
+
]
|
| 343 |
+
)
|
| 344 |
+
self.convs.apply(init_weights)
|
| 345 |
+
|
| 346 |
+
def forward(self, x, x_mask=None):
|
| 347 |
+
for c in self.convs:
|
| 348 |
+
xt = F.leaky_relu(x, LRELU_SLOPE)
|
| 349 |
+
if x_mask is not None:
|
| 350 |
+
xt = xt * x_mask
|
| 351 |
+
xt = c(xt)
|
| 352 |
+
x = xt + x
|
| 353 |
+
if x_mask is not None:
|
| 354 |
+
x = x * x_mask
|
| 355 |
+
return x
|
| 356 |
+
|
| 357 |
+
def remove_weight_norm(self):
|
| 358 |
+
for l in self.convs:
|
| 359 |
+
remove_weight_norm(l)
|
| 360 |
+
|
| 361 |
+
|
| 362 |
+
class Log(nn.Module):
|
| 363 |
+
def forward(self, x, x_mask, reverse=False, **kwargs):
|
| 364 |
+
if not reverse:
|
| 365 |
+
y = torch.log(torch.clamp_min(x, 1e-5)) * x_mask
|
| 366 |
+
logdet = torch.sum(-y, [1, 2])
|
| 367 |
+
return y, logdet
|
| 368 |
+
else:
|
| 369 |
+
x = torch.exp(x) * x_mask
|
| 370 |
+
return x
|
| 371 |
+
|
| 372 |
+
|
| 373 |
+
class Flip(nn.Module):
|
| 374 |
+
def forward(self, x, *args, reverse=False, **kwargs):
|
| 375 |
+
x = torch.flip(x, [1])
|
| 376 |
+
if not reverse:
|
| 377 |
+
logdet = torch.zeros(x.size(0)).to(dtype=x.dtype, device=x.device)
|
| 378 |
+
return x, logdet
|
| 379 |
+
else:
|
| 380 |
+
return x
|
| 381 |
+
|
| 382 |
+
|
| 383 |
+
class ElementwiseAffine(nn.Module):
|
| 384 |
+
def __init__(self, channels):
|
| 385 |
+
super().__init__()
|
| 386 |
+
self.channels = channels
|
| 387 |
+
self.m = nn.Parameter(torch.zeros(channels, 1))
|
| 388 |
+
self.logs = nn.Parameter(torch.zeros(channels, 1))
|
| 389 |
+
|
| 390 |
+
def forward(self, x, x_mask, reverse=False, **kwargs):
|
| 391 |
+
if not reverse:
|
| 392 |
+
y = self.m + torch.exp(self.logs) * x
|
| 393 |
+
y = y * x_mask
|
| 394 |
+
logdet = torch.sum(self.logs * x_mask, [1, 2])
|
| 395 |
+
return y, logdet
|
| 396 |
+
else:
|
| 397 |
+
x = (x - self.m) * torch.exp(-self.logs) * x_mask
|
| 398 |
+
return x
|
| 399 |
+
|
| 400 |
+
|
| 401 |
+
class ResidualCouplingLayer(nn.Module):
|
| 402 |
+
def __init__(
|
| 403 |
+
self,
|
| 404 |
+
channels,
|
| 405 |
+
hidden_channels,
|
| 406 |
+
kernel_size,
|
| 407 |
+
dilation_rate,
|
| 408 |
+
n_layers,
|
| 409 |
+
p_dropout=0,
|
| 410 |
+
gin_channels=0,
|
| 411 |
+
mean_only=False,
|
| 412 |
+
):
|
| 413 |
+
assert channels % 2 == 0, "channels should be divisible by 2"
|
| 414 |
+
super().__init__()
|
| 415 |
+
self.channels = channels
|
| 416 |
+
self.hidden_channels = hidden_channels
|
| 417 |
+
self.kernel_size = kernel_size
|
| 418 |
+
self.dilation_rate = dilation_rate
|
| 419 |
+
self.n_layers = n_layers
|
| 420 |
+
self.half_channels = channels // 2
|
| 421 |
+
self.mean_only = mean_only
|
| 422 |
+
|
| 423 |
+
self.pre = nn.Conv1d(self.half_channels, hidden_channels, 1)
|
| 424 |
+
self.enc = WN(
|
| 425 |
+
hidden_channels,
|
| 426 |
+
kernel_size,
|
| 427 |
+
dilation_rate,
|
| 428 |
+
n_layers,
|
| 429 |
+
p_dropout=p_dropout,
|
| 430 |
+
gin_channels=gin_channels,
|
| 431 |
+
)
|
| 432 |
+
self.post = nn.Conv1d(hidden_channels, self.half_channels * (2 - mean_only), 1)
|
| 433 |
+
self.post.weight.data.zero_()
|
| 434 |
+
self.post.bias.data.zero_()
|
| 435 |
+
|
| 436 |
+
def forward(self, x, x_mask, g=None, reverse=False):
|
| 437 |
+
x0, x1 = torch.split(x, [self.half_channels] * 2, 1)
|
| 438 |
+
h = self.pre(x0) * x_mask
|
| 439 |
+
h = self.enc(h, x_mask, g=g)
|
| 440 |
+
stats = self.post(h) * x_mask
|
| 441 |
+
if not self.mean_only:
|
| 442 |
+
m, logs = torch.split(stats, [self.half_channels] * 2, 1)
|
| 443 |
+
else:
|
| 444 |
+
m = stats
|
| 445 |
+
logs = torch.zeros_like(m)
|
| 446 |
+
|
| 447 |
+
if not reverse:
|
| 448 |
+
x1 = m + x1 * torch.exp(logs) * x_mask
|
| 449 |
+
x = torch.cat([x0, x1], 1)
|
| 450 |
+
logdet = torch.sum(logs, [1, 2])
|
| 451 |
+
return x, logdet
|
| 452 |
+
else:
|
| 453 |
+
x1 = (x1 - m) * torch.exp(-logs) * x_mask
|
| 454 |
+
x = torch.cat([x0, x1], 1)
|
| 455 |
+
return x
|
| 456 |
+
|
| 457 |
+
def remove_weight_norm(self):
|
| 458 |
+
self.enc.remove_weight_norm()
|
| 459 |
+
|
| 460 |
+
|
| 461 |
+
class ConvFlow(nn.Module):
|
| 462 |
+
def __init__(
|
| 463 |
+
self,
|
| 464 |
+
in_channels,
|
| 465 |
+
filter_channels,
|
| 466 |
+
kernel_size,
|
| 467 |
+
n_layers,
|
| 468 |
+
num_bins=10,
|
| 469 |
+
tail_bound=5.0,
|
| 470 |
+
):
|
| 471 |
+
super().__init__()
|
| 472 |
+
self.in_channels = in_channels
|
| 473 |
+
self.filter_channels = filter_channels
|
| 474 |
+
self.kernel_size = kernel_size
|
| 475 |
+
self.n_layers = n_layers
|
| 476 |
+
self.num_bins = num_bins
|
| 477 |
+
self.tail_bound = tail_bound
|
| 478 |
+
self.half_channels = in_channels // 2
|
| 479 |
+
|
| 480 |
+
self.pre = nn.Conv1d(self.half_channels, filter_channels, 1)
|
| 481 |
+
self.convs = DDSConv(filter_channels, kernel_size, n_layers, p_dropout=0.0)
|
| 482 |
+
self.proj = nn.Conv1d(
|
| 483 |
+
filter_channels, self.half_channels * (num_bins * 3 - 1), 1
|
| 484 |
+
)
|
| 485 |
+
self.proj.weight.data.zero_()
|
| 486 |
+
self.proj.bias.data.zero_()
|
| 487 |
+
|
| 488 |
+
def forward(self, x, x_mask, g=None, reverse=False):
|
| 489 |
+
x0, x1 = torch.split(x, [self.half_channels] * 2, 1)
|
| 490 |
+
h = self.pre(x0)
|
| 491 |
+
h = self.convs(h, x_mask, g=g)
|
| 492 |
+
h = self.proj(h) * x_mask
|
| 493 |
+
|
| 494 |
+
b, c, t = x0.shape
|
| 495 |
+
h = h.reshape(b, c, -1, t).permute(0, 1, 3, 2) # [b, cx?, t] -> [b, c, t, ?]
|
| 496 |
+
|
| 497 |
+
unnormalized_widths = h[..., : self.num_bins] / math.sqrt(self.filter_channels)
|
| 498 |
+
unnormalized_heights = h[..., self.num_bins : 2 * self.num_bins] / math.sqrt(
|
| 499 |
+
self.filter_channels
|
| 500 |
+
)
|
| 501 |
+
unnormalized_derivatives = h[..., 2 * self.num_bins :]
|
| 502 |
+
|
| 503 |
+
x1, logabsdet = piecewise_rational_quadratic_transform(
|
| 504 |
+
x1,
|
| 505 |
+
unnormalized_widths,
|
| 506 |
+
unnormalized_heights,
|
| 507 |
+
unnormalized_derivatives,
|
| 508 |
+
inverse=reverse,
|
| 509 |
+
tails="linear",
|
| 510 |
+
tail_bound=self.tail_bound,
|
| 511 |
+
)
|
| 512 |
+
|
| 513 |
+
x = torch.cat([x0, x1], 1) * x_mask
|
| 514 |
+
logdet = torch.sum(logabsdet * x_mask, [1, 2])
|
| 515 |
+
if not reverse:
|
| 516 |
+
return x, logdet
|
| 517 |
+
else:
|
| 518 |
+
return x
|
lib/rvc/pipeline.py
ADDED
|
@@ -0,0 +1,453 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import traceback
|
| 3 |
+
from typing import *
|
| 4 |
+
|
| 5 |
+
import faiss
|
| 6 |
+
import numpy as np
|
| 7 |
+
import pyworld
|
| 8 |
+
import scipy.signal as signal
|
| 9 |
+
import torch
|
| 10 |
+
import torch.nn.functional as F
|
| 11 |
+
import torchcrepe
|
| 12 |
+
from torch import Tensor
|
| 13 |
+
# from faiss.swigfaiss_avx2 import IndexIVFFlat # cause crash on windows' faiss-cpu installed from pip
|
| 14 |
+
from fairseq.models.hubert import HubertModel
|
| 15 |
+
|
| 16 |
+
from .models import SynthesizerTrnMs256NSFSid
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
class VocalConvertPipeline(object):
|
| 20 |
+
def __init__(self, tgt_sr: int, device: Union[str, torch.device], is_half: bool):
|
| 21 |
+
if isinstance(device, str):
|
| 22 |
+
device = torch.device(device)
|
| 23 |
+
if device.type == "cuda":
|
| 24 |
+
vram = torch.cuda.get_device_properties(device).total_memory / 1024**3
|
| 25 |
+
else:
|
| 26 |
+
vram = None
|
| 27 |
+
|
| 28 |
+
if vram is not None and vram <= 4:
|
| 29 |
+
self.x_pad = 1
|
| 30 |
+
self.x_query = 5
|
| 31 |
+
self.x_center = 30
|
| 32 |
+
self.x_max = 32
|
| 33 |
+
elif vram is not None and vram <= 5:
|
| 34 |
+
self.x_pad = 1
|
| 35 |
+
self.x_query = 6
|
| 36 |
+
self.x_center = 38
|
| 37 |
+
self.x_max = 41
|
| 38 |
+
else:
|
| 39 |
+
self.x_pad = 3
|
| 40 |
+
self.x_query = 10
|
| 41 |
+
self.x_center = 60
|
| 42 |
+
self.x_max = 65
|
| 43 |
+
|
| 44 |
+
self.sr = 16000 # hubert input sample rate
|
| 45 |
+
self.window = 160 # hubert input window
|
| 46 |
+
self.t_pad = self.sr * self.x_pad # padding time for each utterance
|
| 47 |
+
self.t_pad_tgt = tgt_sr * self.x_pad
|
| 48 |
+
self.t_pad2 = self.t_pad * 2
|
| 49 |
+
self.t_query = self.sr * self.x_query # query time before and after query point
|
| 50 |
+
self.t_center = self.sr * self.x_center # query cut point position
|
| 51 |
+
self.t_max = self.sr * self.x_max # max time for no query
|
| 52 |
+
self.device = device
|
| 53 |
+
self.is_half = is_half
|
| 54 |
+
|
| 55 |
+
def get_optimal_torch_device(self, index: int = 0) -> torch.device:
|
| 56 |
+
# Get cuda device
|
| 57 |
+
if torch.cuda.is_available():
|
| 58 |
+
return torch.device(f"cuda:{index % torch.cuda.device_count()}") # Very fast
|
| 59 |
+
elif torch.backends.mps.is_available():
|
| 60 |
+
return torch.device("mps")
|
| 61 |
+
# Insert an else here to grab "xla" devices if available. TO DO later. Requires the torch_xla.core.xla_model library
|
| 62 |
+
# Else wise return the "cpu" as a torch device,
|
| 63 |
+
return torch.device("cpu")
|
| 64 |
+
|
| 65 |
+
def get_f0_crepe_computation(
|
| 66 |
+
self,
|
| 67 |
+
x,
|
| 68 |
+
f0_min,
|
| 69 |
+
f0_max,
|
| 70 |
+
p_len,
|
| 71 |
+
hop_length=64, # 512 before. Hop length changes the speed that the voice jumps to a different dramatic pitch. Lower hop lengths means more pitch accuracy but longer inference time.
|
| 72 |
+
model="full", # Either use crepe-tiny "tiny" or crepe "full". Default is full
|
| 73 |
+
):
|
| 74 |
+
x = x.astype(np.float32) # fixes the F.conv2D exception. We needed to convert double to float.
|
| 75 |
+
x /= np.quantile(np.abs(x), 0.999)
|
| 76 |
+
torch_device = self.get_optimal_torch_device()
|
| 77 |
+
audio = torch.from_numpy(x).to(torch_device, copy=True)
|
| 78 |
+
audio = torch.unsqueeze(audio, dim=0)
|
| 79 |
+
if audio.ndim == 2 and audio.shape[0] > 1:
|
| 80 |
+
audio = torch.mean(audio, dim=0, keepdim=True).detach()
|
| 81 |
+
audio = audio.detach()
|
| 82 |
+
print("Initiating prediction with a crepe_hop_length of: " + str(hop_length))
|
| 83 |
+
pitch: Tensor = torchcrepe.predict(
|
| 84 |
+
audio,
|
| 85 |
+
self.sr,
|
| 86 |
+
hop_length,
|
| 87 |
+
f0_min,
|
| 88 |
+
f0_max,
|
| 89 |
+
model,
|
| 90 |
+
batch_size=hop_length * 2,
|
| 91 |
+
device=torch_device,
|
| 92 |
+
pad=True
|
| 93 |
+
)
|
| 94 |
+
p_len = p_len or x.shape[0] // hop_length
|
| 95 |
+
# Resize the pitch for final f0
|
| 96 |
+
source = np.array(pitch.squeeze(0).cpu().float().numpy())
|
| 97 |
+
source[source < 0.001] = np.nan
|
| 98 |
+
target = np.interp(
|
| 99 |
+
np.arange(0, len(source) * p_len, len(source)) / p_len,
|
| 100 |
+
np.arange(0, len(source)),
|
| 101 |
+
source
|
| 102 |
+
)
|
| 103 |
+
f0 = np.nan_to_num(target)
|
| 104 |
+
return f0 # Resized f0
|
| 105 |
+
|
| 106 |
+
def get_f0_official_crepe_computation(
|
| 107 |
+
self,
|
| 108 |
+
x,
|
| 109 |
+
f0_min,
|
| 110 |
+
f0_max,
|
| 111 |
+
model="full",
|
| 112 |
+
):
|
| 113 |
+
# Pick a batch size that doesn't cause memory errors on your gpu
|
| 114 |
+
batch_size = 512
|
| 115 |
+
# Compute pitch using first gpu
|
| 116 |
+
audio = torch.tensor(np.copy(x))[None].float()
|
| 117 |
+
f0, pd = torchcrepe.predict(
|
| 118 |
+
audio,
|
| 119 |
+
self.sr,
|
| 120 |
+
self.window,
|
| 121 |
+
f0_min,
|
| 122 |
+
f0_max,
|
| 123 |
+
model,
|
| 124 |
+
batch_size=batch_size,
|
| 125 |
+
device=self.device,
|
| 126 |
+
return_periodicity=True,
|
| 127 |
+
)
|
| 128 |
+
pd = torchcrepe.filter.median(pd, 3)
|
| 129 |
+
f0 = torchcrepe.filter.mean(f0, 3)
|
| 130 |
+
f0[pd < 0.1] = 0
|
| 131 |
+
f0 = f0[0].cpu().numpy()
|
| 132 |
+
return f0
|
| 133 |
+
|
| 134 |
+
def get_f0(
|
| 135 |
+
self,
|
| 136 |
+
x: np.ndarray,
|
| 137 |
+
p_len: int,
|
| 138 |
+
f0_up_key: int,
|
| 139 |
+
f0_method: str,
|
| 140 |
+
inp_f0: np.ndarray = None,
|
| 141 |
+
):
|
| 142 |
+
f0_min = 50
|
| 143 |
+
f0_max = 1100
|
| 144 |
+
f0_mel_min = 1127 * np.log(1 + f0_min / 700)
|
| 145 |
+
f0_mel_max = 1127 * np.log(1 + f0_max / 700)
|
| 146 |
+
|
| 147 |
+
if f0_method == "harvest":
|
| 148 |
+
f0, t = pyworld.harvest(
|
| 149 |
+
x.astype(np.double),
|
| 150 |
+
fs=self.sr,
|
| 151 |
+
f0_ceil=f0_max,
|
| 152 |
+
f0_floor=f0_min,
|
| 153 |
+
frame_period=10,
|
| 154 |
+
)
|
| 155 |
+
f0 = pyworld.stonemask(x.astype(np.double), f0, t, self.sr)
|
| 156 |
+
f0 = signal.medfilt(f0, 3)
|
| 157 |
+
elif f0_method == "dio":
|
| 158 |
+
f0, t = pyworld.dio(
|
| 159 |
+
x.astype(np.double),
|
| 160 |
+
fs=self.sr,
|
| 161 |
+
f0_ceil=f0_max,
|
| 162 |
+
f0_floor=f0_min,
|
| 163 |
+
frame_period=10,
|
| 164 |
+
)
|
| 165 |
+
f0 = pyworld.stonemask(x.astype(np.double), f0, t, self.sr)
|
| 166 |
+
f0 = signal.medfilt(f0, 3)
|
| 167 |
+
elif f0_method == "mangio-crepe":
|
| 168 |
+
f0 = self.get_f0_crepe_computation(x, f0_min, f0_max, p_len, 160, "full")
|
| 169 |
+
elif f0_method == "crepe":
|
| 170 |
+
f0 = self.get_f0_official_crepe_computation(x, f0_min, f0_max, "full")
|
| 171 |
+
|
| 172 |
+
f0 *= pow(2, f0_up_key / 12)
|
| 173 |
+
tf0 = self.sr // self.window # f0 points per second
|
| 174 |
+
if inp_f0 is not None:
|
| 175 |
+
delta_t = np.round(
|
| 176 |
+
(inp_f0[:, 0].max() - inp_f0[:, 0].min()) * tf0 + 1
|
| 177 |
+
).astype("int16")
|
| 178 |
+
replace_f0 = np.interp(
|
| 179 |
+
list(range(delta_t)), inp_f0[:, 0] * 100, inp_f0[:, 1]
|
| 180 |
+
)
|
| 181 |
+
shape = f0[self.x_pad * tf0 : self.x_pad * tf0 + len(replace_f0)].shape[0]
|
| 182 |
+
f0[self.x_pad * tf0 : self.x_pad * tf0 + len(replace_f0)] = replace_f0[
|
| 183 |
+
:shape
|
| 184 |
+
]
|
| 185 |
+
|
| 186 |
+
f0bak = f0.copy()
|
| 187 |
+
f0_mel = 1127 * np.log(1 + f0 / 700)
|
| 188 |
+
f0_mel[f0_mel > 0] = (f0_mel[f0_mel > 0] - f0_mel_min) * 254 / (
|
| 189 |
+
f0_mel_max - f0_mel_min
|
| 190 |
+
) + 1
|
| 191 |
+
f0_mel[f0_mel <= 1] = 1
|
| 192 |
+
f0_mel[f0_mel > 255] = 255
|
| 193 |
+
f0_coarse = np.rint(f0_mel).astype(np.int)
|
| 194 |
+
return f0_coarse, f0bak # 1-0
|
| 195 |
+
|
| 196 |
+
def _convert(
|
| 197 |
+
self,
|
| 198 |
+
model: HubertModel,
|
| 199 |
+
embedding_output_layer: int,
|
| 200 |
+
net_g: SynthesizerTrnMs256NSFSid,
|
| 201 |
+
sid: int,
|
| 202 |
+
audio: np.ndarray,
|
| 203 |
+
pitch: np.ndarray,
|
| 204 |
+
pitchf: np.ndarray,
|
| 205 |
+
index: faiss.IndexIVFFlat,
|
| 206 |
+
big_npy: np.ndarray,
|
| 207 |
+
index_rate: float,
|
| 208 |
+
):
|
| 209 |
+
feats = torch.from_numpy(audio)
|
| 210 |
+
if self.is_half:
|
| 211 |
+
feats = feats.half()
|
| 212 |
+
else:
|
| 213 |
+
feats = feats.float()
|
| 214 |
+
if feats.dim() == 2: # double channels
|
| 215 |
+
feats = feats.mean(-1)
|
| 216 |
+
assert feats.dim() == 1, feats.dim()
|
| 217 |
+
feats = feats.view(1, -1)
|
| 218 |
+
padding_mask = torch.BoolTensor(feats.shape).to(self.device).fill_(False)
|
| 219 |
+
|
| 220 |
+
half_support = (
|
| 221 |
+
self.device.type == "cuda"
|
| 222 |
+
and torch.cuda.get_device_capability(self.device)[0] >= 5.3
|
| 223 |
+
)
|
| 224 |
+
is_feats_dim_768 = net_g.emb_channels == 768
|
| 225 |
+
|
| 226 |
+
if isinstance(model, tuple):
|
| 227 |
+
feats = model[0](
|
| 228 |
+
feats.squeeze(0).squeeze(0).to(self.device),
|
| 229 |
+
return_tensors="pt",
|
| 230 |
+
sampling_rate=16000,
|
| 231 |
+
)
|
| 232 |
+
if self.is_half:
|
| 233 |
+
feats = feats.input_values.to(self.device).half()
|
| 234 |
+
else:
|
| 235 |
+
feats = feats.input_values.to(self.device)
|
| 236 |
+
with torch.no_grad():
|
| 237 |
+
if is_feats_dim_768:
|
| 238 |
+
feats = model[1](feats).last_hidden_state
|
| 239 |
+
else:
|
| 240 |
+
feats = model[1](feats).extract_features
|
| 241 |
+
else:
|
| 242 |
+
inputs = {
|
| 243 |
+
"source": feats.half().to(self.device)
|
| 244 |
+
if half_support
|
| 245 |
+
else feats.to(self.device),
|
| 246 |
+
"padding_mask": padding_mask.to(self.device),
|
| 247 |
+
"output_layer": embedding_output_layer,
|
| 248 |
+
}
|
| 249 |
+
|
| 250 |
+
if not half_support:
|
| 251 |
+
model = model.float()
|
| 252 |
+
inputs["source"] = inputs["source"].float()
|
| 253 |
+
|
| 254 |
+
with torch.no_grad():
|
| 255 |
+
logits = model.extract_features(**inputs)
|
| 256 |
+
if is_feats_dim_768:
|
| 257 |
+
feats = logits[0]
|
| 258 |
+
else:
|
| 259 |
+
feats = model.final_proj(logits[0])
|
| 260 |
+
|
| 261 |
+
if (
|
| 262 |
+
isinstance(index, type(None)) == False
|
| 263 |
+
and isinstance(big_npy, type(None)) == False
|
| 264 |
+
and index_rate != 0
|
| 265 |
+
):
|
| 266 |
+
npy = feats[0].cpu().numpy()
|
| 267 |
+
if self.is_half:
|
| 268 |
+
npy = npy.astype("float32")
|
| 269 |
+
|
| 270 |
+
score, ix = index.search(npy, k=8)
|
| 271 |
+
weight = np.square(1 / score)
|
| 272 |
+
weight /= weight.sum(axis=1, keepdims=True)
|
| 273 |
+
npy = np.sum(big_npy[ix] * np.expand_dims(weight, axis=2), axis=1)
|
| 274 |
+
|
| 275 |
+
if self.is_half:
|
| 276 |
+
npy = npy.astype("float16")
|
| 277 |
+
feats = (
|
| 278 |
+
torch.from_numpy(npy).unsqueeze(0).to(self.device) * index_rate
|
| 279 |
+
+ (1 - index_rate) * feats
|
| 280 |
+
)
|
| 281 |
+
|
| 282 |
+
feats = F.interpolate(feats.permute(0, 2, 1), scale_factor=2).permute(0, 2, 1)
|
| 283 |
+
|
| 284 |
+
p_len = audio.shape[0] // self.window
|
| 285 |
+
if feats.shape[1] < p_len:
|
| 286 |
+
p_len = feats.shape[1]
|
| 287 |
+
if pitch != None and pitchf != None:
|
| 288 |
+
pitch = pitch[:, :p_len]
|
| 289 |
+
pitchf = pitchf[:, :p_len]
|
| 290 |
+
p_len = torch.tensor([p_len], device=self.device).long()
|
| 291 |
+
with torch.no_grad():
|
| 292 |
+
if pitch != None and pitchf != None:
|
| 293 |
+
audio1 = (
|
| 294 |
+
(net_g.infer(feats, p_len, pitch, pitchf, sid)[0][0, 0] * 32768)
|
| 295 |
+
.data.cpu()
|
| 296 |
+
.float()
|
| 297 |
+
.numpy()
|
| 298 |
+
.astype(np.int16)
|
| 299 |
+
)
|
| 300 |
+
else:
|
| 301 |
+
audio1 = (
|
| 302 |
+
(net_g.infer(feats, p_len, sid)[0][0, 0] * 32768)
|
| 303 |
+
.data.cpu()
|
| 304 |
+
.float()
|
| 305 |
+
.numpy()
|
| 306 |
+
.astype(np.int16)
|
| 307 |
+
)
|
| 308 |
+
del feats, p_len, padding_mask
|
| 309 |
+
if torch.cuda.is_available():
|
| 310 |
+
torch.cuda.empty_cache()
|
| 311 |
+
return audio1
|
| 312 |
+
|
| 313 |
+
def __call__(
|
| 314 |
+
self,
|
| 315 |
+
model: HubertModel,
|
| 316 |
+
embedding_output_layer: int,
|
| 317 |
+
net_g: SynthesizerTrnMs256NSFSid,
|
| 318 |
+
sid: int,
|
| 319 |
+
audio: np.ndarray,
|
| 320 |
+
transpose: int,
|
| 321 |
+
f0_method: str,
|
| 322 |
+
file_index: str,
|
| 323 |
+
index_rate: float,
|
| 324 |
+
if_f0: bool,
|
| 325 |
+
f0_file: str = None,
|
| 326 |
+
):
|
| 327 |
+
if file_index != "" and os.path.exists(file_index) and index_rate != 0:
|
| 328 |
+
try:
|
| 329 |
+
index = faiss.read_index(file_index)
|
| 330 |
+
# big_npy = np.load(file_big_npy)
|
| 331 |
+
big_npy = index.reconstruct_n(0, index.ntotal)
|
| 332 |
+
except:
|
| 333 |
+
traceback.print_exc()
|
| 334 |
+
index = big_npy = None
|
| 335 |
+
else:
|
| 336 |
+
index = big_npy = None
|
| 337 |
+
|
| 338 |
+
bh, ah = signal.butter(N=5, Wn=48, btype="high", fs=16000)
|
| 339 |
+
audio = signal.filtfilt(bh, ah, audio)
|
| 340 |
+
|
| 341 |
+
audio_pad = np.pad(audio, (self.window // 2, self.window // 2), mode="reflect")
|
| 342 |
+
opt_ts = []
|
| 343 |
+
if audio_pad.shape[0] > self.t_max:
|
| 344 |
+
audio_sum = np.zeros_like(audio)
|
| 345 |
+
for i in range(self.window):
|
| 346 |
+
audio_sum += audio_pad[i : i - self.window]
|
| 347 |
+
for t in range(self.t_center, audio.shape[0], self.t_center):
|
| 348 |
+
opt_ts.append(
|
| 349 |
+
t
|
| 350 |
+
- self.t_query
|
| 351 |
+
+ np.where(
|
| 352 |
+
np.abs(audio_sum[t - self.t_query : t + self.t_query])
|
| 353 |
+
== np.abs(audio_sum[t - self.t_query : t + self.t_query]).min()
|
| 354 |
+
)[0][0]
|
| 355 |
+
)
|
| 356 |
+
|
| 357 |
+
audio_pad = np.pad(audio, (self.t_pad, self.t_pad), mode="reflect")
|
| 358 |
+
p_len = audio_pad.shape[0] // self.window
|
| 359 |
+
inp_f0 = None
|
| 360 |
+
if hasattr(f0_file, "name"):
|
| 361 |
+
try:
|
| 362 |
+
with open(f0_file.name, "r") as f:
|
| 363 |
+
lines = f.read().strip("\n").split("\n")
|
| 364 |
+
inp_f0 = []
|
| 365 |
+
for line in lines:
|
| 366 |
+
inp_f0.append([float(i) for i in line.split(",")])
|
| 367 |
+
inp_f0 = np.array(inp_f0, dtype="float32")
|
| 368 |
+
except:
|
| 369 |
+
traceback.print_exc()
|
| 370 |
+
sid = torch.tensor(sid, device=self.device).unsqueeze(0).long()
|
| 371 |
+
pitch, pitchf = None, None
|
| 372 |
+
if if_f0 == 1:
|
| 373 |
+
pitch, pitchf = self.get_f0(audio_pad, p_len, transpose, f0_method, inp_f0)
|
| 374 |
+
pitch = pitch[:p_len]
|
| 375 |
+
pitchf = pitchf[:p_len]
|
| 376 |
+
if self.device.type == "mps":
|
| 377 |
+
pitchf = pitchf.astype(np.float32)
|
| 378 |
+
pitch = torch.tensor(pitch, device=self.device).unsqueeze(0).long()
|
| 379 |
+
pitchf = torch.tensor(pitchf, device=self.device).unsqueeze(0).float()
|
| 380 |
+
|
| 381 |
+
audio_opt = []
|
| 382 |
+
|
| 383 |
+
s = 0
|
| 384 |
+
t = None
|
| 385 |
+
|
| 386 |
+
for t in opt_ts:
|
| 387 |
+
t = t // self.window * self.window
|
| 388 |
+
if if_f0 == 1:
|
| 389 |
+
audio_opt.append(
|
| 390 |
+
self._convert(
|
| 391 |
+
model,
|
| 392 |
+
embedding_output_layer,
|
| 393 |
+
net_g,
|
| 394 |
+
sid,
|
| 395 |
+
audio_pad[s : t + self.t_pad2 + self.window],
|
| 396 |
+
pitch[:, s // self.window : (t + self.t_pad2) // self.window],
|
| 397 |
+
pitchf[:, s // self.window : (t + self.t_pad2) // self.window],
|
| 398 |
+
index,
|
| 399 |
+
big_npy,
|
| 400 |
+
index_rate,
|
| 401 |
+
)[self.t_pad_tgt : -self.t_pad_tgt]
|
| 402 |
+
)
|
| 403 |
+
else:
|
| 404 |
+
audio_opt.append(
|
| 405 |
+
self._convert(
|
| 406 |
+
model,
|
| 407 |
+
embedding_output_layer,
|
| 408 |
+
net_g,
|
| 409 |
+
sid,
|
| 410 |
+
audio_pad[s : t + self.t_pad2 + self.window],
|
| 411 |
+
None,
|
| 412 |
+
None,
|
| 413 |
+
index,
|
| 414 |
+
big_npy,
|
| 415 |
+
index_rate,
|
| 416 |
+
)[self.t_pad_tgt : -self.t_pad_tgt]
|
| 417 |
+
)
|
| 418 |
+
s = t
|
| 419 |
+
if if_f0 == 1:
|
| 420 |
+
audio_opt.append(
|
| 421 |
+
self._convert(
|
| 422 |
+
model,
|
| 423 |
+
embedding_output_layer,
|
| 424 |
+
net_g,
|
| 425 |
+
sid,
|
| 426 |
+
audio_pad[t:],
|
| 427 |
+
pitch[:, t // self.window :] if t is not None else pitch,
|
| 428 |
+
pitchf[:, t // self.window :] if t is not None else pitchf,
|
| 429 |
+
index,
|
| 430 |
+
big_npy,
|
| 431 |
+
index_rate,
|
| 432 |
+
)[self.t_pad_tgt : -self.t_pad_tgt]
|
| 433 |
+
)
|
| 434 |
+
else:
|
| 435 |
+
audio_opt.append(
|
| 436 |
+
self._convert(
|
| 437 |
+
model,
|
| 438 |
+
embedding_output_layer,
|
| 439 |
+
net_g,
|
| 440 |
+
sid,
|
| 441 |
+
audio_pad[t:],
|
| 442 |
+
None,
|
| 443 |
+
None,
|
| 444 |
+
index,
|
| 445 |
+
big_npy,
|
| 446 |
+
index_rate,
|
| 447 |
+
)[self.t_pad_tgt : -self.t_pad_tgt]
|
| 448 |
+
)
|
| 449 |
+
audio_opt = np.concatenate(audio_opt)
|
| 450 |
+
del pitch, pitchf, sid
|
| 451 |
+
if torch.cuda.is_available():
|
| 452 |
+
torch.cuda.empty_cache()
|
| 453 |
+
return audio_opt
|
lib/rvc/preprocessing/extract_f0.py
ADDED
|
@@ -0,0 +1,221 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import traceback
|
| 3 |
+
from concurrent.futures import ProcessPoolExecutor
|
| 4 |
+
from typing import *
|
| 5 |
+
import multiprocessing as mp
|
| 6 |
+
|
| 7 |
+
import numpy as np
|
| 8 |
+
import pyworld
|
| 9 |
+
import torch
|
| 10 |
+
import torchcrepe
|
| 11 |
+
from torch import Tensor
|
| 12 |
+
from tqdm import tqdm
|
| 13 |
+
|
| 14 |
+
from lib.rvc.utils import load_audio
|
| 15 |
+
|
| 16 |
+
def get_optimal_torch_device(index: int = 0) -> torch.device:
|
| 17 |
+
# Get cuda device
|
| 18 |
+
if torch.cuda.is_available():
|
| 19 |
+
return torch.device(f"cuda:{index % torch.cuda.device_count()}") # Very fast
|
| 20 |
+
elif torch.backends.mps.is_available():
|
| 21 |
+
return torch.device("mps")
|
| 22 |
+
# Insert an else here to grab "xla" devices if available. TO DO later. Requires the torch_xla.core.xla_model library
|
| 23 |
+
# Else wise return the "cpu" as a torch device,
|
| 24 |
+
return torch.device("cpu")
|
| 25 |
+
|
| 26 |
+
def get_f0_official_crepe_computation(
|
| 27 |
+
x,
|
| 28 |
+
sr,
|
| 29 |
+
f0_min,
|
| 30 |
+
f0_max,
|
| 31 |
+
model="full",
|
| 32 |
+
):
|
| 33 |
+
batch_size = 512
|
| 34 |
+
torch_device = get_optimal_torch_device()
|
| 35 |
+
audio = torch.tensor(np.copy(x))[None].float()
|
| 36 |
+
f0, pd = torchcrepe.predict(
|
| 37 |
+
audio,
|
| 38 |
+
sr,
|
| 39 |
+
160,
|
| 40 |
+
f0_min,
|
| 41 |
+
f0_max,
|
| 42 |
+
model,
|
| 43 |
+
batch_size=batch_size,
|
| 44 |
+
device=torch_device,
|
| 45 |
+
return_periodicity=True,
|
| 46 |
+
)
|
| 47 |
+
pd = torchcrepe.filter.median(pd, 3)
|
| 48 |
+
f0 = torchcrepe.filter.mean(f0, 3)
|
| 49 |
+
f0[pd < 0.1] = 0
|
| 50 |
+
f0 = f0[0].cpu().numpy()
|
| 51 |
+
f0 = f0[1:] # Get rid of extra first frame
|
| 52 |
+
return f0
|
| 53 |
+
|
| 54 |
+
def get_f0_crepe_computation(
|
| 55 |
+
x,
|
| 56 |
+
sr,
|
| 57 |
+
f0_min,
|
| 58 |
+
f0_max,
|
| 59 |
+
hop_length=160, # 512 before. Hop length changes the speed that the voice jumps to a different dramatic pitch. Lower hop lengths means more pitch accuracy but longer inference time.
|
| 60 |
+
model="full", # Either use crepe-tiny "tiny" or crepe "full". Default is full
|
| 61 |
+
):
|
| 62 |
+
x = x.astype(np.float32) # fixes the F.conv2D exception. We needed to convert double to float.
|
| 63 |
+
x /= np.quantile(np.abs(x), 0.999)
|
| 64 |
+
torch_device = get_optimal_torch_device()
|
| 65 |
+
audio = torch.from_numpy(x).to(torch_device, copy=True)
|
| 66 |
+
audio = torch.unsqueeze(audio, dim=0)
|
| 67 |
+
if audio.ndim == 2 and audio.shape[0] > 1:
|
| 68 |
+
audio = torch.mean(audio, dim=0, keepdim=True).detach()
|
| 69 |
+
audio = audio.detach()
|
| 70 |
+
print("Initiating prediction with a crepe_hop_length of: " + str(hop_length))
|
| 71 |
+
pitch: Tensor = torchcrepe.predict(
|
| 72 |
+
audio,
|
| 73 |
+
sr,
|
| 74 |
+
hop_length,
|
| 75 |
+
f0_min,
|
| 76 |
+
f0_max,
|
| 77 |
+
model,
|
| 78 |
+
batch_size=hop_length * 2,
|
| 79 |
+
device=torch_device,
|
| 80 |
+
pad=True
|
| 81 |
+
)
|
| 82 |
+
p_len = x.shape[0] // hop_length
|
| 83 |
+
# Resize the pitch for final f0
|
| 84 |
+
source = np.array(pitch.squeeze(0).cpu().float().numpy())
|
| 85 |
+
source[source < 0.001] = np.nan
|
| 86 |
+
target = np.interp(
|
| 87 |
+
np.arange(0, len(source) * p_len, len(source)) / p_len,
|
| 88 |
+
np.arange(0, len(source)),
|
| 89 |
+
source
|
| 90 |
+
)
|
| 91 |
+
f0 = np.nan_to_num(target)
|
| 92 |
+
f0 = f0[1:] # Get rid of extra first frame
|
| 93 |
+
return f0 # Resized f0
|
| 94 |
+
|
| 95 |
+
|
| 96 |
+
def compute_f0(
|
| 97 |
+
path: str,
|
| 98 |
+
f0_method: str,
|
| 99 |
+
fs: int,
|
| 100 |
+
hop: int,
|
| 101 |
+
f0_max: float,
|
| 102 |
+
f0_min: float,
|
| 103 |
+
):
|
| 104 |
+
x = load_audio(path, fs)
|
| 105 |
+
if f0_method == "harvest":
|
| 106 |
+
f0, t = pyworld.harvest(
|
| 107 |
+
x.astype(np.double),
|
| 108 |
+
fs=fs,
|
| 109 |
+
f0_ceil=f0_max,
|
| 110 |
+
f0_floor=f0_min,
|
| 111 |
+
frame_period=1000 * hop / fs,
|
| 112 |
+
)
|
| 113 |
+
f0 = pyworld.stonemask(x.astype(np.double), f0, t, fs)
|
| 114 |
+
elif f0_method == "dio":
|
| 115 |
+
f0, t = pyworld.dio(
|
| 116 |
+
x.astype(np.double),
|
| 117 |
+
fs=fs,
|
| 118 |
+
f0_ceil=f0_max,
|
| 119 |
+
f0_floor=f0_min,
|
| 120 |
+
frame_period=1000 * hop / fs,
|
| 121 |
+
)
|
| 122 |
+
f0 = pyworld.stonemask(x.astype(np.double), f0, t, fs)
|
| 123 |
+
elif f0_method == "mangio-crepe":
|
| 124 |
+
f0 = get_f0_crepe_computation(x, fs, f0_min, f0_max, 160, "full")
|
| 125 |
+
elif f0_method == "crepe":
|
| 126 |
+
f0 = get_f0_official_crepe_computation(x.astype(np.double), fs, f0_min, f0_max, "full")
|
| 127 |
+
return f0
|
| 128 |
+
|
| 129 |
+
|
| 130 |
+
def coarse_f0(f0, f0_bin, f0_mel_min, f0_mel_max):
|
| 131 |
+
f0_mel = 1127 * np.log(1 + f0 / 700)
|
| 132 |
+
f0_mel[f0_mel > 0] = (f0_mel[f0_mel > 0] - f0_mel_min) * (f0_bin - 2) / (
|
| 133 |
+
f0_mel_max - f0_mel_min
|
| 134 |
+
) + 1
|
| 135 |
+
|
| 136 |
+
# use 0 or 1
|
| 137 |
+
f0_mel[f0_mel <= 1] = 1
|
| 138 |
+
f0_mel[f0_mel > f0_bin - 1] = f0_bin - 1
|
| 139 |
+
f0_coarse = np.rint(f0_mel).astype(np.int)
|
| 140 |
+
assert f0_coarse.max() <= 255 and f0_coarse.min() >= 1, (
|
| 141 |
+
f0_coarse.max(),
|
| 142 |
+
f0_coarse.min(),
|
| 143 |
+
)
|
| 144 |
+
return f0_coarse
|
| 145 |
+
|
| 146 |
+
|
| 147 |
+
def processor(paths, f0_method, samplerate=16000, hop_size=160, process_id=0):
|
| 148 |
+
fs = samplerate
|
| 149 |
+
hop = hop_size
|
| 150 |
+
|
| 151 |
+
f0_bin = 256
|
| 152 |
+
f0_max = 1100.0
|
| 153 |
+
f0_min = 50.0
|
| 154 |
+
f0_mel_min = 1127 * np.log(1 + f0_min / 700)
|
| 155 |
+
f0_mel_max = 1127 * np.log(1 + f0_max / 700)
|
| 156 |
+
if len(paths) != 0:
|
| 157 |
+
for idx, (inp_path, opt_path1, opt_path2) in enumerate(
|
| 158 |
+
tqdm(paths, position=1 + process_id)
|
| 159 |
+
):
|
| 160 |
+
try:
|
| 161 |
+
if (
|
| 162 |
+
os.path.exists(opt_path1 + ".npy") == True
|
| 163 |
+
and os.path.exists(opt_path2 + ".npy") == True
|
| 164 |
+
):
|
| 165 |
+
continue
|
| 166 |
+
featur_pit = compute_f0(inp_path, f0_method, fs, hop, f0_max, f0_min)
|
| 167 |
+
np.save(
|
| 168 |
+
opt_path2,
|
| 169 |
+
featur_pit,
|
| 170 |
+
allow_pickle=False,
|
| 171 |
+
) # nsf
|
| 172 |
+
coarse_pit = coarse_f0(featur_pit, f0_bin, f0_mel_min, f0_mel_max)
|
| 173 |
+
np.save(
|
| 174 |
+
opt_path1,
|
| 175 |
+
coarse_pit,
|
| 176 |
+
allow_pickle=False,
|
| 177 |
+
) # ori
|
| 178 |
+
except:
|
| 179 |
+
print(f"f0 failed {idx}: {inp_path} {traceback.format_exc()}")
|
| 180 |
+
|
| 181 |
+
|
| 182 |
+
def run(training_dir: str, num_processes: int, f0_method: str):
|
| 183 |
+
paths = []
|
| 184 |
+
dataset_dir = os.path.join(training_dir, "1_16k_wavs")
|
| 185 |
+
opt_dir_f0 = os.path.join(training_dir, "2a_f0")
|
| 186 |
+
opt_dir_f0_nsf = os.path.join(training_dir, "2b_f0nsf")
|
| 187 |
+
|
| 188 |
+
if os.path.exists(opt_dir_f0) and os.path.exists(opt_dir_f0_nsf):
|
| 189 |
+
return
|
| 190 |
+
|
| 191 |
+
os.makedirs(opt_dir_f0, exist_ok=True)
|
| 192 |
+
os.makedirs(opt_dir_f0_nsf, exist_ok=True)
|
| 193 |
+
|
| 194 |
+
names = []
|
| 195 |
+
|
| 196 |
+
for pathname in sorted(list(os.listdir(dataset_dir))):
|
| 197 |
+
if os.path.isdir(os.path.join(dataset_dir, pathname)):
|
| 198 |
+
for f in sorted(list(os.listdir(os.path.join(dataset_dir, pathname)))):
|
| 199 |
+
if "spec" in f:
|
| 200 |
+
continue
|
| 201 |
+
names.append(os.path.join(pathname, f))
|
| 202 |
+
else:
|
| 203 |
+
names.append(pathname)
|
| 204 |
+
|
| 205 |
+
for name in names: # dataset_dir/{05d}/file.ext
|
| 206 |
+
filepath = os.path.join(dataset_dir, name)
|
| 207 |
+
if "spec" in filepath:
|
| 208 |
+
continue
|
| 209 |
+
opt_filepath_f0 = os.path.join(opt_dir_f0, name)
|
| 210 |
+
opt_filepath_f0_nsf = os.path.join(opt_dir_f0_nsf, name)
|
| 211 |
+
paths.append([filepath, opt_filepath_f0, opt_filepath_f0_nsf])
|
| 212 |
+
|
| 213 |
+
for dir in set([(os.path.dirname(p[1]), os.path.dirname(p[2])) for p in paths]):
|
| 214 |
+
os.makedirs(dir[0], exist_ok=True)
|
| 215 |
+
os.makedirs(dir[1], exist_ok=True)
|
| 216 |
+
|
| 217 |
+
with ProcessPoolExecutor(mp_context=mp.get_context("spawn")) as executer:
|
| 218 |
+
for i in range(num_processes):
|
| 219 |
+
executer.submit(processor, paths[i::num_processes], f0_method, process_id=i)
|
| 220 |
+
|
| 221 |
+
processor(paths, f0_method)
|
lib/rvc/preprocessing/extract_feature.py
ADDED
|
@@ -0,0 +1,217 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import multiprocessing as mp
|
| 2 |
+
import os
|
| 3 |
+
import traceback
|
| 4 |
+
from concurrent.futures import ProcessPoolExecutor
|
| 5 |
+
from typing import *
|
| 6 |
+
|
| 7 |
+
import numpy as np
|
| 8 |
+
import soundfile as sf
|
| 9 |
+
import torch
|
| 10 |
+
import torch.nn.functional as F
|
| 11 |
+
from fairseq import checkpoint_utils
|
| 12 |
+
from tqdm import tqdm
|
| 13 |
+
|
| 14 |
+
ROOT_DIR = os.path.dirname(os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))))
|
| 15 |
+
MODELS_DIR = os.path.join(ROOT_DIR, "models")
|
| 16 |
+
EMBEDDINGS_LIST = {
|
| 17 |
+
"hubert-base-japanese": (
|
| 18 |
+
"rinna_hubert_base_jp.pt",
|
| 19 |
+
"hubert-base-japanese",
|
| 20 |
+
"local",
|
| 21 |
+
),
|
| 22 |
+
"contentvec": ("checkpoint_best_legacy_500.pt", "contentvec", "local"),
|
| 23 |
+
}
|
| 24 |
+
|
| 25 |
+
def get_embedder(embedder_name):
|
| 26 |
+
if embedder_name in EMBEDDINGS_LIST:
|
| 27 |
+
return EMBEDDINGS_LIST[embedder_name]
|
| 28 |
+
return None
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
def load_embedder(embedder_path: str, device):
|
| 32 |
+
try:
|
| 33 |
+
models, cfg, _ = checkpoint_utils.load_model_ensemble_and_task(
|
| 34 |
+
[embedder_path],
|
| 35 |
+
suffix="",
|
| 36 |
+
)
|
| 37 |
+
embedder_model = models[0]
|
| 38 |
+
embedder_model = embedder_model.to(device)
|
| 39 |
+
if device != "cpu":
|
| 40 |
+
embedder_model = embedder_model.half()
|
| 41 |
+
else:
|
| 42 |
+
embedder_model = embedder_model.float()
|
| 43 |
+
embedder_model.eval()
|
| 44 |
+
except Exception as e:
|
| 45 |
+
print(f"Error: {e} {embedder_path}")
|
| 46 |
+
traceback.print_exc()
|
| 47 |
+
|
| 48 |
+
return embedder_model, cfg
|
| 49 |
+
|
| 50 |
+
|
| 51 |
+
# wave must be 16k, hop_size=320
|
| 52 |
+
def readwave(wav_path, normalize=False):
|
| 53 |
+
wav, sr = sf.read(wav_path)
|
| 54 |
+
assert sr == 16000
|
| 55 |
+
feats = torch.from_numpy(wav).float()
|
| 56 |
+
if feats.dim() == 2: # double channels
|
| 57 |
+
feats = feats.mean(-1)
|
| 58 |
+
assert feats.dim() == 1, feats.dim()
|
| 59 |
+
if normalize:
|
| 60 |
+
with torch.no_grad():
|
| 61 |
+
feats = F.layer_norm(feats, feats.shape)
|
| 62 |
+
feats = feats.view(1, -1)
|
| 63 |
+
return feats
|
| 64 |
+
|
| 65 |
+
|
| 66 |
+
def processor(
|
| 67 |
+
todo: List[str],
|
| 68 |
+
device: torch.device,
|
| 69 |
+
embedder_path: str,
|
| 70 |
+
embedder_load_from: str,
|
| 71 |
+
embedding_channel: bool,
|
| 72 |
+
embedding_output_layer: int,
|
| 73 |
+
wav_dir: str,
|
| 74 |
+
out_dir: str,
|
| 75 |
+
process_id: int,
|
| 76 |
+
):
|
| 77 |
+
half_support = (
|
| 78 |
+
device.type == "cuda" and torch.cuda.get_device_capability(device)[0] >= 5.3
|
| 79 |
+
)
|
| 80 |
+
is_feats_dim_768 = embedding_channel == 768
|
| 81 |
+
|
| 82 |
+
if embedder_load_from == "local" and not os.path.exists(embedder_path):
|
| 83 |
+
return f"Embedder not found: {embedder_path}"
|
| 84 |
+
|
| 85 |
+
model, cfg = load_embedder(embedder_path, device)
|
| 86 |
+
|
| 87 |
+
for file in tqdm(todo, position=1 + process_id):
|
| 88 |
+
try:
|
| 89 |
+
if file.endswith(".wav"):
|
| 90 |
+
wav_filepath = os.path.join(wav_dir, file)
|
| 91 |
+
out_filepath = os.path.join(out_dir, file.replace("wav", "npy"))
|
| 92 |
+
|
| 93 |
+
if os.path.exists(out_filepath):
|
| 94 |
+
continue
|
| 95 |
+
|
| 96 |
+
os.makedirs(os.path.dirname(out_filepath), exist_ok=True)
|
| 97 |
+
|
| 98 |
+
is_normalize = False if cfg is None else cfg.task.normalize
|
| 99 |
+
feats = readwave(wav_filepath, normalize=is_normalize)
|
| 100 |
+
padding_mask = torch.BoolTensor(feats.shape).fill_(False)
|
| 101 |
+
if isinstance(model, tuple):
|
| 102 |
+
feats = model[0](
|
| 103 |
+
feats.squeeze(0).squeeze(0).to(device),
|
| 104 |
+
return_tensors="pt",
|
| 105 |
+
sampling_rate=16000,
|
| 106 |
+
)
|
| 107 |
+
if half_support:
|
| 108 |
+
feats = feats.input_values.to(device).half()
|
| 109 |
+
else:
|
| 110 |
+
feats = feats.input_values.to(device).float()
|
| 111 |
+
|
| 112 |
+
with torch.no_grad():
|
| 113 |
+
if half_support:
|
| 114 |
+
if is_feats_dim_768:
|
| 115 |
+
feats = model[1](feats).last_hidden_state
|
| 116 |
+
else:
|
| 117 |
+
feats = model[1](feats).extract_features
|
| 118 |
+
else:
|
| 119 |
+
if is_feats_dim_768:
|
| 120 |
+
feats = model[1].float()(feats).last_hidden_state
|
| 121 |
+
else:
|
| 122 |
+
feats = model[1].float()(feats).extract_features
|
| 123 |
+
else:
|
| 124 |
+
inputs = {
|
| 125 |
+
"source": feats.half().to(device)
|
| 126 |
+
if half_support
|
| 127 |
+
else feats.to(device),
|
| 128 |
+
"padding_mask": padding_mask.to(device),
|
| 129 |
+
"output_layer": embedding_output_layer,
|
| 130 |
+
}
|
| 131 |
+
|
| 132 |
+
# なんかまだこの時点でfloat16なので改めて変換
|
| 133 |
+
if not half_support:
|
| 134 |
+
model = model.float()
|
| 135 |
+
inputs["source"] = inputs["source"].float()
|
| 136 |
+
|
| 137 |
+
with torch.no_grad():
|
| 138 |
+
logits = model.extract_features(**inputs)
|
| 139 |
+
if is_feats_dim_768:
|
| 140 |
+
feats = logits[0]
|
| 141 |
+
else:
|
| 142 |
+
feats = model.final_proj(logits[0])
|
| 143 |
+
|
| 144 |
+
feats = feats.squeeze(0).float().cpu().numpy()
|
| 145 |
+
if np.isnan(feats).sum() == 0:
|
| 146 |
+
np.save(out_filepath, feats, allow_pickle=False)
|
| 147 |
+
else:
|
| 148 |
+
print(f"{file} contains nan")
|
| 149 |
+
except Exception as e:
|
| 150 |
+
print(f"Error: {e} {file}")
|
| 151 |
+
traceback.print_exc()
|
| 152 |
+
|
| 153 |
+
|
| 154 |
+
def run(
|
| 155 |
+
training_dir: str,
|
| 156 |
+
embedder_path: str,
|
| 157 |
+
embedder_load_from: str,
|
| 158 |
+
embedding_channel: int,
|
| 159 |
+
embedding_output_layer: int,
|
| 160 |
+
gpu_ids: List[int],
|
| 161 |
+
device: Optional[Union[torch.device, str]] = None,
|
| 162 |
+
):
|
| 163 |
+
wav_dir = os.path.join(training_dir, "1_16k_wavs")
|
| 164 |
+
out_dir = os.path.join(training_dir, "3_feature256")
|
| 165 |
+
|
| 166 |
+
num_gpus = len(gpu_ids)
|
| 167 |
+
|
| 168 |
+
for gpu_id in gpu_ids:
|
| 169 |
+
if num_gpus < gpu_id + 1:
|
| 170 |
+
print(f"GPU {gpu_id} is not available")
|
| 171 |
+
return
|
| 172 |
+
|
| 173 |
+
if os.path.exists(out_dir):
|
| 174 |
+
return
|
| 175 |
+
|
| 176 |
+
os.makedirs(out_dir, exist_ok=True)
|
| 177 |
+
|
| 178 |
+
todo = [
|
| 179 |
+
os.path.join(dir, f)
|
| 180 |
+
for dir in sorted(list(os.listdir(wav_dir)))
|
| 181 |
+
if os.path.isdir(os.path.join(wav_dir, dir))
|
| 182 |
+
for f in sorted(list(os.listdir(os.path.join(wav_dir, dir))))
|
| 183 |
+
]
|
| 184 |
+
|
| 185 |
+
if device is not None:
|
| 186 |
+
if type(device) == str:
|
| 187 |
+
device = torch.device(device)
|
| 188 |
+
if device.type == "mps":
|
| 189 |
+
device = torch.device(
|
| 190 |
+
"cpu"
|
| 191 |
+
) # Mac(MPS) crashes when multiprocess, so change to CPU.
|
| 192 |
+
processor(
|
| 193 |
+
todo,
|
| 194 |
+
device,
|
| 195 |
+
embedder_path,
|
| 196 |
+
embedder_load_from,
|
| 197 |
+
embedding_channel,
|
| 198 |
+
embedding_output_layer,
|
| 199 |
+
wav_dir,
|
| 200 |
+
out_dir,
|
| 201 |
+
process_id=0,
|
| 202 |
+
)
|
| 203 |
+
else:
|
| 204 |
+
with ProcessPoolExecutor(mp_context=mp.get_context("spawn")) as executor:
|
| 205 |
+
for i, id in enumerate(gpu_ids):
|
| 206 |
+
executor.submit(
|
| 207 |
+
processor,
|
| 208 |
+
todo[i::num_gpus],
|
| 209 |
+
torch.device(f"cuda:{id}"),
|
| 210 |
+
embedder_path,
|
| 211 |
+
embedder_load_from,
|
| 212 |
+
embedding_channel,
|
| 213 |
+
embedding_output_layer,
|
| 214 |
+
wav_dir,
|
| 215 |
+
out_dir,
|
| 216 |
+
process_id=i,
|
| 217 |
+
)
|
lib/rvc/preprocessing/slicer.py
ADDED
|
@@ -0,0 +1,179 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import numpy as np
|
| 2 |
+
|
| 3 |
+
|
| 4 |
+
# This function is obtained from librosa.
|
| 5 |
+
def get_rms(
|
| 6 |
+
y,
|
| 7 |
+
frame_length=2048,
|
| 8 |
+
hop_length=512,
|
| 9 |
+
pad_mode="constant",
|
| 10 |
+
):
|
| 11 |
+
padding = (int(frame_length // 2), int(frame_length // 2))
|
| 12 |
+
y = np.pad(y, padding, mode=pad_mode)
|
| 13 |
+
|
| 14 |
+
axis = -1
|
| 15 |
+
# put our new within-frame axis at the end for now
|
| 16 |
+
out_strides = y.strides + tuple([y.strides[axis]])
|
| 17 |
+
# Reduce the shape on the framing axis
|
| 18 |
+
x_shape_trimmed = list(y.shape)
|
| 19 |
+
x_shape_trimmed[axis] -= frame_length - 1
|
| 20 |
+
out_shape = tuple(x_shape_trimmed) + tuple([frame_length])
|
| 21 |
+
xw = np.lib.stride_tricks.as_strided(y, shape=out_shape, strides=out_strides)
|
| 22 |
+
if axis < 0:
|
| 23 |
+
target_axis = axis - 1
|
| 24 |
+
else:
|
| 25 |
+
target_axis = axis + 1
|
| 26 |
+
xw = np.moveaxis(xw, -1, target_axis)
|
| 27 |
+
# Downsample along the target axis
|
| 28 |
+
slices = [slice(None)] * xw.ndim
|
| 29 |
+
slices[axis] = slice(0, None, hop_length)
|
| 30 |
+
x = xw[tuple(slices)]
|
| 31 |
+
|
| 32 |
+
# Calculate power
|
| 33 |
+
power = np.mean(np.abs(x) ** 2, axis=-2, keepdims=True)
|
| 34 |
+
|
| 35 |
+
return np.sqrt(power)
|
| 36 |
+
|
| 37 |
+
|
| 38 |
+
class Slicer:
|
| 39 |
+
def __init__(
|
| 40 |
+
self,
|
| 41 |
+
sr: int,
|
| 42 |
+
threshold: float = -40.0,
|
| 43 |
+
min_length: int = 5000,
|
| 44 |
+
min_interval: int = 300,
|
| 45 |
+
hop_size: int = 20,
|
| 46 |
+
max_sil_kept: int = 5000,
|
| 47 |
+
):
|
| 48 |
+
if not min_length >= min_interval >= hop_size:
|
| 49 |
+
raise ValueError(
|
| 50 |
+
"The following condition must be satisfied: min_length >= min_interval >= hop_size"
|
| 51 |
+
)
|
| 52 |
+
if not max_sil_kept >= hop_size:
|
| 53 |
+
raise ValueError(
|
| 54 |
+
"The following condition must be satisfied: max_sil_kept >= hop_size"
|
| 55 |
+
)
|
| 56 |
+
min_interval = sr * min_interval / 1000
|
| 57 |
+
self.threshold = 10 ** (threshold / 20.0)
|
| 58 |
+
self.hop_size = round(sr * hop_size / 1000)
|
| 59 |
+
self.win_size = min(round(min_interval), 4 * self.hop_size)
|
| 60 |
+
self.min_length = round(sr * min_length / 1000 / self.hop_size)
|
| 61 |
+
self.min_interval = round(min_interval / self.hop_size)
|
| 62 |
+
self.max_sil_kept = round(sr * max_sil_kept / 1000 / self.hop_size)
|
| 63 |
+
|
| 64 |
+
def _apply_slice(self, waveform, begin, end):
|
| 65 |
+
if len(waveform.shape) > 1:
|
| 66 |
+
return waveform[
|
| 67 |
+
:, begin * self.hop_size : min(waveform.shape[1], end * self.hop_size)
|
| 68 |
+
]
|
| 69 |
+
else:
|
| 70 |
+
return waveform[
|
| 71 |
+
begin * self.hop_size : min(waveform.shape[0], end * self.hop_size)
|
| 72 |
+
]
|
| 73 |
+
|
| 74 |
+
# @timeit
|
| 75 |
+
def slice(self, waveform):
|
| 76 |
+
if len(waveform.shape) > 1:
|
| 77 |
+
samples = waveform.mean(axis=0)
|
| 78 |
+
else:
|
| 79 |
+
samples = waveform
|
| 80 |
+
if samples.shape[0] <= self.min_length:
|
| 81 |
+
return [waveform]
|
| 82 |
+
rms_list = get_rms(
|
| 83 |
+
y=samples, frame_length=self.win_size, hop_length=self.hop_size
|
| 84 |
+
).squeeze(0)
|
| 85 |
+
sil_tags = []
|
| 86 |
+
silence_start = None
|
| 87 |
+
clip_start = 0
|
| 88 |
+
for i, rms in enumerate(rms_list):
|
| 89 |
+
# Keep looping while frame is silent.
|
| 90 |
+
if rms < self.threshold:
|
| 91 |
+
# Record start of silent frames.
|
| 92 |
+
if silence_start is None:
|
| 93 |
+
silence_start = i
|
| 94 |
+
continue
|
| 95 |
+
# Keep looping while frame is not silent and silence start has not been recorded.
|
| 96 |
+
if silence_start is None:
|
| 97 |
+
continue
|
| 98 |
+
# Clear recorded silence start if interval is not enough or clip is too short
|
| 99 |
+
is_leading_silence = silence_start == 0 and i > self.max_sil_kept
|
| 100 |
+
need_slice_middle = (
|
| 101 |
+
i - silence_start >= self.min_interval
|
| 102 |
+
and i - clip_start >= self.min_length
|
| 103 |
+
)
|
| 104 |
+
if not is_leading_silence and not need_slice_middle:
|
| 105 |
+
silence_start = None
|
| 106 |
+
continue
|
| 107 |
+
# Need slicing. Record the range of silent frames to be removed.
|
| 108 |
+
if i - silence_start <= self.max_sil_kept:
|
| 109 |
+
pos = rms_list[silence_start : i + 1].argmin() + silence_start
|
| 110 |
+
if silence_start == 0:
|
| 111 |
+
sil_tags.append((0, pos))
|
| 112 |
+
else:
|
| 113 |
+
sil_tags.append((pos, pos))
|
| 114 |
+
clip_start = pos
|
| 115 |
+
elif i - silence_start <= self.max_sil_kept * 2:
|
| 116 |
+
pos = rms_list[
|
| 117 |
+
i - self.max_sil_kept : silence_start + self.max_sil_kept + 1
|
| 118 |
+
].argmin()
|
| 119 |
+
pos += i - self.max_sil_kept
|
| 120 |
+
pos_l = (
|
| 121 |
+
rms_list[
|
| 122 |
+
silence_start : silence_start + self.max_sil_kept + 1
|
| 123 |
+
].argmin()
|
| 124 |
+
+ silence_start
|
| 125 |
+
)
|
| 126 |
+
pos_r = (
|
| 127 |
+
rms_list[i - self.max_sil_kept : i + 1].argmin()
|
| 128 |
+
+ i
|
| 129 |
+
- self.max_sil_kept
|
| 130 |
+
)
|
| 131 |
+
if silence_start == 0:
|
| 132 |
+
sil_tags.append((0, pos_r))
|
| 133 |
+
clip_start = pos_r
|
| 134 |
+
else:
|
| 135 |
+
sil_tags.append((min(pos_l, pos), max(pos_r, pos)))
|
| 136 |
+
clip_start = max(pos_r, pos)
|
| 137 |
+
else:
|
| 138 |
+
pos_l = (
|
| 139 |
+
rms_list[
|
| 140 |
+
silence_start : silence_start + self.max_sil_kept + 1
|
| 141 |
+
].argmin()
|
| 142 |
+
+ silence_start
|
| 143 |
+
)
|
| 144 |
+
pos_r = (
|
| 145 |
+
rms_list[i - self.max_sil_kept : i + 1].argmin()
|
| 146 |
+
+ i
|
| 147 |
+
- self.max_sil_kept
|
| 148 |
+
)
|
| 149 |
+
if silence_start == 0:
|
| 150 |
+
sil_tags.append((0, pos_r))
|
| 151 |
+
else:
|
| 152 |
+
sil_tags.append((pos_l, pos_r))
|
| 153 |
+
clip_start = pos_r
|
| 154 |
+
silence_start = None
|
| 155 |
+
# Deal with trailing silence.
|
| 156 |
+
total_frames = rms_list.shape[0]
|
| 157 |
+
if (
|
| 158 |
+
silence_start is not None
|
| 159 |
+
and total_frames - silence_start >= self.min_interval
|
| 160 |
+
):
|
| 161 |
+
silence_end = min(total_frames, silence_start + self.max_sil_kept)
|
| 162 |
+
pos = rms_list[silence_start : silence_end + 1].argmin() + silence_start
|
| 163 |
+
sil_tags.append((pos, total_frames + 1))
|
| 164 |
+
# Apply and return slices.
|
| 165 |
+
if len(sil_tags) == 0:
|
| 166 |
+
return [waveform]
|
| 167 |
+
else:
|
| 168 |
+
chunks = []
|
| 169 |
+
if sil_tags[0][0] > 0:
|
| 170 |
+
chunks.append(self._apply_slice(waveform, 0, sil_tags[0][0]))
|
| 171 |
+
for i in range(len(sil_tags) - 1):
|
| 172 |
+
chunks.append(
|
| 173 |
+
self._apply_slice(waveform, sil_tags[i][1], sil_tags[i + 1][0])
|
| 174 |
+
)
|
| 175 |
+
if sil_tags[-1][1] < total_frames:
|
| 176 |
+
chunks.append(
|
| 177 |
+
self._apply_slice(waveform, sil_tags[-1][1], total_frames)
|
| 178 |
+
)
|
| 179 |
+
return chunks
|
lib/rvc/preprocessing/split.py
ADDED
|
@@ -0,0 +1,195 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import operator
|
| 2 |
+
import os
|
| 3 |
+
from concurrent.futures import ProcessPoolExecutor
|
| 4 |
+
from typing import *
|
| 5 |
+
|
| 6 |
+
import librosa
|
| 7 |
+
import numpy as np
|
| 8 |
+
import scipy.signal as signal
|
| 9 |
+
from scipy.io import wavfile
|
| 10 |
+
from tqdm import tqdm
|
| 11 |
+
|
| 12 |
+
from lib.rvc.utils import load_audio
|
| 13 |
+
|
| 14 |
+
from .slicer import Slicer
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
def norm_write(
|
| 18 |
+
tmp_audio: np.ndarray,
|
| 19 |
+
idx0: int,
|
| 20 |
+
idx1: int,
|
| 21 |
+
speaker_id: int,
|
| 22 |
+
outdir: str,
|
| 23 |
+
outdir_16k: str,
|
| 24 |
+
sampling_rate: int,
|
| 25 |
+
max: float,
|
| 26 |
+
alpha: float,
|
| 27 |
+
is_normalize: bool,
|
| 28 |
+
):
|
| 29 |
+
if is_normalize:
|
| 30 |
+
tmp_audio = (tmp_audio / np.abs(tmp_audio).max() * (max * alpha)) + (
|
| 31 |
+
1 - alpha
|
| 32 |
+
) * tmp_audio
|
| 33 |
+
else:
|
| 34 |
+
# clip level to max (cause sometimes when floating point decoding)
|
| 35 |
+
audio_min = np.min(tmp_audio)
|
| 36 |
+
if audio_min < -max:
|
| 37 |
+
tmp_audio = tmp_audio / -audio_min * max
|
| 38 |
+
audio_max = np.max(tmp_audio)
|
| 39 |
+
if audio_max > max:
|
| 40 |
+
tmp_audio = tmp_audio / audio_max * max
|
| 41 |
+
|
| 42 |
+
wavfile.write(
|
| 43 |
+
os.path.join(outdir, f"{speaker_id:05}", f"{idx0}_{idx1}.wav"),
|
| 44 |
+
sampling_rate,
|
| 45 |
+
tmp_audio.astype(np.float32),
|
| 46 |
+
)
|
| 47 |
+
|
| 48 |
+
tmp_audio = librosa.resample(
|
| 49 |
+
tmp_audio, orig_sr=sampling_rate, target_sr=16000, res_type="soxr_vhq"
|
| 50 |
+
)
|
| 51 |
+
wavfile.write(
|
| 52 |
+
os.path.join(outdir_16k, f"{speaker_id:05}", f"{idx0}_{idx1}.wav"),
|
| 53 |
+
16000,
|
| 54 |
+
tmp_audio.astype(np.float32),
|
| 55 |
+
)
|
| 56 |
+
|
| 57 |
+
|
| 58 |
+
def write_mute(
|
| 59 |
+
mute_wave_filename: str,
|
| 60 |
+
speaker_id: int,
|
| 61 |
+
outdir: str,
|
| 62 |
+
outdir_16k: str,
|
| 63 |
+
sampling_rate: int,
|
| 64 |
+
):
|
| 65 |
+
tmp_audio = load_audio(mute_wave_filename, sampling_rate)
|
| 66 |
+
wavfile.write(
|
| 67 |
+
os.path.join(outdir, f"{speaker_id:05}", "mute.wav"),
|
| 68 |
+
sampling_rate,
|
| 69 |
+
tmp_audio.astype(np.float32),
|
| 70 |
+
)
|
| 71 |
+
tmp_audio = librosa.resample(
|
| 72 |
+
tmp_audio, orig_sr=sampling_rate, target_sr=16000, res_type="soxr_vhq"
|
| 73 |
+
)
|
| 74 |
+
wavfile.write(
|
| 75 |
+
os.path.join(outdir_16k, f"{speaker_id:05}", "mute.wav"),
|
| 76 |
+
16000,
|
| 77 |
+
tmp_audio.astype(np.float32),
|
| 78 |
+
)
|
| 79 |
+
|
| 80 |
+
|
| 81 |
+
def pipeline(
|
| 82 |
+
slicer: Slicer,
|
| 83 |
+
datasets: List[Tuple[str, int]], # List[(path, speaker_id)]
|
| 84 |
+
outdir: str,
|
| 85 |
+
outdir_16k: str,
|
| 86 |
+
sampling_rate: int,
|
| 87 |
+
is_normalize: bool,
|
| 88 |
+
process_id: int = 0,
|
| 89 |
+
):
|
| 90 |
+
per = 3.7
|
| 91 |
+
overlap = 0.3
|
| 92 |
+
tail = per + overlap
|
| 93 |
+
max = 0.95
|
| 94 |
+
alpha = 0.8
|
| 95 |
+
|
| 96 |
+
bh, ah = signal.butter(N=5, Wn=48, btype="high", fs=sampling_rate)
|
| 97 |
+
|
| 98 |
+
for index, (wave_filename, speaker_id) in tqdm(datasets, position=1 + process_id):
|
| 99 |
+
audio = load_audio(wave_filename, sampling_rate)
|
| 100 |
+
audio = signal.lfilter(bh, ah, audio)
|
| 101 |
+
|
| 102 |
+
idx1 = 0
|
| 103 |
+
for audio in slicer.slice(audio):
|
| 104 |
+
i = 0
|
| 105 |
+
while 1:
|
| 106 |
+
start = int(sampling_rate * (per - overlap) * i)
|
| 107 |
+
i += 1
|
| 108 |
+
if len(audio[start:]) > tail * sampling_rate:
|
| 109 |
+
tmp_audio = audio[start : start + int(per * sampling_rate)]
|
| 110 |
+
norm_write(
|
| 111 |
+
tmp_audio,
|
| 112 |
+
index,
|
| 113 |
+
idx1,
|
| 114 |
+
speaker_id,
|
| 115 |
+
outdir,
|
| 116 |
+
outdir_16k,
|
| 117 |
+
sampling_rate,
|
| 118 |
+
max,
|
| 119 |
+
alpha,
|
| 120 |
+
is_normalize,
|
| 121 |
+
)
|
| 122 |
+
idx1 += 1
|
| 123 |
+
else:
|
| 124 |
+
tmp_audio = audio[start:]
|
| 125 |
+
break
|
| 126 |
+
norm_write(
|
| 127 |
+
tmp_audio,
|
| 128 |
+
index,
|
| 129 |
+
idx1,
|
| 130 |
+
speaker_id,
|
| 131 |
+
outdir,
|
| 132 |
+
outdir_16k,
|
| 133 |
+
sampling_rate,
|
| 134 |
+
max,
|
| 135 |
+
alpha,
|
| 136 |
+
is_normalize,
|
| 137 |
+
)
|
| 138 |
+
idx1 += 1
|
| 139 |
+
|
| 140 |
+
|
| 141 |
+
def preprocess_audio(
|
| 142 |
+
datasets: List[Tuple[str, int]], # List[(path, speaker_id)]
|
| 143 |
+
sampling_rate: int,
|
| 144 |
+
num_processes: int,
|
| 145 |
+
training_dir: str,
|
| 146 |
+
is_normalize: bool,
|
| 147 |
+
mute_wav_path: str,
|
| 148 |
+
):
|
| 149 |
+
waves_dir = os.path.join(training_dir, "0_gt_wavs")
|
| 150 |
+
waves16k_dir = os.path.join(training_dir, "1_16k_wavs")
|
| 151 |
+
if os.path.exists(waves_dir) and os.path.exists(waves16k_dir):
|
| 152 |
+
return
|
| 153 |
+
|
| 154 |
+
for speaker_id in set([spk for _, spk in datasets]):
|
| 155 |
+
os.makedirs(os.path.join(waves_dir, f"{speaker_id:05}"), exist_ok=True)
|
| 156 |
+
os.makedirs(os.path.join(waves16k_dir, f"{speaker_id:05}"), exist_ok=True)
|
| 157 |
+
|
| 158 |
+
all = [(i, x) for i, x in enumerate(sorted(datasets, key=operator.itemgetter(0)))]
|
| 159 |
+
|
| 160 |
+
# n of datasets per process
|
| 161 |
+
process_all_nums = [len(all) // num_processes] * num_processes
|
| 162 |
+
# add residual datasets
|
| 163 |
+
for i in range(len(all) % num_processes):
|
| 164 |
+
process_all_nums[i] += 1
|
| 165 |
+
|
| 166 |
+
assert len(all) == sum(process_all_nums), print(
|
| 167 |
+
f"len(all): {len(all)}, sum(process_all_nums): {sum(process_all_nums)}"
|
| 168 |
+
)
|
| 169 |
+
|
| 170 |
+
with ProcessPoolExecutor(max_workers=num_processes) as executor:
|
| 171 |
+
all_index = 0
|
| 172 |
+
for i in range(num_processes):
|
| 173 |
+
data = all[all_index : all_index + process_all_nums[i]]
|
| 174 |
+
slicer = Slicer(
|
| 175 |
+
sr=sampling_rate,
|
| 176 |
+
threshold=-42,
|
| 177 |
+
min_length=1500,
|
| 178 |
+
min_interval=400,
|
| 179 |
+
hop_size=15,
|
| 180 |
+
max_sil_kept=500,
|
| 181 |
+
)
|
| 182 |
+
executor.submit(
|
| 183 |
+
pipeline,
|
| 184 |
+
slicer,
|
| 185 |
+
data,
|
| 186 |
+
waves_dir,
|
| 187 |
+
waves16k_dir,
|
| 188 |
+
sampling_rate,
|
| 189 |
+
is_normalize,
|
| 190 |
+
process_id=i,
|
| 191 |
+
)
|
| 192 |
+
all_index += process_all_nums[i]
|
| 193 |
+
|
| 194 |
+
for speaker_id in set([spk for _, spk in datasets]):
|
| 195 |
+
write_mute(mute_wav_path, speaker_id, waves_dir, waves16k_dir, sampling_rate)
|
lib/rvc/train.py
ADDED
|
@@ -0,0 +1,998 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import glob
|
| 2 |
+
import json
|
| 3 |
+
import operator
|
| 4 |
+
import os
|
| 5 |
+
import shutil
|
| 6 |
+
import time
|
| 7 |
+
from random import shuffle
|
| 8 |
+
from typing import *
|
| 9 |
+
|
| 10 |
+
import faiss
|
| 11 |
+
import numpy as np
|
| 12 |
+
import torch
|
| 13 |
+
import torch.distributed as dist
|
| 14 |
+
import torch.multiprocessing as mp
|
| 15 |
+
import torchaudio
|
| 16 |
+
import tqdm
|
| 17 |
+
from sklearn.cluster import MiniBatchKMeans
|
| 18 |
+
from torch.cuda.amp import GradScaler, autocast
|
| 19 |
+
from torch.nn import functional as F
|
| 20 |
+
from torch.nn.parallel import DistributedDataParallel as DDP
|
| 21 |
+
from torch.utils.data import DataLoader
|
| 22 |
+
from torch.utils.tensorboard import SummaryWriter
|
| 23 |
+
|
| 24 |
+
from . import commons, utils
|
| 25 |
+
from .checkpoints import save
|
| 26 |
+
from .config import DatasetMetadata, TrainConfig
|
| 27 |
+
from .data_utils import (DistributedBucketSampler, TextAudioCollate,
|
| 28 |
+
TextAudioCollateMultiNSFsid, TextAudioLoader,
|
| 29 |
+
TextAudioLoaderMultiNSFsid)
|
| 30 |
+
from .losses import discriminator_loss, feature_loss, generator_loss, kl_loss
|
| 31 |
+
from .mel_processing import mel_spectrogram_torch, spec_to_mel_torch
|
| 32 |
+
from .models import (MultiPeriodDiscriminator, SynthesizerTrnMs256NSFSid,
|
| 33 |
+
SynthesizerTrnMs256NSFSidNono)
|
| 34 |
+
from .preprocessing.extract_feature import (MODELS_DIR, get_embedder,
|
| 35 |
+
load_embedder)
|
| 36 |
+
|
| 37 |
+
|
| 38 |
+
def is_audio_file(file: str):
|
| 39 |
+
if "." not in file:
|
| 40 |
+
return False
|
| 41 |
+
ext = os.path.splitext(file)[1]
|
| 42 |
+
return ext.lower() in [
|
| 43 |
+
".wav",
|
| 44 |
+
".flac",
|
| 45 |
+
".ogg",
|
| 46 |
+
".mp3",
|
| 47 |
+
".m4a",
|
| 48 |
+
".wma",
|
| 49 |
+
".aiff",
|
| 50 |
+
]
|
| 51 |
+
|
| 52 |
+
|
| 53 |
+
def glob_dataset(
|
| 54 |
+
glob_str: str,
|
| 55 |
+
speaker_id: int,
|
| 56 |
+
multiple_speakers: bool = False,
|
| 57 |
+
recursive: bool = True,
|
| 58 |
+
training_dir: str = ".",
|
| 59 |
+
):
|
| 60 |
+
globs = glob_str.split(",")
|
| 61 |
+
speaker_count = 0
|
| 62 |
+
datasets_speakers = []
|
| 63 |
+
speaker_to_id_mapping = {}
|
| 64 |
+
for glob_str in globs:
|
| 65 |
+
if os.path.isdir(glob_str):
|
| 66 |
+
if multiple_speakers:
|
| 67 |
+
# Multispeaker format:
|
| 68 |
+
# dataset_path/
|
| 69 |
+
# - speakername/
|
| 70 |
+
# - {wav name here}.wav
|
| 71 |
+
# - ...
|
| 72 |
+
# - next_speakername/
|
| 73 |
+
# - {wav name here}.wav
|
| 74 |
+
# - ...
|
| 75 |
+
# - ...
|
| 76 |
+
print("Multispeaker dataset enabled; Processing speakers.")
|
| 77 |
+
for dir in tqdm.tqdm(os.listdir(glob_str)):
|
| 78 |
+
print("Speaker ID " + str(speaker_count) + ": " + dir)
|
| 79 |
+
speaker_to_id_mapping[dir] = speaker_count
|
| 80 |
+
speaker_path = glob_str + "/" + dir
|
| 81 |
+
for audio in tqdm.tqdm(os.listdir(speaker_path)):
|
| 82 |
+
if is_audio_file(glob_str + "/" + dir + "/" + audio):
|
| 83 |
+
datasets_speakers.append((glob_str + "/" + dir + "/" + audio, speaker_count))
|
| 84 |
+
speaker_count += 1
|
| 85 |
+
with open(os.path.join(training_dir, "speaker_info.json"), "w") as outfile:
|
| 86 |
+
print("Dumped speaker info to {}".format(os.path.join(training_dir, "speaker_info.json")))
|
| 87 |
+
json.dump(speaker_to_id_mapping, outfile)
|
| 88 |
+
continue # Skip the normal speaker extend
|
| 89 |
+
|
| 90 |
+
glob_str = os.path.join(glob_str, "**", "*")
|
| 91 |
+
print("Single speaker dataset enabled; Processing speaker as ID " + str(speaker_id) + ".")
|
| 92 |
+
datasets_speakers.extend(
|
| 93 |
+
[
|
| 94 |
+
(file, speaker_id)
|
| 95 |
+
for file in glob.iglob(glob_str, recursive=recursive)
|
| 96 |
+
if is_audio_file(file)
|
| 97 |
+
]
|
| 98 |
+
)
|
| 99 |
+
|
| 100 |
+
return sorted(datasets_speakers)
|
| 101 |
+
|
| 102 |
+
|
| 103 |
+
def create_dataset_meta(training_dir: str, f0: bool):
|
| 104 |
+
gt_wavs_dir = os.path.join(training_dir, "0_gt_wavs")
|
| 105 |
+
co256_dir = os.path.join(training_dir, "3_feature256")
|
| 106 |
+
|
| 107 |
+
def list_data(dir: str):
|
| 108 |
+
files = []
|
| 109 |
+
for subdir in os.listdir(dir):
|
| 110 |
+
speaker_dir = os.path.join(dir, subdir)
|
| 111 |
+
for name in os.listdir(speaker_dir):
|
| 112 |
+
files.append(os.path.join(subdir, name.split(".")[0]))
|
| 113 |
+
return files
|
| 114 |
+
|
| 115 |
+
names = set(list_data(gt_wavs_dir)) & set(list_data(co256_dir))
|
| 116 |
+
|
| 117 |
+
if f0:
|
| 118 |
+
f0_dir = os.path.join(training_dir, "2a_f0")
|
| 119 |
+
f0nsf_dir = os.path.join(training_dir, "2b_f0nsf")
|
| 120 |
+
names = names & set(list_data(f0_dir)) & set(list_data(f0nsf_dir))
|
| 121 |
+
|
| 122 |
+
meta = {
|
| 123 |
+
"files": {},
|
| 124 |
+
}
|
| 125 |
+
|
| 126 |
+
for name in names:
|
| 127 |
+
speaker_id = os.path.dirname(name).split("_")[0]
|
| 128 |
+
speaker_id = int(speaker_id) if speaker_id.isdecimal() else 0
|
| 129 |
+
if f0:
|
| 130 |
+
gt_wav_path = os.path.join(gt_wavs_dir, f"{name}.wav")
|
| 131 |
+
co256_path = os.path.join(co256_dir, f"{name}.npy")
|
| 132 |
+
f0_path = os.path.join(f0_dir, f"{name}.wav.npy")
|
| 133 |
+
f0nsf_path = os.path.join(f0nsf_dir, f"{name}.wav.npy")
|
| 134 |
+
meta["files"][name] = {
|
| 135 |
+
"gt_wav": gt_wav_path,
|
| 136 |
+
"co256": co256_path,
|
| 137 |
+
"f0": f0_path,
|
| 138 |
+
"f0nsf": f0nsf_path,
|
| 139 |
+
"speaker_id": speaker_id,
|
| 140 |
+
}
|
| 141 |
+
else:
|
| 142 |
+
gt_wav_path = os.path.join(gt_wavs_dir, f"{name}.wav")
|
| 143 |
+
co256_path = os.path.join(co256_dir, f"{name}.npy")
|
| 144 |
+
meta["files"][name] = {
|
| 145 |
+
"gt_wav": gt_wav_path,
|
| 146 |
+
"co256": co256_path,
|
| 147 |
+
"speaker_id": speaker_id,
|
| 148 |
+
}
|
| 149 |
+
|
| 150 |
+
with open(os.path.join(training_dir, "meta.json"), "w") as f:
|
| 151 |
+
json.dump(meta, f, indent=2)
|
| 152 |
+
|
| 153 |
+
|
| 154 |
+
def change_speaker(net_g, speaker_info, embedder, embedding_output_layer, phone, phone_lengths, pitch, pitchf, spec_lengths):
|
| 155 |
+
"""
|
| 156 |
+
random change formant
|
| 157 |
+
inspired by https://github.com/auspicious3000/contentvec/blob/d746688a32940f4bee410ed7c87ec9cf8ff04f74/contentvec/data/audio/audio_utils_1.py#L179
|
| 158 |
+
"""
|
| 159 |
+
N = phone.shape[0]
|
| 160 |
+
device = phone.device
|
| 161 |
+
dtype = phone.dtype
|
| 162 |
+
|
| 163 |
+
f0_bin = 256
|
| 164 |
+
f0_max = 1100.0
|
| 165 |
+
f0_min = 50.0
|
| 166 |
+
f0_mel_min = 1127 * np.log(1 + f0_min / 700)
|
| 167 |
+
f0_mel_max = 1127 * np.log(1 + f0_max / 700)
|
| 168 |
+
|
| 169 |
+
pitch_median = torch.median(pitchf, 1).values
|
| 170 |
+
lo = 75. + 25. * (pitch_median >= 200).to(dtype=dtype)
|
| 171 |
+
hi = 250. + 150. * (pitch_median >= 200).to(dtype=dtype)
|
| 172 |
+
pitch_median = torch.clip(pitch_median, lo, hi).unsqueeze(1)
|
| 173 |
+
|
| 174 |
+
shift_pitch = torch.exp2((1. - 2. * torch.rand(N)) / 4).unsqueeze(1).to(device, dtype) # ピッチを半オクターブの範囲でずらす
|
| 175 |
+
|
| 176 |
+
new_sid = np.random.choice(np.arange(len(speaker_info))[speaker_info > 0], size=N)
|
| 177 |
+
rel_pitch = pitchf / pitch_median
|
| 178 |
+
new_pitch_median = torch.from_numpy(speaker_info[new_sid]).to(device, dtype).unsqueeze(1) * shift_pitch
|
| 179 |
+
new_pitchf = new_pitch_median * rel_pitch
|
| 180 |
+
new_sid = torch.from_numpy(new_sid).to(device)
|
| 181 |
+
|
| 182 |
+
new_pitch = 1127. * torch.log(1. + new_pitchf / 700.)
|
| 183 |
+
new_pitch = (pitch - f0_mel_min) * (f0_bin - 2.) / (f0_mel_max - f0_mel_min) + 1.
|
| 184 |
+
new_pitch = torch.clip(new_pitch, 1, f0_bin - 1).to(dtype=torch.int)
|
| 185 |
+
|
| 186 |
+
aug_wave = net_g.infer(phone, phone_lengths, new_pitch, new_pitchf, new_sid)[0]
|
| 187 |
+
aug_wave_16k = torchaudio.functional.resample(aug_wave, net_g.sr, 16000, rolloff=0.99).squeeze(1)
|
| 188 |
+
padding_mask = torch.arange(aug_wave_16k.shape[1]).unsqueeze(0).to(device) > (spec_lengths.unsqueeze(1) * 160).to(device)
|
| 189 |
+
|
| 190 |
+
inputs = {
|
| 191 |
+
"source": aug_wave_16k.to(device, dtype),
|
| 192 |
+
"padding_mask": padding_mask.to(device),
|
| 193 |
+
"output_layer": embedding_output_layer
|
| 194 |
+
}
|
| 195 |
+
logits = embedder.extract_features(**inputs)
|
| 196 |
+
if phone.shape[-1] == 768:
|
| 197 |
+
feats = logits[0]
|
| 198 |
+
else:
|
| 199 |
+
feats = embedder.final_proj(logits[0])
|
| 200 |
+
feats = torch.repeat_interleave(feats, 2, 1)
|
| 201 |
+
new_phone = torch.zeros(phone.shape).to(device, dtype)
|
| 202 |
+
new_phone[:, :feats.shape[1]] = feats[:, :phone.shape[1]]
|
| 203 |
+
return new_phone.to(device), aug_wave
|
| 204 |
+
|
| 205 |
+
|
| 206 |
+
def change_speaker_nono(net_g, embedder, embedding_output_layer, phone, phone_lengths, spec_lengths):
|
| 207 |
+
"""
|
| 208 |
+
random change formant
|
| 209 |
+
inspired by https://github.com/auspicious3000/contentvec/blob/d746688a32940f4bee410ed7c87ec9cf8ff04f74/contentvec/data/audio/audio_utils_1.py#L179
|
| 210 |
+
"""
|
| 211 |
+
N = phone.shape[0]
|
| 212 |
+
device = phone.device
|
| 213 |
+
dtype = phone.dtype
|
| 214 |
+
|
| 215 |
+
new_sid = np.random.randint(net_g.spk_embed_dim, size=N)
|
| 216 |
+
new_sid = torch.from_numpy(new_sid).to(device)
|
| 217 |
+
|
| 218 |
+
aug_wave = net_g.infer(phone, phone_lengths, new_sid)[0]
|
| 219 |
+
aug_wave_16k = torchaudio.functional.resample(aug_wave, net_g.sr, 16000, rolloff=0.99).squeeze(1)
|
| 220 |
+
padding_mask = torch.arange(aug_wave_16k.shape[1]).unsqueeze(0).to(device) > (spec_lengths.unsqueeze(1) * 160).to(device)
|
| 221 |
+
|
| 222 |
+
inputs = {
|
| 223 |
+
"source": aug_wave_16k.to(device, dtype),
|
| 224 |
+
"padding_mask": padding_mask.to(device),
|
| 225 |
+
"output_layer": embedding_output_layer
|
| 226 |
+
}
|
| 227 |
+
|
| 228 |
+
logits = embedder.extract_features(**inputs)
|
| 229 |
+
if phone.shape[-1] == 768:
|
| 230 |
+
feats = logits[0]
|
| 231 |
+
else:
|
| 232 |
+
feats = embedder.final_proj(logits[0])
|
| 233 |
+
feats = torch.repeat_interleave(feats, 2, 1)
|
| 234 |
+
new_phone = torch.zeros(phone.shape).to(device, dtype)
|
| 235 |
+
new_phone[:, :feats.shape[1]] = feats[:, :phone.shape[1]]
|
| 236 |
+
return new_phone.to(device), aug_wave
|
| 237 |
+
|
| 238 |
+
|
| 239 |
+
def train_index(
|
| 240 |
+
training_dir: str,
|
| 241 |
+
model_name: str,
|
| 242 |
+
out_dir: str,
|
| 243 |
+
emb_ch: int,
|
| 244 |
+
num_cpu_process: int,
|
| 245 |
+
maximum_index_size: Optional[int],
|
| 246 |
+
):
|
| 247 |
+
checkpoint_path = os.path.join(out_dir, model_name)
|
| 248 |
+
feature_256_dir = os.path.join(training_dir, "3_feature256")
|
| 249 |
+
index_dir = os.path.join(os.path.dirname(checkpoint_path), f"{model_name}_index")
|
| 250 |
+
os.makedirs(index_dir, exist_ok=True)
|
| 251 |
+
for speaker_id in tqdm.tqdm(
|
| 252 |
+
sorted([dir for dir in os.listdir(feature_256_dir) if dir.isdecimal()])
|
| 253 |
+
):
|
| 254 |
+
feature_256_spk_dir = os.path.join(feature_256_dir, speaker_id)
|
| 255 |
+
speaker_id = int(speaker_id)
|
| 256 |
+
npys = []
|
| 257 |
+
for name in [
|
| 258 |
+
os.path.join(feature_256_spk_dir, file)
|
| 259 |
+
for file in os.listdir(feature_256_spk_dir)
|
| 260 |
+
if file.endswith(".npy")
|
| 261 |
+
]:
|
| 262 |
+
phone = np.load(os.path.join(feature_256_spk_dir, name))
|
| 263 |
+
npys.append(phone)
|
| 264 |
+
|
| 265 |
+
# shuffle big_npy to prevent reproducing the sound source
|
| 266 |
+
big_npy = np.concatenate(npys, 0)
|
| 267 |
+
big_npy_idx = np.arange(big_npy.shape[0])
|
| 268 |
+
np.random.shuffle(big_npy_idx)
|
| 269 |
+
big_npy = big_npy[big_npy_idx]
|
| 270 |
+
|
| 271 |
+
if not maximum_index_size is None and big_npy.shape[0] > maximum_index_size:
|
| 272 |
+
kmeans = MiniBatchKMeans(
|
| 273 |
+
n_clusters=maximum_index_size,
|
| 274 |
+
batch_size=256 * num_cpu_process,
|
| 275 |
+
init="random",
|
| 276 |
+
compute_labels=False,
|
| 277 |
+
)
|
| 278 |
+
kmeans.fit(big_npy)
|
| 279 |
+
big_npy = kmeans.cluster_centers_
|
| 280 |
+
|
| 281 |
+
# recommend parameter in https://github.com/facebookresearch/faiss/wiki/Guidelines-to-choose-an-index
|
| 282 |
+
emb_ch = big_npy.shape[1]
|
| 283 |
+
emb_ch_half = emb_ch // 2
|
| 284 |
+
n_ivf = int(8 * np.sqrt(big_npy.shape[0]))
|
| 285 |
+
if big_npy.shape[0] >= 1_000_000:
|
| 286 |
+
index = faiss.index_factory(
|
| 287 |
+
emb_ch, f"IVF{n_ivf},PQ{emb_ch_half}x4fsr,RFlat"
|
| 288 |
+
)
|
| 289 |
+
else:
|
| 290 |
+
index = faiss.index_factory(emb_ch, f"IVF{n_ivf},Flat")
|
| 291 |
+
|
| 292 |
+
index.train(big_npy)
|
| 293 |
+
batch_size_add = 8192
|
| 294 |
+
for i in range(0, big_npy.shape[0], batch_size_add):
|
| 295 |
+
index.add(big_npy[i : i + batch_size_add])
|
| 296 |
+
np.save(
|
| 297 |
+
os.path.join(index_dir, f"{model_name}.{speaker_id}.big.npy"),
|
| 298 |
+
big_npy,
|
| 299 |
+
)
|
| 300 |
+
faiss.write_index(
|
| 301 |
+
index,
|
| 302 |
+
os.path.join(index_dir, f"{model_name}.{speaker_id}.index"),
|
| 303 |
+
)
|
| 304 |
+
|
| 305 |
+
|
| 306 |
+
def train_model(
|
| 307 |
+
gpus: List[int],
|
| 308 |
+
config: TrainConfig,
|
| 309 |
+
training_dir: str,
|
| 310 |
+
model_name: str,
|
| 311 |
+
out_dir: str,
|
| 312 |
+
sample_rate: int,
|
| 313 |
+
f0: bool,
|
| 314 |
+
batch_size: int,
|
| 315 |
+
augment: bool,
|
| 316 |
+
augment_path: Optional[str],
|
| 317 |
+
speaker_info_path: Optional[str],
|
| 318 |
+
cache_batch: bool,
|
| 319 |
+
total_epoch: int,
|
| 320 |
+
save_every_epoch: int,
|
| 321 |
+
save_wav_with_checkpoint: bool,
|
| 322 |
+
pretrain_g: str,
|
| 323 |
+
pretrain_d: str,
|
| 324 |
+
embedder_name: str,
|
| 325 |
+
embedding_output_layer: int,
|
| 326 |
+
save_only_last: bool = False,
|
| 327 |
+
device: Optional[Union[str, torch.device]] = None,
|
| 328 |
+
):
|
| 329 |
+
os.environ["MASTER_ADDR"] = "localhost"
|
| 330 |
+
os.environ["MASTER_PORT"] = str(utils.find_empty_port())
|
| 331 |
+
|
| 332 |
+
deterministic = torch.backends.cudnn.deterministic
|
| 333 |
+
benchmark = torch.backends.cudnn.benchmark
|
| 334 |
+
PREV_CUDA_VISIBLE_DEVICES = os.environ.get("CUDA_VISIBLE_DEVICES", None)
|
| 335 |
+
|
| 336 |
+
torch.backends.cudnn.deterministic = False
|
| 337 |
+
torch.backends.cudnn.benchmark = False
|
| 338 |
+
|
| 339 |
+
os.environ["CUDA_VISIBLE_DEVICES"] = ",".join([str(gpu) for gpu in gpus])
|
| 340 |
+
|
| 341 |
+
start = time.perf_counter()
|
| 342 |
+
|
| 343 |
+
# Mac(MPS)でやると、mp.spawnでなんかトラブルが出るので普通にtraining_runnerを呼び出す。
|
| 344 |
+
if device is not None:
|
| 345 |
+
training_runner(
|
| 346 |
+
0, # rank
|
| 347 |
+
1, # world size
|
| 348 |
+
config,
|
| 349 |
+
training_dir,
|
| 350 |
+
model_name,
|
| 351 |
+
out_dir,
|
| 352 |
+
sample_rate,
|
| 353 |
+
f0,
|
| 354 |
+
batch_size,
|
| 355 |
+
augment,
|
| 356 |
+
augment_path,
|
| 357 |
+
speaker_info_path,
|
| 358 |
+
cache_batch,
|
| 359 |
+
total_epoch,
|
| 360 |
+
save_every_epoch,
|
| 361 |
+
save_wav_with_checkpoint,
|
| 362 |
+
pretrain_g,
|
| 363 |
+
pretrain_d,
|
| 364 |
+
embedder_name,
|
| 365 |
+
embedding_output_layer,
|
| 366 |
+
save_only_last,
|
| 367 |
+
device,
|
| 368 |
+
)
|
| 369 |
+
else:
|
| 370 |
+
mp.spawn(
|
| 371 |
+
training_runner,
|
| 372 |
+
nprocs=len(gpus),
|
| 373 |
+
args=(
|
| 374 |
+
len(gpus),
|
| 375 |
+
config,
|
| 376 |
+
training_dir,
|
| 377 |
+
model_name,
|
| 378 |
+
out_dir,
|
| 379 |
+
sample_rate,
|
| 380 |
+
f0,
|
| 381 |
+
batch_size,
|
| 382 |
+
augment,
|
| 383 |
+
augment_path,
|
| 384 |
+
speaker_info_path,
|
| 385 |
+
cache_batch,
|
| 386 |
+
total_epoch,
|
| 387 |
+
save_every_epoch,
|
| 388 |
+
save_wav_with_checkpoint,
|
| 389 |
+
pretrain_g,
|
| 390 |
+
pretrain_d,
|
| 391 |
+
embedder_name,
|
| 392 |
+
embedding_output_layer,
|
| 393 |
+
save_only_last,
|
| 394 |
+
device,
|
| 395 |
+
),
|
| 396 |
+
)
|
| 397 |
+
|
| 398 |
+
end = time.perf_counter()
|
| 399 |
+
|
| 400 |
+
print(f"Time: {end - start}")
|
| 401 |
+
|
| 402 |
+
if PREV_CUDA_VISIBLE_DEVICES is None:
|
| 403 |
+
del os.environ["CUDA_VISIBLE_DEVICES"]
|
| 404 |
+
else:
|
| 405 |
+
os.environ["CUDA_VISIBLE_DEVICES"] = PREV_CUDA_VISIBLE_DEVICES
|
| 406 |
+
|
| 407 |
+
torch.backends.cudnn.deterministic = deterministic
|
| 408 |
+
torch.backends.cudnn.benchmark = benchmark
|
| 409 |
+
|
| 410 |
+
|
| 411 |
+
def training_runner(
|
| 412 |
+
rank: int,
|
| 413 |
+
world_size: List[int],
|
| 414 |
+
config: TrainConfig,
|
| 415 |
+
training_dir: str,
|
| 416 |
+
model_name: str,
|
| 417 |
+
out_dir: str,
|
| 418 |
+
sample_rate: int,
|
| 419 |
+
f0: bool,
|
| 420 |
+
batch_size: int,
|
| 421 |
+
augment: bool,
|
| 422 |
+
augment_path: Optional[str],
|
| 423 |
+
speaker_info_path: Optional[str],
|
| 424 |
+
cache_in_gpu: bool,
|
| 425 |
+
total_epoch: int,
|
| 426 |
+
save_every_epoch: int,
|
| 427 |
+
save_wav_with_checkpoint: bool,
|
| 428 |
+
pretrain_g: str,
|
| 429 |
+
pretrain_d: str,
|
| 430 |
+
embedder_name: str,
|
| 431 |
+
embedding_output_layer: int,
|
| 432 |
+
save_only_last: bool = False,
|
| 433 |
+
device: Optional[Union[str, torch.device]] = None,
|
| 434 |
+
):
|
| 435 |
+
config.train.batch_size = batch_size
|
| 436 |
+
log_dir = os.path.join(training_dir, "logs")
|
| 437 |
+
state_dir = os.path.join(training_dir, "state")
|
| 438 |
+
training_files_path = os.path.join(training_dir, "meta.json")
|
| 439 |
+
training_meta = DatasetMetadata.parse_file(training_files_path)
|
| 440 |
+
embedder_out_channels = config.model.emb_channels
|
| 441 |
+
|
| 442 |
+
is_multi_process = world_size > 1
|
| 443 |
+
|
| 444 |
+
if device is not None:
|
| 445 |
+
if type(device) == str:
|
| 446 |
+
device = torch.device(device)
|
| 447 |
+
|
| 448 |
+
global_step = 0
|
| 449 |
+
is_main_process = rank == 0
|
| 450 |
+
|
| 451 |
+
if is_main_process:
|
| 452 |
+
os.makedirs(log_dir, exist_ok=True)
|
| 453 |
+
os.makedirs(state_dir, exist_ok=True)
|
| 454 |
+
writer = SummaryWriter(log_dir=log_dir)
|
| 455 |
+
|
| 456 |
+
if torch.cuda.is_available():
|
| 457 |
+
torch.cuda.empty_cache()
|
| 458 |
+
|
| 459 |
+
if not dist.is_initialized():
|
| 460 |
+
dist.init_process_group(
|
| 461 |
+
backend="gloo", init_method="env://", rank=rank, world_size=world_size
|
| 462 |
+
)
|
| 463 |
+
|
| 464 |
+
if is_multi_process:
|
| 465 |
+
torch.cuda.set_device(rank)
|
| 466 |
+
|
| 467 |
+
torch.manual_seed(config.train.seed)
|
| 468 |
+
|
| 469 |
+
if f0:
|
| 470 |
+
train_dataset = TextAudioLoaderMultiNSFsid(training_meta, config.data)
|
| 471 |
+
else:
|
| 472 |
+
train_dataset = TextAudioLoader(training_meta, config.data)
|
| 473 |
+
|
| 474 |
+
train_sampler = DistributedBucketSampler(
|
| 475 |
+
train_dataset,
|
| 476 |
+
config.train.batch_size * world_size,
|
| 477 |
+
[100, 200, 300, 400, 500, 600, 700, 800, 900],
|
| 478 |
+
num_replicas=world_size,
|
| 479 |
+
rank=rank,
|
| 480 |
+
shuffle=True,
|
| 481 |
+
)
|
| 482 |
+
|
| 483 |
+
if f0:
|
| 484 |
+
collate_fn = TextAudioCollateMultiNSFsid()
|
| 485 |
+
else:
|
| 486 |
+
collate_fn = TextAudioCollate()
|
| 487 |
+
|
| 488 |
+
train_loader = DataLoader(
|
| 489 |
+
train_dataset,
|
| 490 |
+
num_workers=4,
|
| 491 |
+
shuffle=False,
|
| 492 |
+
pin_memory=True,
|
| 493 |
+
collate_fn=collate_fn,
|
| 494 |
+
batch_sampler=train_sampler,
|
| 495 |
+
persistent_workers=True,
|
| 496 |
+
prefetch_factor=8,
|
| 497 |
+
)
|
| 498 |
+
speaker_info = None
|
| 499 |
+
if os.path.exists(os.path.join(training_dir, "speaker_info.json")):
|
| 500 |
+
with open(os.path.join(training_dir, "speaker_info.json"), "r") as f:
|
| 501 |
+
speaker_info = json.load(f)
|
| 502 |
+
config.model.spk_embed_dim = len(speaker_info)
|
| 503 |
+
if f0:
|
| 504 |
+
net_g = SynthesizerTrnMs256NSFSid(
|
| 505 |
+
config.data.filter_length // 2 + 1,
|
| 506 |
+
config.train.segment_size // config.data.hop_length,
|
| 507 |
+
**config.model.dict(),
|
| 508 |
+
is_half=False, # config.train.fp16_run,
|
| 509 |
+
sr=int(sample_rate[:-1] + "000"),
|
| 510 |
+
)
|
| 511 |
+
else:
|
| 512 |
+
net_g = SynthesizerTrnMs256NSFSidNono(
|
| 513 |
+
config.data.filter_length // 2 + 1,
|
| 514 |
+
config.train.segment_size // config.data.hop_length,
|
| 515 |
+
**config.model.dict(),
|
| 516 |
+
is_half=False, # config.train.fp16_run,
|
| 517 |
+
sr=int(sample_rate[:-1] + "000"),
|
| 518 |
+
)
|
| 519 |
+
|
| 520 |
+
if is_multi_process:
|
| 521 |
+
net_g = net_g.cuda(rank)
|
| 522 |
+
else:
|
| 523 |
+
net_g = net_g.to(device=device)
|
| 524 |
+
|
| 525 |
+
if config.version == "v1":
|
| 526 |
+
periods = [2, 3, 5, 7, 11, 17]
|
| 527 |
+
elif config.version == "v2":
|
| 528 |
+
periods = [2, 3, 5, 7, 11, 17, 23, 37]
|
| 529 |
+
net_d = MultiPeriodDiscriminator(config.model.use_spectral_norm, periods=periods)
|
| 530 |
+
if is_multi_process:
|
| 531 |
+
net_d = net_d.cuda(rank)
|
| 532 |
+
else:
|
| 533 |
+
net_d = net_d.to(device=device)
|
| 534 |
+
|
| 535 |
+
optim_g = torch.optim.AdamW(
|
| 536 |
+
net_g.parameters(),
|
| 537 |
+
config.train.learning_rate,
|
| 538 |
+
betas=config.train.betas,
|
| 539 |
+
eps=config.train.eps,
|
| 540 |
+
)
|
| 541 |
+
optim_d = torch.optim.AdamW(
|
| 542 |
+
net_d.parameters(),
|
| 543 |
+
config.train.learning_rate,
|
| 544 |
+
betas=config.train.betas,
|
| 545 |
+
eps=config.train.eps,
|
| 546 |
+
)
|
| 547 |
+
|
| 548 |
+
last_d_state = utils.latest_checkpoint_path(state_dir, "D_*.pth")
|
| 549 |
+
last_g_state = utils.latest_checkpoint_path(state_dir, "G_*.pth")
|
| 550 |
+
|
| 551 |
+
if last_d_state is None or last_g_state is None:
|
| 552 |
+
epoch = 1
|
| 553 |
+
global_step = 0
|
| 554 |
+
if os.path.exists(pretrain_g) and os.path.exists(pretrain_d):
|
| 555 |
+
net_g_state = torch.load(pretrain_g, map_location="cpu")["model"]
|
| 556 |
+
emb_spk_size = (config.model.spk_embed_dim, config.model.gin_channels)
|
| 557 |
+
emb_phone_size = (config.model.hidden_channels, config.model.emb_channels)
|
| 558 |
+
if emb_spk_size != net_g_state["emb_g.weight"].size():
|
| 559 |
+
original_weight = net_g_state["emb_g.weight"]
|
| 560 |
+
net_g_state["emb_g.weight"] = original_weight.mean(dim=0, keepdims=True) * torch.ones(emb_spk_size, device=original_weight.device, dtype=original_weight.dtype)
|
| 561 |
+
if emb_phone_size != net_g_state["enc_p.emb_phone.weight"].size():
|
| 562 |
+
# interpolate
|
| 563 |
+
orig_shape = net_g_state["enc_p.emb_phone.weight"].size()
|
| 564 |
+
if net_g_state["enc_p.emb_phone.weight"].dtype == torch.half:
|
| 565 |
+
net_g_state["enc_p.emb_phone.weight"] = (
|
| 566 |
+
F.interpolate(
|
| 567 |
+
net_g_state["enc_p.emb_phone.weight"]
|
| 568 |
+
.float()
|
| 569 |
+
.unsqueeze(0)
|
| 570 |
+
.unsqueeze(0),
|
| 571 |
+
size=emb_phone_size,
|
| 572 |
+
mode="bilinear",
|
| 573 |
+
)
|
| 574 |
+
.half()
|
| 575 |
+
.squeeze(0)
|
| 576 |
+
.squeeze(0)
|
| 577 |
+
)
|
| 578 |
+
else:
|
| 579 |
+
net_g_state["enc_p.emb_phone.weight"] = (
|
| 580 |
+
F.interpolate(
|
| 581 |
+
net_g_state["enc_p.emb_phone.weight"]
|
| 582 |
+
.unsqueeze(0)
|
| 583 |
+
.unsqueeze(0),
|
| 584 |
+
size=emb_phone_size,
|
| 585 |
+
mode="bilinear",
|
| 586 |
+
)
|
| 587 |
+
.squeeze(0)
|
| 588 |
+
.squeeze(0)
|
| 589 |
+
)
|
| 590 |
+
print(
|
| 591 |
+
"interpolated pretrained state enc_p.emb_phone from",
|
| 592 |
+
orig_shape,
|
| 593 |
+
"to",
|
| 594 |
+
emb_phone_size,
|
| 595 |
+
)
|
| 596 |
+
if is_multi_process:
|
| 597 |
+
net_g.module.load_state_dict(net_g_state)
|
| 598 |
+
else:
|
| 599 |
+
net_g.load_state_dict(net_g_state)
|
| 600 |
+
|
| 601 |
+
del net_g_state
|
| 602 |
+
|
| 603 |
+
if is_multi_process:
|
| 604 |
+
net_d.module.load_state_dict(
|
| 605 |
+
torch.load(pretrain_d, map_location="cpu")["model"]
|
| 606 |
+
)
|
| 607 |
+
else:
|
| 608 |
+
net_d.load_state_dict(
|
| 609 |
+
torch.load(pretrain_d, map_location="cpu")["model"]
|
| 610 |
+
)
|
| 611 |
+
if is_main_process:
|
| 612 |
+
print(f"loaded pretrained {pretrain_g} {pretrain_d}")
|
| 613 |
+
|
| 614 |
+
else:
|
| 615 |
+
_, _, _, epoch = utils.load_checkpoint(last_d_state, net_d, optim_d)
|
| 616 |
+
_, _, _, epoch = utils.load_checkpoint(last_g_state, net_g, optim_g)
|
| 617 |
+
if is_main_process:
|
| 618 |
+
print(f"loaded last state {last_d_state} {last_g_state}")
|
| 619 |
+
|
| 620 |
+
epoch += 1
|
| 621 |
+
global_step = (epoch - 1) * len(train_loader)
|
| 622 |
+
|
| 623 |
+
if augment:
|
| 624 |
+
# load embedder
|
| 625 |
+
embedder_filepath, _, embedder_load_from = get_embedder(embedder_name)
|
| 626 |
+
|
| 627 |
+
if embedder_load_from == "local":
|
| 628 |
+
embedder_filepath = os.path.join(
|
| 629 |
+
MODELS_DIR, "embeddings", embedder_filepath
|
| 630 |
+
)
|
| 631 |
+
embedder, _ = load_embedder(embedder_filepath, device)
|
| 632 |
+
if not config.train.fp16_run:
|
| 633 |
+
embedder = embedder.float()
|
| 634 |
+
|
| 635 |
+
if (augment_path is not None):
|
| 636 |
+
state_dict = torch.load(augment_path, map_location="cpu")
|
| 637 |
+
if state_dict["f0"] == 1:
|
| 638 |
+
augment_net_g = SynthesizerTrnMs256NSFSid(
|
| 639 |
+
**state_dict["params"], is_half=config.train.fp16_run
|
| 640 |
+
)
|
| 641 |
+
augment_speaker_info = np.load(speaker_info_path)
|
| 642 |
+
else:
|
| 643 |
+
augment_net_g = SynthesizerTrnMs256NSFSidNono(
|
| 644 |
+
**state_dict["params"], is_half=config.train.fp16_run
|
| 645 |
+
)
|
| 646 |
+
|
| 647 |
+
augment_net_g.load_state_dict(state_dict["weight"], strict=False)
|
| 648 |
+
augment_net_g.eval().to(device)
|
| 649 |
+
|
| 650 |
+
else:
|
| 651 |
+
augment_net_g = net_g
|
| 652 |
+
if f0:
|
| 653 |
+
medians = [[] for _ in range(augment_net_g.spk_embed_dim)]
|
| 654 |
+
for file in training_meta.files.values():
|
| 655 |
+
f0f = np.load(file.f0nsf)
|
| 656 |
+
if np.any(f0f > 0):
|
| 657 |
+
medians[file.speaker_id].append(np.median(f0f[f0f > 0]))
|
| 658 |
+
augment_speaker_info = np.array([np.median(x) if len(x) else 0. for x in medians])
|
| 659 |
+
np.save(os.path.join(training_dir, "speaker_info.npy"), augment_speaker_info)
|
| 660 |
+
|
| 661 |
+
if is_multi_process:
|
| 662 |
+
net_g = DDP(net_g, device_ids=[rank])
|
| 663 |
+
net_d = DDP(net_d, device_ids=[rank])
|
| 664 |
+
|
| 665 |
+
scheduler_g = torch.optim.lr_scheduler.ExponentialLR(
|
| 666 |
+
optim_g, gamma=config.train.lr_decay, last_epoch=epoch - 2
|
| 667 |
+
)
|
| 668 |
+
scheduler_d = torch.optim.lr_scheduler.ExponentialLR(
|
| 669 |
+
optim_d, gamma=config.train.lr_decay, last_epoch=epoch - 2
|
| 670 |
+
)
|
| 671 |
+
|
| 672 |
+
scaler = GradScaler(enabled=config.train.fp16_run)
|
| 673 |
+
|
| 674 |
+
cache = []
|
| 675 |
+
progress_bar = tqdm.tqdm(range((total_epoch - epoch + 1) * len(train_loader)))
|
| 676 |
+
progress_bar.set_postfix(epoch=epoch)
|
| 677 |
+
step = -1 + len(train_loader) * (epoch - 1)
|
| 678 |
+
for epoch in range(epoch, total_epoch + 1):
|
| 679 |
+
train_loader.batch_sampler.set_epoch(epoch)
|
| 680 |
+
|
| 681 |
+
net_g.train()
|
| 682 |
+
net_d.train()
|
| 683 |
+
|
| 684 |
+
use_cache = len(cache) == len(train_loader)
|
| 685 |
+
data = cache if use_cache else enumerate(train_loader)
|
| 686 |
+
|
| 687 |
+
if is_main_process:
|
| 688 |
+
lr = optim_g.param_groups[0]["lr"]
|
| 689 |
+
|
| 690 |
+
if use_cache:
|
| 691 |
+
shuffle(cache)
|
| 692 |
+
|
| 693 |
+
for batch_idx, batch in data:
|
| 694 |
+
step += 1
|
| 695 |
+
progress_bar.update(1)
|
| 696 |
+
if f0:
|
| 697 |
+
(
|
| 698 |
+
phone,
|
| 699 |
+
phone_lengths,
|
| 700 |
+
pitch,
|
| 701 |
+
pitchf,
|
| 702 |
+
spec,
|
| 703 |
+
spec_lengths,
|
| 704 |
+
wave,
|
| 705 |
+
wave_lengths,
|
| 706 |
+
sid,
|
| 707 |
+
) = batch
|
| 708 |
+
else:
|
| 709 |
+
(
|
| 710 |
+
phone,
|
| 711 |
+
phone_lengths,
|
| 712 |
+
spec,
|
| 713 |
+
spec_lengths,
|
| 714 |
+
wave,
|
| 715 |
+
wave_lengths,
|
| 716 |
+
sid,
|
| 717 |
+
) = batch
|
| 718 |
+
|
| 719 |
+
if not use_cache:
|
| 720 |
+
phone, phone_lengths = (
|
| 721 |
+
phone.to(device=device, non_blocking=True),
|
| 722 |
+
phone_lengths.to(device=device, non_blocking=True),
|
| 723 |
+
)
|
| 724 |
+
if f0:
|
| 725 |
+
pitch, pitchf = (
|
| 726 |
+
pitch.to(device=device, non_blocking=True),
|
| 727 |
+
pitchf.to(device=device, non_blocking=True),
|
| 728 |
+
)
|
| 729 |
+
sid = sid.to(device=device, non_blocking=True)
|
| 730 |
+
spec, spec_lengths = (
|
| 731 |
+
spec.to(device=device, non_blocking=True),
|
| 732 |
+
spec_lengths.to(device=device, non_blocking=True),
|
| 733 |
+
)
|
| 734 |
+
wave, wave_lengths = (
|
| 735 |
+
wave.to(device=device, non_blocking=True),
|
| 736 |
+
wave_lengths.to(device=device, non_blocking=True),
|
| 737 |
+
)
|
| 738 |
+
if cache_in_gpu:
|
| 739 |
+
if f0:
|
| 740 |
+
cache.append(
|
| 741 |
+
(
|
| 742 |
+
batch_idx,
|
| 743 |
+
(
|
| 744 |
+
phone,
|
| 745 |
+
phone_lengths,
|
| 746 |
+
pitch,
|
| 747 |
+
pitchf,
|
| 748 |
+
spec,
|
| 749 |
+
spec_lengths,
|
| 750 |
+
wave,
|
| 751 |
+
wave_lengths,
|
| 752 |
+
sid,
|
| 753 |
+
),
|
| 754 |
+
)
|
| 755 |
+
)
|
| 756 |
+
else:
|
| 757 |
+
cache.append(
|
| 758 |
+
(
|
| 759 |
+
batch_idx,
|
| 760 |
+
(
|
| 761 |
+
phone,
|
| 762 |
+
phone_lengths,
|
| 763 |
+
spec,
|
| 764 |
+
spec_lengths,
|
| 765 |
+
wave,
|
| 766 |
+
wave_lengths,
|
| 767 |
+
sid,
|
| 768 |
+
),
|
| 769 |
+
)
|
| 770 |
+
)
|
| 771 |
+
|
| 772 |
+
with autocast(enabled=config.train.fp16_run):
|
| 773 |
+
if augment:
|
| 774 |
+
with torch.no_grad():
|
| 775 |
+
if type(augment_net_g) == SynthesizerTrnMs256NSFSid:
|
| 776 |
+
new_phone, aug_wave = change_speaker(augment_net_g, augment_speaker_info, embedder, embedding_output_layer, phone, phone_lengths, pitch, pitchf, spec_lengths)
|
| 777 |
+
else:
|
| 778 |
+
new_phone, aug_wave = change_speaker_nono(augment_net_g, embedder, embedding_output_layer, phone, phone_lengths, spec_lengths)
|
| 779 |
+
weight = np.power(.5, step / len(train_loader)) # 学習の初期はそのままのphone embeddingを使う
|
| 780 |
+
phone = phone * weight + new_phone * (1. - weight)
|
| 781 |
+
|
| 782 |
+
if f0:
|
| 783 |
+
(
|
| 784 |
+
y_hat,
|
| 785 |
+
ids_slice,
|
| 786 |
+
x_mask,
|
| 787 |
+
z_mask,
|
| 788 |
+
(z, z_p, m_p, logs_p, m_q, logs_q),
|
| 789 |
+
) = net_g(
|
| 790 |
+
phone, phone_lengths, pitch, pitchf, spec, spec_lengths, sid
|
| 791 |
+
)
|
| 792 |
+
else:
|
| 793 |
+
(
|
| 794 |
+
y_hat,
|
| 795 |
+
ids_slice,
|
| 796 |
+
x_mask,
|
| 797 |
+
z_mask,
|
| 798 |
+
(z, z_p, m_p, logs_p, m_q, logs_q),
|
| 799 |
+
) = net_g(phone, phone_lengths, spec, spec_lengths, sid)
|
| 800 |
+
mel = spec_to_mel_torch(
|
| 801 |
+
spec,
|
| 802 |
+
config.data.filter_length,
|
| 803 |
+
config.data.n_mel_channels,
|
| 804 |
+
config.data.sampling_rate,
|
| 805 |
+
config.data.mel_fmin,
|
| 806 |
+
config.data.mel_fmax,
|
| 807 |
+
)
|
| 808 |
+
y_mel = commons.slice_segments(
|
| 809 |
+
mel, ids_slice, config.train.segment_size // config.data.hop_length
|
| 810 |
+
)
|
| 811 |
+
with autocast(enabled=False):
|
| 812 |
+
y_hat_mel = mel_spectrogram_torch(
|
| 813 |
+
y_hat.float().squeeze(1),
|
| 814 |
+
config.data.filter_length,
|
| 815 |
+
config.data.n_mel_channels,
|
| 816 |
+
config.data.sampling_rate,
|
| 817 |
+
config.data.hop_length,
|
| 818 |
+
config.data.win_length,
|
| 819 |
+
config.data.mel_fmin,
|
| 820 |
+
config.data.mel_fmax,
|
| 821 |
+
)
|
| 822 |
+
if config.train.fp16_run == True and device != torch.device("mps"):
|
| 823 |
+
y_hat_mel = y_hat_mel.half()
|
| 824 |
+
wave_slice = commons.slice_segments(
|
| 825 |
+
wave, ids_slice * config.data.hop_length, config.train.segment_size
|
| 826 |
+
) # slice
|
| 827 |
+
|
| 828 |
+
# Discriminator
|
| 829 |
+
y_d_hat_r, y_d_hat_g, _, _ = net_d(wave_slice, y_hat.detach())
|
| 830 |
+
with autocast(enabled=False):
|
| 831 |
+
loss_disc, losses_disc_r, losses_disc_g = discriminator_loss(
|
| 832 |
+
y_d_hat_r, y_d_hat_g
|
| 833 |
+
)
|
| 834 |
+
optim_d.zero_grad()
|
| 835 |
+
scaler.scale(loss_disc).backward()
|
| 836 |
+
scaler.unscale_(optim_d)
|
| 837 |
+
grad_norm_d = commons.clip_grad_value_(net_d.parameters(), None)
|
| 838 |
+
scaler.step(optim_d)
|
| 839 |
+
|
| 840 |
+
with autocast(enabled=config.train.fp16_run):
|
| 841 |
+
# Generator
|
| 842 |
+
y_d_hat_r, y_d_hat_g, fmap_r, fmap_g = net_d(wave_slice, y_hat)
|
| 843 |
+
with autocast(enabled=False):
|
| 844 |
+
loss_mel = F.l1_loss(y_mel, y_hat_mel) * config.train.c_mel
|
| 845 |
+
loss_kl = (
|
| 846 |
+
kl_loss(z_p, logs_q, m_p, logs_p, z_mask) * config.train.c_kl
|
| 847 |
+
)
|
| 848 |
+
loss_fm = feature_loss(fmap_r, fmap_g)
|
| 849 |
+
loss_gen, losses_gen = generator_loss(y_d_hat_g)
|
| 850 |
+
loss_gen_all = loss_gen + loss_fm + loss_mel + loss_kl
|
| 851 |
+
optim_g.zero_grad()
|
| 852 |
+
scaler.scale(loss_gen_all).backward()
|
| 853 |
+
scaler.unscale_(optim_g)
|
| 854 |
+
grad_norm_g = commons.clip_grad_value_(net_g.parameters(), None)
|
| 855 |
+
scaler.step(optim_g)
|
| 856 |
+
scaler.update()
|
| 857 |
+
|
| 858 |
+
if is_main_process:
|
| 859 |
+
progress_bar.set_postfix(
|
| 860 |
+
epoch=epoch,
|
| 861 |
+
loss_g=float(loss_gen_all) if loss_gen_all is not None else 0.0,
|
| 862 |
+
loss_d=float(loss_disc) if loss_disc is not None else 0.0,
|
| 863 |
+
lr=float(lr) if lr is not None else 0.0,
|
| 864 |
+
use_cache=use_cache,
|
| 865 |
+
)
|
| 866 |
+
if global_step % config.train.log_interval == 0:
|
| 867 |
+
lr = optim_g.param_groups[0]["lr"]
|
| 868 |
+
# Amor For Tensorboard display
|
| 869 |
+
if loss_mel > 50:
|
| 870 |
+
loss_mel = 50
|
| 871 |
+
if loss_kl > 5:
|
| 872 |
+
loss_kl = 5
|
| 873 |
+
|
| 874 |
+
scalar_dict = {
|
| 875 |
+
"loss/g/total": loss_gen_all,
|
| 876 |
+
"loss/d/total": loss_disc,
|
| 877 |
+
"learning_rate": lr,
|
| 878 |
+
"grad_norm_d": grad_norm_d,
|
| 879 |
+
"grad_norm_g": grad_norm_g,
|
| 880 |
+
}
|
| 881 |
+
scalar_dict.update(
|
| 882 |
+
{
|
| 883 |
+
"loss/g/fm": loss_fm,
|
| 884 |
+
"loss/g/mel": loss_mel,
|
| 885 |
+
"loss/g/kl": loss_kl,
|
| 886 |
+
}
|
| 887 |
+
)
|
| 888 |
+
|
| 889 |
+
scalar_dict.update(
|
| 890 |
+
{"loss/g/{}".format(i): v for i, v in enumerate(losses_gen)}
|
| 891 |
+
)
|
| 892 |
+
scalar_dict.update(
|
| 893 |
+
{
|
| 894 |
+
"loss/d_r/{}".format(i): v
|
| 895 |
+
for i, v in enumerate(losses_disc_r)
|
| 896 |
+
}
|
| 897 |
+
)
|
| 898 |
+
scalar_dict.update(
|
| 899 |
+
{
|
| 900 |
+
"loss/d_g/{}".format(i): v
|
| 901 |
+
for i, v in enumerate(losses_disc_g)
|
| 902 |
+
}
|
| 903 |
+
)
|
| 904 |
+
image_dict = {
|
| 905 |
+
"slice/mel_org": utils.plot_spectrogram_to_numpy(
|
| 906 |
+
y_mel[0].data.cpu().numpy()
|
| 907 |
+
),
|
| 908 |
+
"slice/mel_gen": utils.plot_spectrogram_to_numpy(
|
| 909 |
+
y_hat_mel[0].data.cpu().numpy()
|
| 910 |
+
),
|
| 911 |
+
"all/mel": utils.plot_spectrogram_to_numpy(
|
| 912 |
+
mel[0].data.cpu().numpy()
|
| 913 |
+
),
|
| 914 |
+
}
|
| 915 |
+
utils.summarize(
|
| 916 |
+
writer=writer,
|
| 917 |
+
global_step=global_step,
|
| 918 |
+
images=image_dict,
|
| 919 |
+
scalars=scalar_dict,
|
| 920 |
+
)
|
| 921 |
+
global_step += 1
|
| 922 |
+
if is_main_process and save_every_epoch != 0 and epoch % save_every_epoch == 0:
|
| 923 |
+
if save_only_last:
|
| 924 |
+
old_g_path = os.path.join(
|
| 925 |
+
state_dir, f"G_{epoch - save_every_epoch}.pth"
|
| 926 |
+
)
|
| 927 |
+
old_d_path = os.path.join(
|
| 928 |
+
state_dir, f"D_{epoch - save_every_epoch}.pth"
|
| 929 |
+
)
|
| 930 |
+
old_wav_path = os.path.join(
|
| 931 |
+
state_dir, f"wav_sample_{epoch - save_every_epoch}"
|
| 932 |
+
)
|
| 933 |
+
if os.path.exists(old_g_path):
|
| 934 |
+
os.remove(old_g_path)
|
| 935 |
+
if os.path.exists(old_d_path):
|
| 936 |
+
os.remove(old_d_path)
|
| 937 |
+
if os.path.exists(old_wav_path):
|
| 938 |
+
shutil.rmtree(old_wav_path)
|
| 939 |
+
|
| 940 |
+
if save_wav_with_checkpoint:
|
| 941 |
+
with autocast(enabled=config.train.fp16_run):
|
| 942 |
+
with torch.no_grad():
|
| 943 |
+
if f0:
|
| 944 |
+
pred_wave = net_g.infer(phone, phone_lengths, pitch, pitchf, sid)[0]
|
| 945 |
+
else:
|
| 946 |
+
pred_wave = net_g.infer(phone, phone_lengths, sid)[0]
|
| 947 |
+
os.makedirs(os.path.join(state_dir, f"wav_sample_{epoch}"), exist_ok=True)
|
| 948 |
+
for i in range(pred_wave.shape[0]):
|
| 949 |
+
torchaudio.save(filepath=os.path.join(state_dir, f"wav_sample_{epoch}", f"{i:02}_y_true.wav"), src=wave[i].detach().cpu().float(), sample_rate=int(sample_rate[:-1] + "000"))
|
| 950 |
+
torchaudio.save(filepath=os.path.join(state_dir, f"wav_sample_{epoch}", f"{i:02}_y_pred.wav"), src=pred_wave[i].detach().cpu().float(), sample_rate=int(sample_rate[:-1] + "000"))
|
| 951 |
+
if augment:
|
| 952 |
+
torchaudio.save(filepath=os.path.join(state_dir, f"wav_sample_{epoch}", f"{i:02}_y_aug.wav"), src=aug_wave[i].detach().cpu().float(), sample_rate=int(sample_rate[:-1] + "000"))
|
| 953 |
+
|
| 954 |
+
utils.save_state(
|
| 955 |
+
net_g,
|
| 956 |
+
optim_g,
|
| 957 |
+
config.train.learning_rate,
|
| 958 |
+
epoch,
|
| 959 |
+
os.path.join(state_dir, f"G_{epoch}.pth"),
|
| 960 |
+
)
|
| 961 |
+
utils.save_state(
|
| 962 |
+
net_d,
|
| 963 |
+
optim_d,
|
| 964 |
+
config.train.learning_rate,
|
| 965 |
+
epoch,
|
| 966 |
+
os.path.join(state_dir, f"D_{epoch}.pth"),
|
| 967 |
+
)
|
| 968 |
+
|
| 969 |
+
save(
|
| 970 |
+
net_g,
|
| 971 |
+
config.version,
|
| 972 |
+
sample_rate,
|
| 973 |
+
f0,
|
| 974 |
+
embedder_name,
|
| 975 |
+
embedder_out_channels,
|
| 976 |
+
embedding_output_layer,
|
| 977 |
+
os.path.join(training_dir, "checkpoints", f"{model_name}-{epoch}.pth"),
|
| 978 |
+
epoch,
|
| 979 |
+
speaker_info
|
| 980 |
+
)
|
| 981 |
+
|
| 982 |
+
scheduler_g.step()
|
| 983 |
+
scheduler_d.step()
|
| 984 |
+
|
| 985 |
+
if is_main_process:
|
| 986 |
+
print("Training is done. The program is closed.")
|
| 987 |
+
save(
|
| 988 |
+
net_g,
|
| 989 |
+
config.version,
|
| 990 |
+
sample_rate,
|
| 991 |
+
f0,
|
| 992 |
+
embedder_name,
|
| 993 |
+
embedder_out_channels,
|
| 994 |
+
embedding_output_layer,
|
| 995 |
+
os.path.join(out_dir, f"{model_name}.pth"),
|
| 996 |
+
epoch,
|
| 997 |
+
speaker_info
|
| 998 |
+
)
|
lib/rvc/transforms.py
ADDED
|
@@ -0,0 +1,207 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import numpy as np
|
| 2 |
+
import torch
|
| 3 |
+
from torch.nn import functional as F
|
| 4 |
+
|
| 5 |
+
DEFAULT_MIN_BIN_WIDTH = 1e-3
|
| 6 |
+
DEFAULT_MIN_BIN_HEIGHT = 1e-3
|
| 7 |
+
DEFAULT_MIN_DERIVATIVE = 1e-3
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
def piecewise_rational_quadratic_transform(
|
| 11 |
+
inputs,
|
| 12 |
+
unnormalized_widths,
|
| 13 |
+
unnormalized_heights,
|
| 14 |
+
unnormalized_derivatives,
|
| 15 |
+
inverse=False,
|
| 16 |
+
tails=None,
|
| 17 |
+
tail_bound=1.0,
|
| 18 |
+
min_bin_width=DEFAULT_MIN_BIN_WIDTH,
|
| 19 |
+
min_bin_height=DEFAULT_MIN_BIN_HEIGHT,
|
| 20 |
+
min_derivative=DEFAULT_MIN_DERIVATIVE,
|
| 21 |
+
):
|
| 22 |
+
if tails is None:
|
| 23 |
+
spline_fn = rational_quadratic_spline
|
| 24 |
+
spline_kwargs = {}
|
| 25 |
+
else:
|
| 26 |
+
spline_fn = unconstrained_rational_quadratic_spline
|
| 27 |
+
spline_kwargs = {"tails": tails, "tail_bound": tail_bound}
|
| 28 |
+
|
| 29 |
+
outputs, logabsdet = spline_fn(
|
| 30 |
+
inputs=inputs,
|
| 31 |
+
unnormalized_widths=unnormalized_widths,
|
| 32 |
+
unnormalized_heights=unnormalized_heights,
|
| 33 |
+
unnormalized_derivatives=unnormalized_derivatives,
|
| 34 |
+
inverse=inverse,
|
| 35 |
+
min_bin_width=min_bin_width,
|
| 36 |
+
min_bin_height=min_bin_height,
|
| 37 |
+
min_derivative=min_derivative,
|
| 38 |
+
**spline_kwargs
|
| 39 |
+
)
|
| 40 |
+
return outputs, logabsdet
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
def searchsorted(bin_locations, inputs, eps=1e-6):
|
| 44 |
+
bin_locations[..., -1] += eps
|
| 45 |
+
return torch.sum(inputs[..., None] >= bin_locations, dim=-1) - 1
|
| 46 |
+
|
| 47 |
+
|
| 48 |
+
def unconstrained_rational_quadratic_spline(
|
| 49 |
+
inputs,
|
| 50 |
+
unnormalized_widths,
|
| 51 |
+
unnormalized_heights,
|
| 52 |
+
unnormalized_derivatives,
|
| 53 |
+
inverse=False,
|
| 54 |
+
tails="linear",
|
| 55 |
+
tail_bound=1.0,
|
| 56 |
+
min_bin_width=DEFAULT_MIN_BIN_WIDTH,
|
| 57 |
+
min_bin_height=DEFAULT_MIN_BIN_HEIGHT,
|
| 58 |
+
min_derivative=DEFAULT_MIN_DERIVATIVE,
|
| 59 |
+
):
|
| 60 |
+
inside_interval_mask = (inputs >= -tail_bound) & (inputs <= tail_bound)
|
| 61 |
+
outside_interval_mask = ~inside_interval_mask
|
| 62 |
+
|
| 63 |
+
outputs = torch.zeros_like(inputs)
|
| 64 |
+
logabsdet = torch.zeros_like(inputs)
|
| 65 |
+
|
| 66 |
+
if tails == "linear":
|
| 67 |
+
unnormalized_derivatives = F.pad(unnormalized_derivatives, pad=(1, 1))
|
| 68 |
+
constant = np.log(np.exp(1 - min_derivative) - 1)
|
| 69 |
+
unnormalized_derivatives[..., 0] = constant
|
| 70 |
+
unnormalized_derivatives[..., -1] = constant
|
| 71 |
+
|
| 72 |
+
outputs[outside_interval_mask] = inputs[outside_interval_mask]
|
| 73 |
+
logabsdet[outside_interval_mask] = 0
|
| 74 |
+
else:
|
| 75 |
+
raise RuntimeError("{} tails are not implemented.".format(tails))
|
| 76 |
+
|
| 77 |
+
(
|
| 78 |
+
outputs[inside_interval_mask],
|
| 79 |
+
logabsdet[inside_interval_mask],
|
| 80 |
+
) = rational_quadratic_spline(
|
| 81 |
+
inputs=inputs[inside_interval_mask],
|
| 82 |
+
unnormalized_widths=unnormalized_widths[inside_interval_mask, :],
|
| 83 |
+
unnormalized_heights=unnormalized_heights[inside_interval_mask, :],
|
| 84 |
+
unnormalized_derivatives=unnormalized_derivatives[inside_interval_mask, :],
|
| 85 |
+
inverse=inverse,
|
| 86 |
+
left=-tail_bound,
|
| 87 |
+
right=tail_bound,
|
| 88 |
+
bottom=-tail_bound,
|
| 89 |
+
top=tail_bound,
|
| 90 |
+
min_bin_width=min_bin_width,
|
| 91 |
+
min_bin_height=min_bin_height,
|
| 92 |
+
min_derivative=min_derivative,
|
| 93 |
+
)
|
| 94 |
+
|
| 95 |
+
return outputs, logabsdet
|
| 96 |
+
|
| 97 |
+
|
| 98 |
+
def rational_quadratic_spline(
|
| 99 |
+
inputs,
|
| 100 |
+
unnormalized_widths,
|
| 101 |
+
unnormalized_heights,
|
| 102 |
+
unnormalized_derivatives,
|
| 103 |
+
inverse=False,
|
| 104 |
+
left=0.0,
|
| 105 |
+
right=1.0,
|
| 106 |
+
bottom=0.0,
|
| 107 |
+
top=1.0,
|
| 108 |
+
min_bin_width=DEFAULT_MIN_BIN_WIDTH,
|
| 109 |
+
min_bin_height=DEFAULT_MIN_BIN_HEIGHT,
|
| 110 |
+
min_derivative=DEFAULT_MIN_DERIVATIVE,
|
| 111 |
+
):
|
| 112 |
+
if torch.min(inputs) < left or torch.max(inputs) > right:
|
| 113 |
+
raise ValueError("Input to a transform is not within its domain")
|
| 114 |
+
|
| 115 |
+
num_bins = unnormalized_widths.shape[-1]
|
| 116 |
+
|
| 117 |
+
if min_bin_width * num_bins > 1.0:
|
| 118 |
+
raise ValueError("Minimal bin width too large for the number of bins")
|
| 119 |
+
if min_bin_height * num_bins > 1.0:
|
| 120 |
+
raise ValueError("Minimal bin height too large for the number of bins")
|
| 121 |
+
|
| 122 |
+
widths = F.softmax(unnormalized_widths, dim=-1)
|
| 123 |
+
widths = min_bin_width + (1 - min_bin_width * num_bins) * widths
|
| 124 |
+
cumwidths = torch.cumsum(widths, dim=-1)
|
| 125 |
+
cumwidths = F.pad(cumwidths, pad=(1, 0), mode="constant", value=0.0)
|
| 126 |
+
cumwidths = (right - left) * cumwidths + left
|
| 127 |
+
cumwidths[..., 0] = left
|
| 128 |
+
cumwidths[..., -1] = right
|
| 129 |
+
widths = cumwidths[..., 1:] - cumwidths[..., :-1]
|
| 130 |
+
|
| 131 |
+
derivatives = min_derivative + F.softplus(unnormalized_derivatives)
|
| 132 |
+
|
| 133 |
+
heights = F.softmax(unnormalized_heights, dim=-1)
|
| 134 |
+
heights = min_bin_height + (1 - min_bin_height * num_bins) * heights
|
| 135 |
+
cumheights = torch.cumsum(heights, dim=-1)
|
| 136 |
+
cumheights = F.pad(cumheights, pad=(1, 0), mode="constant", value=0.0)
|
| 137 |
+
cumheights = (top - bottom) * cumheights + bottom
|
| 138 |
+
cumheights[..., 0] = bottom
|
| 139 |
+
cumheights[..., -1] = top
|
| 140 |
+
heights = cumheights[..., 1:] - cumheights[..., :-1]
|
| 141 |
+
|
| 142 |
+
if inverse:
|
| 143 |
+
bin_idx = searchsorted(cumheights, inputs)[..., None]
|
| 144 |
+
else:
|
| 145 |
+
bin_idx = searchsorted(cumwidths, inputs)[..., None]
|
| 146 |
+
|
| 147 |
+
input_cumwidths = cumwidths.gather(-1, bin_idx)[..., 0]
|
| 148 |
+
input_bin_widths = widths.gather(-1, bin_idx)[..., 0]
|
| 149 |
+
|
| 150 |
+
input_cumheights = cumheights.gather(-1, bin_idx)[..., 0]
|
| 151 |
+
delta = heights / widths
|
| 152 |
+
input_delta = delta.gather(-1, bin_idx)[..., 0]
|
| 153 |
+
|
| 154 |
+
input_derivatives = derivatives.gather(-1, bin_idx)[..., 0]
|
| 155 |
+
input_derivatives_plus_one = derivatives[..., 1:].gather(-1, bin_idx)[..., 0]
|
| 156 |
+
|
| 157 |
+
input_heights = heights.gather(-1, bin_idx)[..., 0]
|
| 158 |
+
|
| 159 |
+
if inverse:
|
| 160 |
+
a = (inputs - input_cumheights) * (
|
| 161 |
+
input_derivatives + input_derivatives_plus_one - 2 * input_delta
|
| 162 |
+
) + input_heights * (input_delta - input_derivatives)
|
| 163 |
+
b = input_heights * input_derivatives - (inputs - input_cumheights) * (
|
| 164 |
+
input_derivatives + input_derivatives_plus_one - 2 * input_delta
|
| 165 |
+
)
|
| 166 |
+
c = -input_delta * (inputs - input_cumheights)
|
| 167 |
+
|
| 168 |
+
discriminant = b.pow(2) - 4 * a * c
|
| 169 |
+
assert (discriminant >= 0).all()
|
| 170 |
+
|
| 171 |
+
root = (2 * c) / (-b - torch.sqrt(discriminant))
|
| 172 |
+
outputs = root * input_bin_widths + input_cumwidths
|
| 173 |
+
|
| 174 |
+
theta_one_minus_theta = root * (1 - root)
|
| 175 |
+
denominator = input_delta + (
|
| 176 |
+
(input_derivatives + input_derivatives_plus_one - 2 * input_delta)
|
| 177 |
+
* theta_one_minus_theta
|
| 178 |
+
)
|
| 179 |
+
derivative_numerator = input_delta.pow(2) * (
|
| 180 |
+
input_derivatives_plus_one * root.pow(2)
|
| 181 |
+
+ 2 * input_delta * theta_one_minus_theta
|
| 182 |
+
+ input_derivatives * (1 - root).pow(2)
|
| 183 |
+
)
|
| 184 |
+
logabsdet = torch.log(derivative_numerator) - 2 * torch.log(denominator)
|
| 185 |
+
|
| 186 |
+
return outputs, -logabsdet
|
| 187 |
+
else:
|
| 188 |
+
theta = (inputs - input_cumwidths) / input_bin_widths
|
| 189 |
+
theta_one_minus_theta = theta * (1 - theta)
|
| 190 |
+
|
| 191 |
+
numerator = input_heights * (
|
| 192 |
+
input_delta * theta.pow(2) + input_derivatives * theta_one_minus_theta
|
| 193 |
+
)
|
| 194 |
+
denominator = input_delta + (
|
| 195 |
+
(input_derivatives + input_derivatives_plus_one - 2 * input_delta)
|
| 196 |
+
* theta_one_minus_theta
|
| 197 |
+
)
|
| 198 |
+
outputs = input_cumheights + numerator / denominator
|
| 199 |
+
|
| 200 |
+
derivative_numerator = input_delta.pow(2) * (
|
| 201 |
+
input_derivatives_plus_one * theta.pow(2)
|
| 202 |
+
+ 2 * input_delta * theta_one_minus_theta
|
| 203 |
+
+ input_derivatives * (1 - theta).pow(2)
|
| 204 |
+
)
|
| 205 |
+
logabsdet = torch.log(derivative_numerator) - 2 * torch.log(denominator)
|
| 206 |
+
|
| 207 |
+
return outputs, logabsdet
|
lib/rvc/utils.py
ADDED
|
@@ -0,0 +1,225 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import glob
|
| 2 |
+
import logging
|
| 3 |
+
import os
|
| 4 |
+
import shutil
|
| 5 |
+
import socket
|
| 6 |
+
import sys
|
| 7 |
+
|
| 8 |
+
import ffmpeg
|
| 9 |
+
import matplotlib
|
| 10 |
+
import matplotlib.pylab as plt
|
| 11 |
+
import numpy as np
|
| 12 |
+
import torch
|
| 13 |
+
from scipy.io.wavfile import read
|
| 14 |
+
from torch.nn import functional as F
|
| 15 |
+
|
| 16 |
+
from modules.shared import ROOT_DIR
|
| 17 |
+
|
| 18 |
+
from .config import TrainConfig
|
| 19 |
+
|
| 20 |
+
matplotlib.use("Agg")
|
| 21 |
+
logging.getLogger("matplotlib").setLevel(logging.WARNING)
|
| 22 |
+
|
| 23 |
+
logging.basicConfig(stream=sys.stdout, level=logging.DEBUG)
|
| 24 |
+
logger = logging
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
def load_audio(file: str, sr):
|
| 28 |
+
try:
|
| 29 |
+
# https://github.com/openai/whisper/blob/main/whisper/audio.py#L26
|
| 30 |
+
# This launches a subprocess to decode audio while down-mixing and resampling as necessary.
|
| 31 |
+
# Requires the ffmpeg CLI and `ffmpeg-python` package to be installed.
|
| 32 |
+
file = (
|
| 33 |
+
file.strip(" ").strip('"').strip("\n").strip('"').strip(" ")
|
| 34 |
+
) # Prevent small white copy path head and tail with spaces and " and return
|
| 35 |
+
out, _ = (
|
| 36 |
+
ffmpeg.input(file, threads=0)
|
| 37 |
+
.output("-", format="f32le", acodec="pcm_f32le", ac=1, ar=sr)
|
| 38 |
+
.run(cmd=["ffmpeg", "-nostdin"], capture_stdout=True, capture_stderr=True)
|
| 39 |
+
)
|
| 40 |
+
except Exception as e:
|
| 41 |
+
raise RuntimeError(f"Failed to load audio: {e}")
|
| 42 |
+
|
| 43 |
+
return np.frombuffer(out, np.float32).flatten()
|
| 44 |
+
|
| 45 |
+
|
| 46 |
+
def find_empty_port():
|
| 47 |
+
s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
|
| 48 |
+
s.bind(("", 0))
|
| 49 |
+
s.listen(1)
|
| 50 |
+
port = s.getsockname()[1]
|
| 51 |
+
s.close()
|
| 52 |
+
return port
|
| 53 |
+
|
| 54 |
+
|
| 55 |
+
def load_checkpoint(checkpoint_path, model, optimizer=None, load_opt=1):
|
| 56 |
+
assert os.path.isfile(checkpoint_path)
|
| 57 |
+
checkpoint_dict = torch.load(checkpoint_path, map_location="cpu")
|
| 58 |
+
|
| 59 |
+
saved_state_dict = checkpoint_dict["model"]
|
| 60 |
+
if hasattr(model, "module"):
|
| 61 |
+
state_dict = model.module.state_dict()
|
| 62 |
+
else:
|
| 63 |
+
state_dict = model.state_dict()
|
| 64 |
+
new_state_dict = {}
|
| 65 |
+
for k, v in state_dict.items(): # 模型需要的shape
|
| 66 |
+
try:
|
| 67 |
+
new_state_dict[k] = saved_state_dict[k]
|
| 68 |
+
if saved_state_dict[k].shape != state_dict[k].shape:
|
| 69 |
+
print(
|
| 70 |
+
f"shape-{k}-mismatch|need-{state_dict[k].shape}|get-{saved_state_dict[k].shape}"
|
| 71 |
+
)
|
| 72 |
+
if saved_state_dict[k].dim() == 2: # NOTE: check is this ok?
|
| 73 |
+
# for embedded input 256 <==> 768
|
| 74 |
+
# this achieves we can continue training from original's pretrained checkpoints when using embedder that 768-th dim output etc.
|
| 75 |
+
if saved_state_dict[k].dtype == torch.half:
|
| 76 |
+
new_state_dict[k] = (
|
| 77 |
+
F.interpolate(
|
| 78 |
+
saved_state_dict[k].float().unsqueeze(0).unsqueeze(0),
|
| 79 |
+
size=state_dict[k].shape,
|
| 80 |
+
mode="bilinear",
|
| 81 |
+
)
|
| 82 |
+
.half()
|
| 83 |
+
.squeeze(0)
|
| 84 |
+
.squeeze(0)
|
| 85 |
+
)
|
| 86 |
+
else:
|
| 87 |
+
new_state_dict[k] = (
|
| 88 |
+
F.interpolate(
|
| 89 |
+
saved_state_dict[k].unsqueeze(0).unsqueeze(0),
|
| 90 |
+
size=state_dict[k].shape,
|
| 91 |
+
mode="bilinear",
|
| 92 |
+
)
|
| 93 |
+
.squeeze(0)
|
| 94 |
+
.squeeze(0)
|
| 95 |
+
)
|
| 96 |
+
print(
|
| 97 |
+
"interpolated new_state_dict",
|
| 98 |
+
k,
|
| 99 |
+
"from",
|
| 100 |
+
saved_state_dict[k].shape,
|
| 101 |
+
"to",
|
| 102 |
+
new_state_dict[k].shape,
|
| 103 |
+
)
|
| 104 |
+
else:
|
| 105 |
+
raise KeyError
|
| 106 |
+
except Exception as e:
|
| 107 |
+
# print(traceback.format_exc())
|
| 108 |
+
print(f"{k} is not in the checkpoint")
|
| 109 |
+
print("error: %s" % e)
|
| 110 |
+
new_state_dict[k] = v # 模型自带的随机值
|
| 111 |
+
if hasattr(model, "module"):
|
| 112 |
+
model.module.load_state_dict(new_state_dict, strict=False)
|
| 113 |
+
else:
|
| 114 |
+
model.load_state_dict(new_state_dict, strict=False)
|
| 115 |
+
print("Loaded model weights")
|
| 116 |
+
|
| 117 |
+
epoch = checkpoint_dict["epoch"]
|
| 118 |
+
learning_rate = checkpoint_dict["learning_rate"]
|
| 119 |
+
if optimizer is not None and load_opt == 1:
|
| 120 |
+
optimizer.load_state_dict(checkpoint_dict["optimizer"])
|
| 121 |
+
print("Loaded checkpoint '{}' (epoch {})".format(checkpoint_path, epoch))
|
| 122 |
+
return model, optimizer, learning_rate, epoch
|
| 123 |
+
|
| 124 |
+
|
| 125 |
+
def save_state(model, optimizer, learning_rate, epoch, checkpoint_path):
|
| 126 |
+
print(
|
| 127 |
+
"Saving model and optimizer state at epoch {} to {}".format(
|
| 128 |
+
epoch, checkpoint_path
|
| 129 |
+
)
|
| 130 |
+
)
|
| 131 |
+
if hasattr(model, "module"):
|
| 132 |
+
state_dict = model.module.state_dict()
|
| 133 |
+
else:
|
| 134 |
+
state_dict = model.state_dict()
|
| 135 |
+
torch.save(
|
| 136 |
+
{
|
| 137 |
+
"model": state_dict,
|
| 138 |
+
"epoch": epoch,
|
| 139 |
+
"optimizer": optimizer.state_dict(),
|
| 140 |
+
"learning_rate": learning_rate,
|
| 141 |
+
},
|
| 142 |
+
checkpoint_path,
|
| 143 |
+
)
|
| 144 |
+
|
| 145 |
+
|
| 146 |
+
def summarize(
|
| 147 |
+
writer,
|
| 148 |
+
global_step,
|
| 149 |
+
scalars={},
|
| 150 |
+
histograms={},
|
| 151 |
+
images={},
|
| 152 |
+
audios={},
|
| 153 |
+
audio_sampling_rate=22050,
|
| 154 |
+
):
|
| 155 |
+
for k, v in scalars.items():
|
| 156 |
+
writer.add_scalar(k, v, global_step)
|
| 157 |
+
for k, v in histograms.items():
|
| 158 |
+
writer.add_histogram(k, v, global_step)
|
| 159 |
+
for k, v in images.items():
|
| 160 |
+
writer.add_image(k, v, global_step, dataformats="HWC")
|
| 161 |
+
for k, v in audios.items():
|
| 162 |
+
writer.add_audio(k, v, global_step, audio_sampling_rate)
|
| 163 |
+
|
| 164 |
+
|
| 165 |
+
def latest_checkpoint_path(dir_path, regex="G_*.pth"):
|
| 166 |
+
filelist = glob.glob(os.path.join(dir_path, regex))
|
| 167 |
+
if len(filelist) == 0:
|
| 168 |
+
return None
|
| 169 |
+
filelist.sort(key=lambda f: int("".join(filter(str.isdigit, f))))
|
| 170 |
+
filepath = filelist[-1]
|
| 171 |
+
return filepath
|
| 172 |
+
|
| 173 |
+
|
| 174 |
+
def plot_spectrogram_to_numpy(spectrogram):
|
| 175 |
+
fig, ax = plt.subplots(figsize=(10, 2))
|
| 176 |
+
im = ax.imshow(spectrogram, aspect="auto", origin="lower", interpolation="none")
|
| 177 |
+
plt.colorbar(im, ax=ax)
|
| 178 |
+
plt.xlabel("Frames")
|
| 179 |
+
plt.ylabel("Channels")
|
| 180 |
+
plt.tight_layout()
|
| 181 |
+
|
| 182 |
+
fig.canvas.draw()
|
| 183 |
+
data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep="")
|
| 184 |
+
data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
|
| 185 |
+
plt.close()
|
| 186 |
+
return data
|
| 187 |
+
|
| 188 |
+
|
| 189 |
+
def plot_alignment_to_numpy(alignment, info=None):
|
| 190 |
+
fig, ax = plt.subplots(figsize=(6, 4))
|
| 191 |
+
im = ax.imshow(
|
| 192 |
+
alignment.transpose(), aspect="auto", origin="lower", interpolation="none"
|
| 193 |
+
)
|
| 194 |
+
fig.colorbar(im, ax=ax)
|
| 195 |
+
xlabel = "Decoder timestep"
|
| 196 |
+
if info is not None:
|
| 197 |
+
xlabel += "\n\n" + info
|
| 198 |
+
plt.xlabel(xlabel)
|
| 199 |
+
plt.ylabel("Encoder timestep")
|
| 200 |
+
plt.tight_layout()
|
| 201 |
+
|
| 202 |
+
fig.canvas.draw()
|
| 203 |
+
data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep="")
|
| 204 |
+
data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
|
| 205 |
+
plt.close()
|
| 206 |
+
return data
|
| 207 |
+
|
| 208 |
+
|
| 209 |
+
def load_wav_to_torch(full_path):
|
| 210 |
+
sampling_rate, data = read(full_path)
|
| 211 |
+
return torch.FloatTensor(data.astype(np.float32)), sampling_rate
|
| 212 |
+
|
| 213 |
+
|
| 214 |
+
def load_config(training_dir: str, sample_rate: int, emb_channels: int):
|
| 215 |
+
if emb_channels == 256:
|
| 216 |
+
config_path = os.path.join(ROOT_DIR, "configs", f"{sample_rate}.json")
|
| 217 |
+
else:
|
| 218 |
+
config_path = os.path.join(
|
| 219 |
+
ROOT_DIR, "configs", f"{sample_rate}-{emb_channels}.json"
|
| 220 |
+
)
|
| 221 |
+
config_save_path = os.path.join(training_dir, "config.json")
|
| 222 |
+
|
| 223 |
+
shutil.copyfile(config_path, config_save_path)
|
| 224 |
+
|
| 225 |
+
return TrainConfig.parse_file(config_save_path)
|
models/checkpoints/.gitignore
ADDED
|
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
|
|
|
| 1 |
+
*
|
| 2 |
+
!.gitignore
|
models/embeddings/.gitignore
ADDED
|
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
|
|
|
| 1 |
+
*
|
| 2 |
+
!.gitignore
|
models/pretrained/.gitignore
ADDED
|
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
|
|
|
| 1 |
+
*
|
| 2 |
+
!.gitignore
|
models/training/.gitignore
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
*/**
|
| 2 |
+
|
| 3 |
+
!mute/**/*
|
| 4 |
+
!.gitignore
|
| 5 |
+
|
| 6 |
+
mute/**/*.pt
|
models/training/models/.gitignore
ADDED
|
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
|
|
|
| 1 |
+
*
|
| 2 |
+
!.gitignore
|
models/training/mute/0_gt_wavs/mute32k.wav
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:9edcf85ec77e88bd01edf3d887bdc418d3596d573f7ad2694da546f41dae6baf
|
| 3 |
+
size 192078
|
models/training/mute/0_gt_wavs/mute40k.wav
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:67a816e77b50cb9f016e49e5c01f07e080c4e3b82b7a8ac3e64bcb143f90f31b
|
| 3 |
+
size 240078
|
models/training/mute/0_gt_wavs/mute48k.wav
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:2f2bb4daaa106e351aebb001e5a25de985c0b472f22e8d60676bc924a79056ee
|
| 3 |
+
size 288078
|
models/training/mute/1_16k_wavs/mute.wav
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:9e233e86ba1be365e1133f157d56b61110086b89650ecfbdfc013c759e466250
|
| 3 |
+
size 96078
|
models/training/mute/2a_f0/mute.wav.npy
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:9b9acf9ab7facdb032e1d687fe35182670b0b94566c4b209ae48c239d19956a6
|
| 3 |
+
size 1332
|
models/training/mute/2b_f0nsf/mute.wav.npy
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:30792849c8e72d67e6691754077f2888b101cb741e9c7f193c91dd9692870c87
|
| 3 |
+
size 2536
|
models/training/mute/3_feature256/mute.npy
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:64d5abbac078e19a3f649c0d78a02cb33a71407ded3ddf2db78e6b803d0c0126
|
| 3 |
+
size 152704
|
modules/cmd_opts.py
ADDED
|
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import argparse
|
| 2 |
+
|
| 3 |
+
parser = argparse.ArgumentParser()
|
| 4 |
+
|
| 5 |
+
parser.add_argument("--host", help="Host to connect to", type=str, default="127.0.0.1")
|
| 6 |
+
parser.add_argument("--port", help="Port to connect to", type=int)
|
| 7 |
+
parser.add_argument("--share", help="Enable gradio share", action="store_true")
|
| 8 |
+
parser.add_argument(
|
| 9 |
+
"--models-dir", help="Path to models directory", type=str, default=None
|
| 10 |
+
)
|
| 11 |
+
parser.add_argument(
|
| 12 |
+
"--output-dir", help="Path to output directory", type=str, default=None
|
| 13 |
+
)
|
| 14 |
+
parser.add_argument(
|
| 15 |
+
"--precision",
|
| 16 |
+
help="Precision to use",
|
| 17 |
+
type=str,
|
| 18 |
+
default="fp16",
|
| 19 |
+
choices=["fp32", "fp16"],
|
| 20 |
+
)
|
| 21 |
+
|
| 22 |
+
opts, _ = parser.parse_known_args()
|
modules/core.py
ADDED
|
@@ -0,0 +1,156 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import hashlib
|
| 2 |
+
import os
|
| 3 |
+
import shutil
|
| 4 |
+
import sys
|
| 5 |
+
from concurrent.futures import ThreadPoolExecutor
|
| 6 |
+
|
| 7 |
+
import requests
|
| 8 |
+
|
| 9 |
+
from modules.models import MODELS_DIR
|
| 10 |
+
from modules.shared import ROOT_DIR
|
| 11 |
+
from modules.utils import download_file
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
def get_hf_etag(url: str):
|
| 15 |
+
r = requests.head(url)
|
| 16 |
+
|
| 17 |
+
etag = r.headers["X-Linked-ETag"] if "X-Linked-ETag" in r.headers else ""
|
| 18 |
+
|
| 19 |
+
if etag.startswith('"') and etag.endswith('"'):
|
| 20 |
+
etag = etag[1:-1]
|
| 21 |
+
|
| 22 |
+
return etag
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
def calc_sha256(filepath: str):
|
| 26 |
+
sha256 = hashlib.sha256()
|
| 27 |
+
with open(filepath, "rb") as f:
|
| 28 |
+
for chunk in iter(lambda: f.read(4096), b""):
|
| 29 |
+
sha256.update(chunk)
|
| 30 |
+
return sha256.hexdigest()
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
def download_models():
|
| 34 |
+
def hash_check(url: str, out: str):
|
| 35 |
+
if not os.path.exists(out):
|
| 36 |
+
return False
|
| 37 |
+
etag = get_hf_etag(url)
|
| 38 |
+
hash = calc_sha256(out)
|
| 39 |
+
return etag == hash
|
| 40 |
+
|
| 41 |
+
os.makedirs(os.path.join(MODELS_DIR, "pretrained", "v2"), exist_ok=True)
|
| 42 |
+
|
| 43 |
+
tasks = []
|
| 44 |
+
for template in [
|
| 45 |
+
"D{}k",
|
| 46 |
+
"G{}k",
|
| 47 |
+
"f0D{}k",
|
| 48 |
+
"f0G{}k",
|
| 49 |
+
]:
|
| 50 |
+
basename = template.format("40")
|
| 51 |
+
url = f"https://huggingface.co/ddPn08/rvc-webui-models/resolve/main/pretrained/v2/{basename}.pth"
|
| 52 |
+
out = os.path.join(MODELS_DIR, "pretrained", "v2", f"{basename}.pth")
|
| 53 |
+
|
| 54 |
+
if hash_check(url, out):
|
| 55 |
+
continue
|
| 56 |
+
|
| 57 |
+
tasks.append((url, out))
|
| 58 |
+
|
| 59 |
+
for filename in [
|
| 60 |
+
"checkpoint_best_legacy_500.pt",
|
| 61 |
+
]:
|
| 62 |
+
out = os.path.join(MODELS_DIR, "embeddings", filename)
|
| 63 |
+
url = f"https://huggingface.co/ddPn08/rvc-webui-models/resolve/main/embeddings/{filename}"
|
| 64 |
+
|
| 65 |
+
if hash_check(url, out):
|
| 66 |
+
continue
|
| 67 |
+
|
| 68 |
+
tasks.append(
|
| 69 |
+
(
|
| 70 |
+
f"https://huggingface.co/ddPn08/rvc-webui-models/resolve/main/embeddings/{filename}",
|
| 71 |
+
out,
|
| 72 |
+
)
|
| 73 |
+
)
|
| 74 |
+
|
| 75 |
+
# japanese-hubert-base (Fairseq)
|
| 76 |
+
# from official repo
|
| 77 |
+
# NOTE: change filename?
|
| 78 |
+
hubert_jp_url = f"https://huggingface.co/rinna/japanese-hubert-base/resolve/main/fairseq/model.pt"
|
| 79 |
+
out = os.path.join(MODELS_DIR, "embeddings", "rinna_hubert_base_jp.pt")
|
| 80 |
+
if not hash_check(hubert_jp_url, out):
|
| 81 |
+
tasks.append(
|
| 82 |
+
(
|
| 83 |
+
hubert_jp_url,
|
| 84 |
+
out,
|
| 85 |
+
)
|
| 86 |
+
)
|
| 87 |
+
|
| 88 |
+
if len(tasks) < 1:
|
| 89 |
+
return
|
| 90 |
+
|
| 91 |
+
with ThreadPoolExecutor() as pool:
|
| 92 |
+
pool.map(
|
| 93 |
+
download_file,
|
| 94 |
+
*zip(
|
| 95 |
+
*[(filename, out, i, True) for i, (filename, out) in enumerate(tasks)]
|
| 96 |
+
),
|
| 97 |
+
)
|
| 98 |
+
|
| 99 |
+
|
| 100 |
+
def install_ffmpeg():
|
| 101 |
+
if os.path.exists(os.path.join(ROOT_DIR, "bin", "ffmpeg.exe")):
|
| 102 |
+
return
|
| 103 |
+
tmpdir = os.path.join(ROOT_DIR, "tmp")
|
| 104 |
+
url = (
|
| 105 |
+
"https://www.gyan.dev/ffmpeg/builds/packages/ffmpeg-5.1.2-essentials_build.zip"
|
| 106 |
+
)
|
| 107 |
+
out = os.path.join(tmpdir, "ffmpeg.zip")
|
| 108 |
+
os.makedirs(os.path.dirname(out), exist_ok=True)
|
| 109 |
+
download_file(url, out)
|
| 110 |
+
shutil.unpack_archive(out, os.path.join(tmpdir, "ffmpeg"))
|
| 111 |
+
shutil.copyfile(
|
| 112 |
+
os.path.join(
|
| 113 |
+
tmpdir, "ffmpeg", "ffmpeg-5.1.2-essentials_build", "bin", "ffmpeg.exe"
|
| 114 |
+
),
|
| 115 |
+
os.path.join(ROOT_DIR, "bin", "ffmpeg.exe"),
|
| 116 |
+
)
|
| 117 |
+
os.remove(os.path.join(tmpdir, "ffmpeg.zip"))
|
| 118 |
+
shutil.rmtree(os.path.join(tmpdir, "ffmpeg"))
|
| 119 |
+
|
| 120 |
+
|
| 121 |
+
def update_modelnames():
|
| 122 |
+
for sr in ["32k", "40k", "48k"]:
|
| 123 |
+
files = [
|
| 124 |
+
f"f0G{sr}",
|
| 125 |
+
f"f0D{sr}",
|
| 126 |
+
f"G{sr}",
|
| 127 |
+
f"D{sr}",
|
| 128 |
+
]
|
| 129 |
+
for file in files:
|
| 130 |
+
filepath = os.path.join(MODELS_DIR, "pretrained", f"{file}.pth")
|
| 131 |
+
if os.path.exists(filepath):
|
| 132 |
+
os.rename(
|
| 133 |
+
filepath,
|
| 134 |
+
os.path.join(MODELS_DIR, "pretrained", f"{file}256.pth"),
|
| 135 |
+
)
|
| 136 |
+
|
| 137 |
+
if not os.path.exists(os.path.join(MODELS_DIR, "embeddings")):
|
| 138 |
+
os.makedirs(os.path.join(MODELS_DIR, "embeddings"))
|
| 139 |
+
|
| 140 |
+
if os.path.exists(os.path.join(MODELS_DIR, "hubert_base.pt")):
|
| 141 |
+
os.rename(
|
| 142 |
+
os.path.join(MODELS_DIR, "hubert_base.pt"),
|
| 143 |
+
os.path.join(MODELS_DIR, "embeddings", "hubert_base.pt"),
|
| 144 |
+
)
|
| 145 |
+
if os.path.exists(os.path.join(MODELS_DIR, "checkpoint_best_legacy_500.pt")):
|
| 146 |
+
os.rename(
|
| 147 |
+
os.path.join(MODELS_DIR, "checkpoint_best_legacy_500.pt"),
|
| 148 |
+
os.path.join(MODELS_DIR, "embeddings", "checkpoint_best_legacy_500.pt"),
|
| 149 |
+
)
|
| 150 |
+
|
| 151 |
+
|
| 152 |
+
def preload():
|
| 153 |
+
update_modelnames()
|
| 154 |
+
download_models()
|
| 155 |
+
if sys.platform == "win32":
|
| 156 |
+
install_ffmpeg()
|
modules/merge.py
ADDED
|
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from collections import OrderedDict
|
| 2 |
+
from typing import *
|
| 3 |
+
|
| 4 |
+
import torch
|
| 5 |
+
import tqdm
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
def merge(
|
| 9 |
+
path_a: str,
|
| 10 |
+
path_b: str,
|
| 11 |
+
path_c: str,
|
| 12 |
+
alpha: float,
|
| 13 |
+
weights: Dict[str, float],
|
| 14 |
+
method: str,
|
| 15 |
+
):
|
| 16 |
+
def extract(ckpt: Dict[str, Any]):
|
| 17 |
+
a = ckpt["model"]
|
| 18 |
+
opt = OrderedDict()
|
| 19 |
+
opt["weight"] = {}
|
| 20 |
+
for key in a.keys():
|
| 21 |
+
if "enc_q" in key:
|
| 22 |
+
continue
|
| 23 |
+
opt["weight"][key] = a[key]
|
| 24 |
+
return opt
|
| 25 |
+
|
| 26 |
+
def load_weight(path: str):
|
| 27 |
+
print(f"Loading {path}...")
|
| 28 |
+
state_dict = torch.load(path, map_location="cpu")
|
| 29 |
+
if "model" in state_dict:
|
| 30 |
+
weight = extract(state_dict)
|
| 31 |
+
else:
|
| 32 |
+
weight = state_dict["weight"]
|
| 33 |
+
return weight, state_dict
|
| 34 |
+
|
| 35 |
+
def get_alpha(key: str):
|
| 36 |
+
try:
|
| 37 |
+
filtered = sorted(
|
| 38 |
+
[x for x in weights.keys() if key.startswith(x)], key=len, reverse=True
|
| 39 |
+
)
|
| 40 |
+
if len(filtered) < 1:
|
| 41 |
+
return alpha
|
| 42 |
+
return weights[filtered[0]]
|
| 43 |
+
except:
|
| 44 |
+
return alpha
|
| 45 |
+
|
| 46 |
+
weight_a, state_dict = load_weight(path_a)
|
| 47 |
+
weight_b, _ = load_weight(path_b)
|
| 48 |
+
if path_c is not None:
|
| 49 |
+
weight_c, _ = load_weight(path_c)
|
| 50 |
+
|
| 51 |
+
if sorted(list(weight_a.keys())) != sorted(list(weight_b.keys())):
|
| 52 |
+
raise RuntimeError("Failed to merge models.")
|
| 53 |
+
|
| 54 |
+
merged = OrderedDict()
|
| 55 |
+
merged["weight"] = {}
|
| 56 |
+
|
| 57 |
+
def merge_weight(a, b, c, alpha):
|
| 58 |
+
if method == "weight_sum":
|
| 59 |
+
return (1 - alpha) * a + alpha * b
|
| 60 |
+
elif method == "add_diff":
|
| 61 |
+
return a + (b - c) * alpha
|
| 62 |
+
|
| 63 |
+
for key in tqdm.tqdm(weight_a.keys()):
|
| 64 |
+
a = get_alpha(key)
|
| 65 |
+
if path_c is not None:
|
| 66 |
+
merged["weight"][key] = merge_weight(
|
| 67 |
+
weight_a[key], weight_b[key], weight_c[key], a
|
| 68 |
+
)
|
| 69 |
+
else:
|
| 70 |
+
merged["weight"][key] = merge_weight(weight_a[key], weight_b[key], None, a)
|
| 71 |
+
merged["config"] = state_dict["config"]
|
| 72 |
+
merged["params"] = state_dict["params"] if "params" in state_dict else None
|
| 73 |
+
merged["version"] = state_dict.get("version", "v1")
|
| 74 |
+
merged["sr"] = state_dict["sr"]
|
| 75 |
+
merged["f0"] = state_dict["f0"]
|
| 76 |
+
merged["info"] = state_dict["info"]
|
| 77 |
+
merged["embedder_name"] = (
|
| 78 |
+
state_dict["embedder_name"] if "embedder_name" in state_dict else None
|
| 79 |
+
)
|
| 80 |
+
merged["embedder_output_layer"] = state_dict.get("embedder_output_layer", "12")
|
| 81 |
+
return merged
|
modules/models.py
ADDED
|
@@ -0,0 +1,266 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import re
|
| 3 |
+
from typing import *
|
| 4 |
+
|
| 5 |
+
import torch
|
| 6 |
+
from fairseq import checkpoint_utils
|
| 7 |
+
from fairseq.models.hubert.hubert import HubertModel
|
| 8 |
+
from pydub import AudioSegment
|
| 9 |
+
|
| 10 |
+
from lib.rvc.models import (SynthesizerTrnMs256NSFSid,
|
| 11 |
+
SynthesizerTrnMs256NSFSidNono)
|
| 12 |
+
from lib.rvc.pipeline import VocalConvertPipeline
|
| 13 |
+
|
| 14 |
+
from .cmd_opts import opts
|
| 15 |
+
from .shared import ROOT_DIR, device, is_half
|
| 16 |
+
from .utils import load_audio
|
| 17 |
+
|
| 18 |
+
AUDIO_OUT_DIR = opts.output_dir or os.path.join(ROOT_DIR, "outputs")
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
EMBEDDINGS_LIST = {
|
| 22 |
+
"hubert-base-japanese": (
|
| 23 |
+
"rinna_hubert_base_jp.pt",
|
| 24 |
+
"hubert-base-japanese",
|
| 25 |
+
"local",
|
| 26 |
+
),
|
| 27 |
+
"contentvec": ("checkpoint_best_legacy_500.pt", "contentvec", "local"),
|
| 28 |
+
}
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
def update_state_dict(state_dict):
|
| 32 |
+
if "params" in state_dict and state_dict["params"] is not None:
|
| 33 |
+
return
|
| 34 |
+
keys = [
|
| 35 |
+
"spec_channels",
|
| 36 |
+
"segment_size",
|
| 37 |
+
"inter_channels",
|
| 38 |
+
"hidden_channels",
|
| 39 |
+
"filter_channels",
|
| 40 |
+
"n_heads",
|
| 41 |
+
"n_layers",
|
| 42 |
+
"kernel_size",
|
| 43 |
+
"p_dropout",
|
| 44 |
+
"resblock",
|
| 45 |
+
"resblock_kernel_sizes",
|
| 46 |
+
"resblock_dilation_sizes",
|
| 47 |
+
"upsample_rates",
|
| 48 |
+
"upsample_initial_channel",
|
| 49 |
+
"upsample_kernel_sizes",
|
| 50 |
+
"spk_embed_dim",
|
| 51 |
+
"gin_channels",
|
| 52 |
+
"emb_channels",
|
| 53 |
+
"sr",
|
| 54 |
+
]
|
| 55 |
+
state_dict["params"] = {}
|
| 56 |
+
n = 0
|
| 57 |
+
for i, key in enumerate(keys):
|
| 58 |
+
i = i - n
|
| 59 |
+
if len(state_dict["config"]) != 19 and key == "emb_channels":
|
| 60 |
+
# backward compat.
|
| 61 |
+
n += 1
|
| 62 |
+
continue
|
| 63 |
+
state_dict["params"][key] = state_dict["config"][i]
|
| 64 |
+
|
| 65 |
+
if not "emb_channels" in state_dict["params"]:
|
| 66 |
+
if state_dict.get("version", "v1") == "v1":
|
| 67 |
+
state_dict["params"]["emb_channels"] = 256 # for backward compat.
|
| 68 |
+
state_dict["embedder_output_layer"] = 9
|
| 69 |
+
else:
|
| 70 |
+
state_dict["params"]["emb_channels"] = 768 # for backward compat.
|
| 71 |
+
state_dict["embedder_output_layer"] = 12
|
| 72 |
+
|
| 73 |
+
|
| 74 |
+
class VoiceConvertModel:
|
| 75 |
+
def __init__(self, model_name: str, state_dict: Dict[str, Any]) -> None:
|
| 76 |
+
update_state_dict(state_dict)
|
| 77 |
+
self.model_name = model_name
|
| 78 |
+
self.state_dict = state_dict
|
| 79 |
+
self.tgt_sr = state_dict["params"]["sr"]
|
| 80 |
+
f0 = state_dict.get("f0", 1)
|
| 81 |
+
state_dict["params"]["spk_embed_dim"] = state_dict["weight"][
|
| 82 |
+
"emb_g.weight"
|
| 83 |
+
].shape[0]
|
| 84 |
+
if not "emb_channels" in state_dict["params"]:
|
| 85 |
+
state_dict["params"]["emb_channels"] = 256 # for backward compat.
|
| 86 |
+
|
| 87 |
+
if f0 == 1:
|
| 88 |
+
self.net_g = SynthesizerTrnMs256NSFSid(
|
| 89 |
+
**state_dict["params"], is_half=is_half
|
| 90 |
+
)
|
| 91 |
+
else:
|
| 92 |
+
self.net_g = SynthesizerTrnMs256NSFSidNono(**state_dict["params"])
|
| 93 |
+
|
| 94 |
+
del self.net_g.enc_q
|
| 95 |
+
|
| 96 |
+
self.net_g.load_state_dict(state_dict["weight"], strict=False)
|
| 97 |
+
self.net_g.eval().to(device)
|
| 98 |
+
|
| 99 |
+
if is_half:
|
| 100 |
+
self.net_g = self.net_g.half()
|
| 101 |
+
else:
|
| 102 |
+
self.net_g = self.net_g.float()
|
| 103 |
+
|
| 104 |
+
self.vc = VocalConvertPipeline(self.tgt_sr, device, is_half)
|
| 105 |
+
self.n_spk = state_dict["params"]["spk_embed_dim"]
|
| 106 |
+
|
| 107 |
+
def single(
|
| 108 |
+
self,
|
| 109 |
+
sid: int,
|
| 110 |
+
input_audio: str,
|
| 111 |
+
embedder_model_name: str,
|
| 112 |
+
embedding_output_layer: str,
|
| 113 |
+
f0_up_key: int,
|
| 114 |
+
f0_file: str,
|
| 115 |
+
f0_method: str,
|
| 116 |
+
auto_load_index: bool,
|
| 117 |
+
faiss_index_file: str,
|
| 118 |
+
index_rate: float,
|
| 119 |
+
output_dir: str = AUDIO_OUT_DIR,
|
| 120 |
+
):
|
| 121 |
+
if not input_audio:
|
| 122 |
+
raise Exception("You need to set Source Audio")
|
| 123 |
+
f0_up_key = int(f0_up_key)
|
| 124 |
+
audio = load_audio(input_audio, 16000)
|
| 125 |
+
|
| 126 |
+
if embedder_model_name == "auto":
|
| 127 |
+
embedder_model_name = (
|
| 128 |
+
self.state_dict["embedder_name"]
|
| 129 |
+
if "embedder_name" in self.state_dict
|
| 130 |
+
else "hubert_base"
|
| 131 |
+
)
|
| 132 |
+
if embedder_model_name.endswith("768"):
|
| 133 |
+
embedder_model_name = embedder_model_name[:-3]
|
| 134 |
+
|
| 135 |
+
if embedder_model_name == "hubert_base":
|
| 136 |
+
embedder_model_name = "contentvec"
|
| 137 |
+
|
| 138 |
+
if not embedder_model_name in EMBEDDINGS_LIST.keys():
|
| 139 |
+
raise Exception(f"Not supported embedder: {embedder_model_name}")
|
| 140 |
+
|
| 141 |
+
if (
|
| 142 |
+
embedder_model == None
|
| 143 |
+
or loaded_embedder_model != EMBEDDINGS_LIST[embedder_model_name][1]
|
| 144 |
+
):
|
| 145 |
+
print(f"load {embedder_model_name} embedder")
|
| 146 |
+
embedder_filename, embedder_name, load_from = get_embedder(
|
| 147 |
+
embedder_model_name
|
| 148 |
+
)
|
| 149 |
+
load_embedder(embedder_filename, embedder_name)
|
| 150 |
+
|
| 151 |
+
if embedding_output_layer == "auto":
|
| 152 |
+
embedding_output_layer = (
|
| 153 |
+
self.state_dict["embedding_output_layer"]
|
| 154 |
+
if "embedding_output_layer" in self.state_dict
|
| 155 |
+
else 12
|
| 156 |
+
)
|
| 157 |
+
else:
|
| 158 |
+
embedding_output_layer = int(embedding_output_layer)
|
| 159 |
+
|
| 160 |
+
f0 = self.state_dict.get("f0", 1)
|
| 161 |
+
|
| 162 |
+
if not faiss_index_file and auto_load_index:
|
| 163 |
+
faiss_index_file = self.get_index_path(sid)
|
| 164 |
+
|
| 165 |
+
audio_opt = self.vc(
|
| 166 |
+
embedder_model,
|
| 167 |
+
embedding_output_layer,
|
| 168 |
+
self.net_g,
|
| 169 |
+
sid,
|
| 170 |
+
audio,
|
| 171 |
+
f0_up_key,
|
| 172 |
+
f0_method,
|
| 173 |
+
faiss_index_file,
|
| 174 |
+
index_rate,
|
| 175 |
+
f0,
|
| 176 |
+
f0_file=f0_file,
|
| 177 |
+
)
|
| 178 |
+
|
| 179 |
+
audio = AudioSegment(
|
| 180 |
+
audio_opt,
|
| 181 |
+
frame_rate=self.tgt_sr,
|
| 182 |
+
sample_width=2,
|
| 183 |
+
channels=1,
|
| 184 |
+
)
|
| 185 |
+
os.makedirs(output_dir, exist_ok=True)
|
| 186 |
+
input_audio_splitext = os.path.splitext(os.path.basename(input_audio))[0]
|
| 187 |
+
model_splitext = os.path.splitext(self.model_name)[0]
|
| 188 |
+
index = 0
|
| 189 |
+
existing_files = os.listdir(output_dir)
|
| 190 |
+
for existing_file in existing_files:
|
| 191 |
+
result = re.match(r"\d+", existing_file)
|
| 192 |
+
if result:
|
| 193 |
+
prefix_num = int(result.group(0))
|
| 194 |
+
if index < prefix_num:
|
| 195 |
+
index = prefix_num
|
| 196 |
+
audio.export(
|
| 197 |
+
os.path.join(
|
| 198 |
+
output_dir, f"{index+1}-{model_splitext}-{input_audio_splitext}.wav"
|
| 199 |
+
),
|
| 200 |
+
format="wav",
|
| 201 |
+
)
|
| 202 |
+
return audio_opt
|
| 203 |
+
|
| 204 |
+
def get_index_path(self, speaker_id: int):
|
| 205 |
+
basename = os.path.splitext(self.model_name)[0]
|
| 206 |
+
speaker_index_path = os.path.join(
|
| 207 |
+
MODELS_DIR,
|
| 208 |
+
"checkpoints",
|
| 209 |
+
f"{basename}_index",
|
| 210 |
+
f"{basename}.{speaker_id}.index",
|
| 211 |
+
)
|
| 212 |
+
if os.path.exists(speaker_index_path):
|
| 213 |
+
return speaker_index_path
|
| 214 |
+
return os.path.join(MODELS_DIR, "checkpoints", f"{basename}.index")
|
| 215 |
+
|
| 216 |
+
|
| 217 |
+
MODELS_DIR = opts.models_dir or os.path.join(ROOT_DIR, "models")
|
| 218 |
+
vc_model: Optional[VoiceConvertModel] = None
|
| 219 |
+
embedder_model: Optional[HubertModel] = None
|
| 220 |
+
loaded_embedder_model = ""
|
| 221 |
+
|
| 222 |
+
|
| 223 |
+
def get_models():
|
| 224 |
+
dir = os.path.join(ROOT_DIR, "models", "checkpoints")
|
| 225 |
+
os.makedirs(dir, exist_ok=True)
|
| 226 |
+
return [
|
| 227 |
+
file
|
| 228 |
+
for file in os.listdir(dir)
|
| 229 |
+
if any([x for x in [".ckpt", ".pth"] if file.endswith(x)])
|
| 230 |
+
]
|
| 231 |
+
|
| 232 |
+
|
| 233 |
+
def get_embedder(embedder_name):
|
| 234 |
+
if embedder_name in EMBEDDINGS_LIST:
|
| 235 |
+
return EMBEDDINGS_LIST[embedder_name]
|
| 236 |
+
return None
|
| 237 |
+
|
| 238 |
+
|
| 239 |
+
def load_embedder(emb_file: str, emb_name: str):
|
| 240 |
+
global embedder_model, loaded_embedder_model
|
| 241 |
+
emb_file = os.path.join(MODELS_DIR, "embeddings", emb_file)
|
| 242 |
+
models, _, _ = checkpoint_utils.load_model_ensemble_and_task(
|
| 243 |
+
[emb_file],
|
| 244 |
+
suffix="",
|
| 245 |
+
)
|
| 246 |
+
embedder_model = models[0]
|
| 247 |
+
embedder_model = embedder_model.to(device)
|
| 248 |
+
|
| 249 |
+
if is_half:
|
| 250 |
+
embedder_model = embedder_model.half()
|
| 251 |
+
else:
|
| 252 |
+
embedder_model = embedder_model.float()
|
| 253 |
+
embedder_model.eval()
|
| 254 |
+
|
| 255 |
+
loaded_embedder_model = emb_name
|
| 256 |
+
|
| 257 |
+
|
| 258 |
+
def get_vc_model(model_name: str):
|
| 259 |
+
model_path = os.path.join(MODELS_DIR, "checkpoints", model_name)
|
| 260 |
+
weight = torch.load(model_path, map_location="cpu")
|
| 261 |
+
return VoiceConvertModel(model_name, weight)
|
| 262 |
+
|
| 263 |
+
|
| 264 |
+
def load_model(model_name: str):
|
| 265 |
+
global vc_model
|
| 266 |
+
vc_model = get_vc_model(model_name)
|
modules/separate.py
ADDED
|
@@ -0,0 +1,82 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
from typing import *
|
| 3 |
+
|
| 4 |
+
import tqdm
|
| 5 |
+
from pydub import AudioSegment
|
| 6 |
+
from pydub.silence import split_on_silence
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
def separate_audio(
|
| 10 |
+
input: str,
|
| 11 |
+
output: str,
|
| 12 |
+
silence_thresh: int,
|
| 13 |
+
min_silence_len: int = 1000,
|
| 14 |
+
keep_silence: int = 100,
|
| 15 |
+
margin: int = 0,
|
| 16 |
+
padding: bool = False,
|
| 17 |
+
min: Optional[int] = None,
|
| 18 |
+
max: Optional[int] = None,
|
| 19 |
+
):
|
| 20 |
+
if os.path.isfile(input):
|
| 21 |
+
input = [input]
|
| 22 |
+
elif os.path.isdir(input):
|
| 23 |
+
input = [os.path.join(input, f) for f in os.listdir(input)]
|
| 24 |
+
else:
|
| 25 |
+
raise ValueError("input must be a file or directory")
|
| 26 |
+
|
| 27 |
+
os.makedirs(output, exist_ok=True)
|
| 28 |
+
|
| 29 |
+
for file in input:
|
| 30 |
+
if os.path.splitext(file)[1] == ".mp3":
|
| 31 |
+
audio = AudioSegment.from_mp3(file)
|
| 32 |
+
elif os.path.splitext(file)[1] == ".wav":
|
| 33 |
+
audio = AudioSegment.from_wav(file)
|
| 34 |
+
elif os.path.splitext(file)[1] == ".flac":
|
| 35 |
+
audio = AudioSegment.from_file(file, "flac")
|
| 36 |
+
else:
|
| 37 |
+
raise ValueError(
|
| 38 |
+
"Invalid file format. Only MP3 and WAV files are supported."
|
| 39 |
+
)
|
| 40 |
+
|
| 41 |
+
chunks = split_on_silence(
|
| 42 |
+
audio,
|
| 43 |
+
min_silence_len=min_silence_len,
|
| 44 |
+
silence_thresh=silence_thresh,
|
| 45 |
+
keep_silence=keep_silence,
|
| 46 |
+
)
|
| 47 |
+
|
| 48 |
+
output_chunks: List[AudioSegment] = []
|
| 49 |
+
|
| 50 |
+
so_short = None
|
| 51 |
+
|
| 52 |
+
for chunk in tqdm.tqdm(chunks):
|
| 53 |
+
if so_short is not None:
|
| 54 |
+
chunk = so_short + chunk
|
| 55 |
+
so_short = None
|
| 56 |
+
if min is None or len(chunk) > min:
|
| 57 |
+
if max is not None and len(chunk) > max:
|
| 58 |
+
sub_chunks = [
|
| 59 |
+
chunk[i : i + max + margin]
|
| 60 |
+
for i in range(0, len(chunk) - margin, max)
|
| 61 |
+
]
|
| 62 |
+
|
| 63 |
+
if len(sub_chunks[-1]) < min:
|
| 64 |
+
if padding and len(sub_chunks) > 2:
|
| 65 |
+
output_chunks.extend(sub_chunks[0:-2])
|
| 66 |
+
output_chunks.append(sub_chunks[-2] + sub_chunks[-1])
|
| 67 |
+
else:
|
| 68 |
+
output_chunks.extend(sub_chunks[0:-1])
|
| 69 |
+
else:
|
| 70 |
+
output_chunks.extend(sub_chunks)
|
| 71 |
+
else:
|
| 72 |
+
output_chunks.append(chunk)
|
| 73 |
+
else:
|
| 74 |
+
if so_short is None:
|
| 75 |
+
so_short = chunk
|
| 76 |
+
else:
|
| 77 |
+
so_short += chunk
|
| 78 |
+
basename = os.path.splitext(os.path.basename(file))[0]
|
| 79 |
+
|
| 80 |
+
for i, chunk in enumerate(output_chunks):
|
| 81 |
+
filepath = os.path.join(output, f"{basename}_{i}.wav")
|
| 82 |
+
chunk.export(filepath, format="wav")
|
modules/server/model.py
ADDED
|
@@ -0,0 +1,451 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import re
|
| 3 |
+
from typing import *
|
| 4 |
+
|
| 5 |
+
import faiss
|
| 6 |
+
import numpy as np
|
| 7 |
+
import pyworld
|
| 8 |
+
import scipy.signal as signal
|
| 9 |
+
import torch
|
| 10 |
+
import torch.nn.functional as F
|
| 11 |
+
import torchaudio
|
| 12 |
+
import torchcrepe
|
| 13 |
+
from fairseq import checkpoint_utils
|
| 14 |
+
from fairseq.models.hubert.hubert import HubertModel
|
| 15 |
+
from pydub import AudioSegment
|
| 16 |
+
from torch import Tensor
|
| 17 |
+
|
| 18 |
+
from lib.rvc.models import (SynthesizerTrnMs256NSFSid,
|
| 19 |
+
SynthesizerTrnMs256NSFSidNono)
|
| 20 |
+
from lib.rvc.pipeline import VocalConvertPipeline
|
| 21 |
+
from modules.cmd_opts import opts
|
| 22 |
+
from modules.models import (EMBEDDINGS_LIST, MODELS_DIR, get_embedder,
|
| 23 |
+
get_vc_model, update_state_dict)
|
| 24 |
+
from modules.shared import ROOT_DIR, device, is_half
|
| 25 |
+
|
| 26 |
+
MODELS_DIR = opts.models_dir or os.path.join(ROOT_DIR, "models")
|
| 27 |
+
vc_model: Optional["VoiceServerModel"] = None
|
| 28 |
+
embedder_model: Optional[HubertModel] = None
|
| 29 |
+
loaded_embedder_model = ""
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
class VoiceServerModel:
|
| 33 |
+
def __init__(self, rvc_model_file: str, faiss_index_file: str) -> None:
|
| 34 |
+
# setting vram
|
| 35 |
+
global device, is_half
|
| 36 |
+
if isinstance(device, str):
|
| 37 |
+
device = torch.device(device)
|
| 38 |
+
if device.type == "cuda":
|
| 39 |
+
vram = torch.cuda.get_device_properties(device).total_memory / 1024**3
|
| 40 |
+
else:
|
| 41 |
+
vram = None
|
| 42 |
+
if vram is not None and vram <= 4:
|
| 43 |
+
self.x_pad = 1
|
| 44 |
+
self.x_query = 5
|
| 45 |
+
self.x_center = 30
|
| 46 |
+
self.x_max = 32
|
| 47 |
+
elif vram is not None and vram <= 5:
|
| 48 |
+
self.x_pad = 1
|
| 49 |
+
self.x_query = 6
|
| 50 |
+
self.x_center = 38
|
| 51 |
+
self.x_max = 41
|
| 52 |
+
else:
|
| 53 |
+
self.x_pad = 3
|
| 54 |
+
self.x_query = 10
|
| 55 |
+
self.x_center = 60
|
| 56 |
+
self.x_max = 65
|
| 57 |
+
|
| 58 |
+
# load_model
|
| 59 |
+
state_dict = torch.load(rvc_model_file, map_location="cpu")
|
| 60 |
+
update_state_dict(state_dict)
|
| 61 |
+
self.state_dict = state_dict
|
| 62 |
+
self.tgt_sr = state_dict["params"]["sr"]
|
| 63 |
+
self.f0 = state_dict.get("f0", 1)
|
| 64 |
+
state_dict["params"]["spk_embed_dim"] = state_dict["weight"][
|
| 65 |
+
"emb_g.weight"
|
| 66 |
+
].shape[0]
|
| 67 |
+
if not "emb_channels" in state_dict["params"]:
|
| 68 |
+
if state_dict.get("version", "v1") == "v1":
|
| 69 |
+
state_dict["params"]["emb_channels"] = 256 # for backward compat.
|
| 70 |
+
state_dict["embedder_output_layer"] = 9
|
| 71 |
+
else:
|
| 72 |
+
state_dict["params"]["emb_channels"] = 768 # for backward compat.
|
| 73 |
+
state_dict["embedder_output_layer"] = 12
|
| 74 |
+
if self.f0 == 1:
|
| 75 |
+
self.net_g = SynthesizerTrnMs256NSFSid(
|
| 76 |
+
**state_dict["params"], is_half=is_half
|
| 77 |
+
)
|
| 78 |
+
else:
|
| 79 |
+
self.net_g = SynthesizerTrnMs256NSFSidNono(**state_dict["params"])
|
| 80 |
+
del self.net_g.enc_q
|
| 81 |
+
self.net_g.load_state_dict(state_dict["weight"], strict=False)
|
| 82 |
+
self.net_g.eval().to(device)
|
| 83 |
+
if is_half:
|
| 84 |
+
self.net_g = self.net_g.half()
|
| 85 |
+
else:
|
| 86 |
+
self.net_g = self.net_g.float()
|
| 87 |
+
|
| 88 |
+
emb_name = state_dict.get("embedder_name", "contentvec")
|
| 89 |
+
if emb_name == "hubert_base":
|
| 90 |
+
emb_name = "contentvec"
|
| 91 |
+
emb_file = os.path.join(MODELS_DIR, "embeddings", EMBEDDINGS_LIST[emb_name][0])
|
| 92 |
+
models, _, _ = checkpoint_utils.load_model_ensemble_and_task(
|
| 93 |
+
[emb_file],
|
| 94 |
+
suffix="",
|
| 95 |
+
)
|
| 96 |
+
embedder_model = models[0]
|
| 97 |
+
embedder_model = embedder_model.to(device)
|
| 98 |
+
|
| 99 |
+
if is_half:
|
| 100 |
+
embedder_model = embedder_model.half()
|
| 101 |
+
else:
|
| 102 |
+
embedder_model = embedder_model.float()
|
| 103 |
+
embedder_model.eval()
|
| 104 |
+
self.embedder_model = embedder_model
|
| 105 |
+
|
| 106 |
+
self.embedder_output_layer = state_dict["embedder_output_layer"]
|
| 107 |
+
|
| 108 |
+
self.index = None
|
| 109 |
+
if faiss_index_file != "" and os.path.exists(faiss_index_file):
|
| 110 |
+
self.index = faiss.read_index(faiss_index_file)
|
| 111 |
+
self.big_npy = self.index.reconstruct_n(0, self.index.ntotal)
|
| 112 |
+
|
| 113 |
+
self.n_spk = state_dict["params"]["spk_embed_dim"]
|
| 114 |
+
|
| 115 |
+
self.sr = 16000 # hubert input sample rate
|
| 116 |
+
self.window = 160 # hubert input window
|
| 117 |
+
self.t_pad = self.sr * self.x_pad # padding time for each utterance
|
| 118 |
+
self.t_pad_tgt = self.tgt_sr * self.x_pad
|
| 119 |
+
self.t_pad2 = self.t_pad * 2
|
| 120 |
+
self.t_query = self.sr * self.x_query # query time before and after query point
|
| 121 |
+
self.t_center = self.sr * self.x_center # query cut point position
|
| 122 |
+
self.t_max = self.sr * self.x_max # max time for no query
|
| 123 |
+
self.device = device
|
| 124 |
+
self.is_half = is_half
|
| 125 |
+
|
| 126 |
+
def __call__(
|
| 127 |
+
self,
|
| 128 |
+
audio: np.ndarray,
|
| 129 |
+
sr: int,
|
| 130 |
+
sid: int,
|
| 131 |
+
transpose: int,
|
| 132 |
+
f0_method: str,
|
| 133 |
+
index_rate: float,
|
| 134 |
+
):
|
| 135 |
+
# bh, ah = signal.butter(N=5, Wn=48, btype="high", fs=16000)
|
| 136 |
+
# audio = signal.filtfilt(bh, ah, audio)
|
| 137 |
+
if sr != self.sr:
|
| 138 |
+
audio = torchaudio.functional.resample(torch.from_numpy(audio), sr, self.sr, rolloff=0.99).detach().cpu().numpy()
|
| 139 |
+
audio_pad = np.pad(audio, (self.window // 2, self.window // 2), mode="reflect" if audio.shape[0] > self.window // 2 else "constant")
|
| 140 |
+
|
| 141 |
+
opt_ts = []
|
| 142 |
+
if audio_pad.shape[0] > self.t_max:
|
| 143 |
+
audio_sum = np.zeros_like(audio)
|
| 144 |
+
for i in range(self.window):
|
| 145 |
+
audio_sum += audio_pad[i : i - self.window]
|
| 146 |
+
for t in range(self.t_center, audio.shape[0], self.t_center):
|
| 147 |
+
opt_ts.append(
|
| 148 |
+
t
|
| 149 |
+
- self.t_query
|
| 150 |
+
+ np.where(
|
| 151 |
+
np.abs(audio_sum[t - self.t_query : t + self.t_query])
|
| 152 |
+
== np.abs(audio_sum[t - self.t_query : t + self.t_query]).min()
|
| 153 |
+
)[0][0]
|
| 154 |
+
)
|
| 155 |
+
audio_pad = np.pad(audio, (self.t_pad, self.t_pad), mode="reflect" if audio.shape[0] > self.t_pad else "constant")
|
| 156 |
+
p_len = audio_pad.shape[0] // self.window
|
| 157 |
+
|
| 158 |
+
sid = torch.tensor(sid, device=self.device).unsqueeze(0).long()
|
| 159 |
+
pitch, pitchf = None, None
|
| 160 |
+
if self.f0 == 1:
|
| 161 |
+
pitch, pitchf = get_f0(audio_pad, self.sr, p_len, transpose, f0_method)
|
| 162 |
+
pitch = pitch[:p_len]
|
| 163 |
+
pitchf = pitchf[:p_len]
|
| 164 |
+
if self.device.type == "mps":
|
| 165 |
+
pitchf = pitchf.astype(np.float32)
|
| 166 |
+
pitch = torch.tensor(pitch, device=self.device).unsqueeze(0).long()
|
| 167 |
+
pitchf = torch.tensor(pitchf, device=self.device).unsqueeze(0).float()
|
| 168 |
+
|
| 169 |
+
audio_opt = []
|
| 170 |
+
|
| 171 |
+
s = 0
|
| 172 |
+
t = None
|
| 173 |
+
|
| 174 |
+
for t in opt_ts:
|
| 175 |
+
t = t // self.window * self.window
|
| 176 |
+
if self.f0 == 1:
|
| 177 |
+
audio_opt.append(
|
| 178 |
+
self._convert(
|
| 179 |
+
sid,
|
| 180 |
+
audio_pad[s : t + self.t_pad2 + self.window],
|
| 181 |
+
pitch[:, s // self.window : (t + self.t_pad2) // self.window],
|
| 182 |
+
pitchf[:, s // self.window : (t + self.t_pad2) // self.window],
|
| 183 |
+
index_rate,
|
| 184 |
+
)[self.t_pad_tgt : -self.t_pad_tgt]
|
| 185 |
+
)
|
| 186 |
+
else:
|
| 187 |
+
audio_opt.append(
|
| 188 |
+
self._convert(
|
| 189 |
+
sid,
|
| 190 |
+
audio_pad[s : t + self.t_pad2 + self.window],
|
| 191 |
+
None,
|
| 192 |
+
None,
|
| 193 |
+
index_rate,
|
| 194 |
+
)[self.t_pad_tgt : -self.t_pad_tgt]
|
| 195 |
+
)
|
| 196 |
+
s = t
|
| 197 |
+
if self.f0 == 1:
|
| 198 |
+
audio_opt.append(
|
| 199 |
+
self._convert(
|
| 200 |
+
sid,
|
| 201 |
+
audio_pad[t:],
|
| 202 |
+
pitch[:, t // self.window :] if t is not None else pitch,
|
| 203 |
+
pitchf[:, t // self.window :] if t is not None else pitchf,
|
| 204 |
+
index_rate,
|
| 205 |
+
)[self.t_pad_tgt : -self.t_pad_tgt]
|
| 206 |
+
)
|
| 207 |
+
else:
|
| 208 |
+
audio_opt.append(
|
| 209 |
+
self._convert(
|
| 210 |
+
sid,
|
| 211 |
+
audio_pad[t:],
|
| 212 |
+
None,
|
| 213 |
+
None,
|
| 214 |
+
index_rate,
|
| 215 |
+
)[self.t_pad_tgt : -self.t_pad_tgt]
|
| 216 |
+
)
|
| 217 |
+
audio_opt = np.concatenate(audio_opt)
|
| 218 |
+
del pitch, pitchf, sid
|
| 219 |
+
if torch.cuda.is_available():
|
| 220 |
+
torch.cuda.empty_cache()
|
| 221 |
+
return audio_opt
|
| 222 |
+
|
| 223 |
+
|
| 224 |
+
def _convert(
|
| 225 |
+
self,
|
| 226 |
+
sid: int,
|
| 227 |
+
audio: np.ndarray,
|
| 228 |
+
pitch: Optional[np.ndarray],
|
| 229 |
+
pitchf: Optional[np.ndarray],
|
| 230 |
+
index_rate: float,
|
| 231 |
+
):
|
| 232 |
+
feats = torch.from_numpy(audio)
|
| 233 |
+
if self.is_half:
|
| 234 |
+
feats = feats.half()
|
| 235 |
+
else:
|
| 236 |
+
feats = feats.float()
|
| 237 |
+
if feats.dim() == 2: # double channels
|
| 238 |
+
feats = feats.mean(-1)
|
| 239 |
+
assert feats.dim() == 1, feats.dim()
|
| 240 |
+
feats = feats.view(1, -1)
|
| 241 |
+
padding_mask = torch.BoolTensor(feats.shape).to(self.device).fill_(False)
|
| 242 |
+
|
| 243 |
+
half_support = (
|
| 244 |
+
self.device.type == "cuda"
|
| 245 |
+
and torch.cuda.get_device_capability(self.device)[0] >= 5.3
|
| 246 |
+
)
|
| 247 |
+
is_feats_dim_768 = self.net_g.emb_channels == 768
|
| 248 |
+
|
| 249 |
+
if isinstance(self.embedder_model, tuple):
|
| 250 |
+
feats = self.embedder_model[0](
|
| 251 |
+
feats.squeeze(0).squeeze(0).to(self.device),
|
| 252 |
+
return_tensors="pt",
|
| 253 |
+
sampling_rate=16000,
|
| 254 |
+
)
|
| 255 |
+
if self.is_half:
|
| 256 |
+
feats = feats.input_values.to(self.device).half()
|
| 257 |
+
else:
|
| 258 |
+
feats = feats.input_values.to(self.device)
|
| 259 |
+
with torch.no_grad():
|
| 260 |
+
if is_feats_dim_768:
|
| 261 |
+
feats = self.embedder_model[1](feats).last_hidden_state
|
| 262 |
+
else:
|
| 263 |
+
feats = self.embedder_model[1](feats).extract_features
|
| 264 |
+
else:
|
| 265 |
+
inputs = {
|
| 266 |
+
"source": feats.half().to(self.device)
|
| 267 |
+
if half_support
|
| 268 |
+
else feats.to(self.device),
|
| 269 |
+
"padding_mask": padding_mask.to(self.device),
|
| 270 |
+
"output_layer": self.embedder_output_layer,
|
| 271 |
+
}
|
| 272 |
+
|
| 273 |
+
if not half_support:
|
| 274 |
+
self.embedder_model = self.embedder_model.float()
|
| 275 |
+
inputs["source"] = inputs["source"].float()
|
| 276 |
+
|
| 277 |
+
with torch.no_grad():
|
| 278 |
+
logits = self.embedder_model.extract_features(**inputs)
|
| 279 |
+
if is_feats_dim_768:
|
| 280 |
+
feats = logits[0]
|
| 281 |
+
else:
|
| 282 |
+
feats = self.embedder_model.final_proj(logits[0])
|
| 283 |
+
|
| 284 |
+
if (
|
| 285 |
+
isinstance(self.index, type(None)) == False
|
| 286 |
+
and isinstance(self.big_npy, type(None)) == False
|
| 287 |
+
and index_rate != 0
|
| 288 |
+
):
|
| 289 |
+
npy = feats[0].cpu().numpy()
|
| 290 |
+
if self.is_half:
|
| 291 |
+
npy = npy.astype("float32")
|
| 292 |
+
|
| 293 |
+
_, ix = self.index.search(npy, k=1)
|
| 294 |
+
npy = self.big_npy[ix[:, 0]]
|
| 295 |
+
|
| 296 |
+
if self.is_half:
|
| 297 |
+
npy = npy.astype("float16")
|
| 298 |
+
feats = (
|
| 299 |
+
torch.from_numpy(npy).unsqueeze(0).to(self.device) * index_rate
|
| 300 |
+
+ (1 - index_rate) * feats
|
| 301 |
+
)
|
| 302 |
+
|
| 303 |
+
feats = F.interpolate(feats.permute(0, 2, 1), scale_factor=2).permute(0, 2, 1)
|
| 304 |
+
|
| 305 |
+
p_len = audio.shape[0] // self.window
|
| 306 |
+
if feats.shape[1] < p_len:
|
| 307 |
+
p_len = feats.shape[1]
|
| 308 |
+
if pitch != None and pitchf != None:
|
| 309 |
+
pitch = pitch[:, :p_len]
|
| 310 |
+
pitchf = pitchf[:, :p_len]
|
| 311 |
+
p_len = torch.tensor([p_len], device=self.device).long()
|
| 312 |
+
with torch.no_grad():
|
| 313 |
+
if pitch != None and pitchf != None:
|
| 314 |
+
audio1 = (
|
| 315 |
+
(self.net_g.infer(feats, p_len, pitch, pitchf, sid)[0][0, 0] * 32768)
|
| 316 |
+
.data.cpu()
|
| 317 |
+
.float()
|
| 318 |
+
.numpy()
|
| 319 |
+
.astype(np.int16)
|
| 320 |
+
)
|
| 321 |
+
else:
|
| 322 |
+
audio1 = (
|
| 323 |
+
(self.net_g.infer(feats, p_len, sid)[0][0, 0] * 32768)
|
| 324 |
+
.data.cpu()
|
| 325 |
+
.float()
|
| 326 |
+
.numpy()
|
| 327 |
+
.astype(np.int16)
|
| 328 |
+
)
|
| 329 |
+
del feats, p_len, padding_mask
|
| 330 |
+
if torch.cuda.is_available():
|
| 331 |
+
torch.cuda.empty_cache()
|
| 332 |
+
return audio1
|
| 333 |
+
|
| 334 |
+
|
| 335 |
+
# F0 computation
|
| 336 |
+
def get_f0_crepe_computation(
|
| 337 |
+
x,
|
| 338 |
+
sr,
|
| 339 |
+
f0_min,
|
| 340 |
+
f0_max,
|
| 341 |
+
p_len,
|
| 342 |
+
model="full", # Either use crepe-tiny "tiny" or crepe "full". Default is full
|
| 343 |
+
):
|
| 344 |
+
hop_length = sr // 100
|
| 345 |
+
x = x.astype(np.float32) # fixes the F.conv2D exception. We needed to convert double to float.
|
| 346 |
+
x /= np.quantile(np.abs(x), 0.999)
|
| 347 |
+
torch_device = self.get_optimal_torch_device()
|
| 348 |
+
audio = torch.from_numpy(x).to(torch_device, copy=True)
|
| 349 |
+
audio = torch.unsqueeze(audio, dim=0)
|
| 350 |
+
if audio.ndim == 2 and audio.shape[0] > 1:
|
| 351 |
+
audio = torch.mean(audio, dim=0, keepdim=True).detach()
|
| 352 |
+
audio = audio.detach()
|
| 353 |
+
print("Initiating prediction with a crepe_hop_length of: " + str(hop_length))
|
| 354 |
+
pitch: Tensor = torchcrepe.predict(
|
| 355 |
+
audio,
|
| 356 |
+
sr,
|
| 357 |
+
sr // 100,
|
| 358 |
+
f0_min,
|
| 359 |
+
f0_max,
|
| 360 |
+
model,
|
| 361 |
+
batch_size=hop_length * 2,
|
| 362 |
+
device=torch_device,
|
| 363 |
+
pad=True
|
| 364 |
+
)
|
| 365 |
+
p_len = p_len or x.shape[0] // hop_length
|
| 366 |
+
# Resize the pitch for final f0
|
| 367 |
+
source = np.array(pitch.squeeze(0).cpu().float().numpy())
|
| 368 |
+
source[source < 0.001] = np.nan
|
| 369 |
+
target = np.interp(
|
| 370 |
+
np.arange(0, len(source) * p_len, len(source)) / p_len,
|
| 371 |
+
np.arange(0, len(source)),
|
| 372 |
+
source
|
| 373 |
+
)
|
| 374 |
+
f0 = np.nan_to_num(target)
|
| 375 |
+
return f0 # Resized f0
|
| 376 |
+
|
| 377 |
+
def get_f0_official_crepe_computation(
|
| 378 |
+
x,
|
| 379 |
+
sr,
|
| 380 |
+
f0_min,
|
| 381 |
+
f0_max,
|
| 382 |
+
model="full",
|
| 383 |
+
):
|
| 384 |
+
# Pick a batch size that doesn't cause memory errors on your gpu
|
| 385 |
+
batch_size = 512
|
| 386 |
+
# Compute pitch using first gpu
|
| 387 |
+
audio = torch.tensor(np.copy(x))[None].float()
|
| 388 |
+
f0, pd = torchcrepe.predict(
|
| 389 |
+
audio,
|
| 390 |
+
sr,
|
| 391 |
+
sr // 100,
|
| 392 |
+
f0_min,
|
| 393 |
+
f0_max,
|
| 394 |
+
model,
|
| 395 |
+
batch_size=batch_size,
|
| 396 |
+
device=device,
|
| 397 |
+
return_periodicity=True,
|
| 398 |
+
)
|
| 399 |
+
pd = torchcrepe.filter.median(pd, 3)
|
| 400 |
+
f0 = torchcrepe.filter.mean(f0, 3)
|
| 401 |
+
f0[pd < 0.1] = 0
|
| 402 |
+
f0 = f0[0].cpu().numpy()
|
| 403 |
+
return f0
|
| 404 |
+
|
| 405 |
+
def get_f0(
|
| 406 |
+
x: np.ndarray,
|
| 407 |
+
sr: int,
|
| 408 |
+
p_len: int,
|
| 409 |
+
f0_up_key: int,
|
| 410 |
+
f0_method: str,
|
| 411 |
+
):
|
| 412 |
+
f0_min = 50
|
| 413 |
+
f0_max = 1100
|
| 414 |
+
f0_mel_min = 1127 * np.log(1 + f0_min / 700)
|
| 415 |
+
f0_mel_max = 1127 * np.log(1 + f0_max / 700)
|
| 416 |
+
|
| 417 |
+
if f0_method == "harvest":
|
| 418 |
+
f0, t = pyworld.harvest(
|
| 419 |
+
x.astype(np.double),
|
| 420 |
+
fs=sr,
|
| 421 |
+
f0_ceil=f0_max,
|
| 422 |
+
f0_floor=f0_min,
|
| 423 |
+
frame_period=10,
|
| 424 |
+
)
|
| 425 |
+
f0 = pyworld.stonemask(x.astype(np.double), f0, t, sr)
|
| 426 |
+
f0 = signal.medfilt(f0, 3)
|
| 427 |
+
elif f0_method == "dio":
|
| 428 |
+
f0, t = pyworld.dio(
|
| 429 |
+
x.astype(np.double),
|
| 430 |
+
fs=sr,
|
| 431 |
+
f0_ceil=f0_max,
|
| 432 |
+
f0_floor=f0_min,
|
| 433 |
+
frame_period=10,
|
| 434 |
+
)
|
| 435 |
+
f0 = pyworld.stonemask(x.astype(np.double), f0, t, sr)
|
| 436 |
+
f0 = signal.medfilt(f0, 3)
|
| 437 |
+
elif f0_method == "mangio-crepe":
|
| 438 |
+
f0 = get_f0_crepe_computation(x, sr, f0_min, f0_max, p_len, "full")
|
| 439 |
+
elif f0_method == "crepe":
|
| 440 |
+
f0 = get_f0_official_crepe_computation(x, sr, f0_min, f0_max, "full")
|
| 441 |
+
|
| 442 |
+
f0 *= pow(2, f0_up_key / 12)
|
| 443 |
+
f0bak = f0.copy()
|
| 444 |
+
f0_mel = 1127 * np.log(1 + f0 / 700)
|
| 445 |
+
f0_mel[f0_mel > 0] = (f0_mel[f0_mel > 0] - f0_mel_min) * 254 / (
|
| 446 |
+
f0_mel_max - f0_mel_min
|
| 447 |
+
) + 1
|
| 448 |
+
f0_mel[f0_mel <= 1] = 1
|
| 449 |
+
f0_mel[f0_mel > 255] = 255
|
| 450 |
+
f0_coarse = np.rint(f0_mel).astype(np.int32)
|
| 451 |
+
return f0_coarse, f0bak # 1-0
|
modules/shared.py
ADDED
|
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import sys
|
| 3 |
+
|
| 4 |
+
import torch
|
| 5 |
+
|
| 6 |
+
from modules.cmd_opts import opts
|
| 7 |
+
|
| 8 |
+
ROOT_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
|
| 9 |
+
MODELS_DIR = os.path.join(ROOT_DIR, "models")
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
def has_mps():
|
| 13 |
+
if sys.platform != "darwin":
|
| 14 |
+
return False
|
| 15 |
+
else:
|
| 16 |
+
if not getattr(torch, "has_mps", False):
|
| 17 |
+
return False
|
| 18 |
+
try:
|
| 19 |
+
torch.zeros(1).to(torch.device("mps"))
|
| 20 |
+
return True
|
| 21 |
+
except Exception:
|
| 22 |
+
return False
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
is_half = opts.precision == "fp16"
|
| 26 |
+
half_support = (
|
| 27 |
+
torch.cuda.is_available() and torch.cuda.get_device_capability()[0] >= 5.3
|
| 28 |
+
)
|
| 29 |
+
|
| 30 |
+
if not half_support:
|
| 31 |
+
print("WARNING: FP16 is not supported on this GPU")
|
| 32 |
+
is_half = False
|
| 33 |
+
|
| 34 |
+
device = "cuda:0"
|
| 35 |
+
|
| 36 |
+
if not torch.cuda.is_available():
|
| 37 |
+
if has_mps():
|
| 38 |
+
print("Using MPS")
|
| 39 |
+
device = "mps"
|
| 40 |
+
else:
|
| 41 |
+
print("Using CPU")
|
| 42 |
+
device = "cpu"
|
| 43 |
+
|
| 44 |
+
device = torch.device(device)
|