File size: 18,507 Bytes
c82bf42
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
{
 "cells": [
  {
   "cell_type": "markdown",
   "id": "f970f757-ec76-4bf0-90cd-a2fb68b945e3",
   "metadata": {},
   "source": [
    "# Exploring OpenAI V1 functionality\n",
    "\n",
    "On 11.06.23 OpenAI released a number of new features, and along with it bumped their Python SDK to 1.0.0. This notebook shows off the new features and how to use them with LangChain."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "ee897729-263a-4073-898f-bb4cf01ed829",
   "metadata": {},
   "outputs": [],
   "source": [
    "# need openai>=1.1.0, langchain>=0.0.335, langchain-experimental>=0.0.39\n",
    "!pip install -U openai langchain langchain-experimental"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "id": "c3e067ce-7a43-47a7-bc89-41f1de4cf136",
   "metadata": {},
   "outputs": [],
   "source": [
    "from langchain_core.messages import HumanMessage, SystemMessage\n",
    "from langchain_openai import ChatOpenAI"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "fa7e7e95-90a1-4f73-98fe-10c4b4e0951b",
   "metadata": {},
   "source": [
    "## [Vision](https://platform.openai.com/docs/guides/vision)\n",
    "\n",
    "OpenAI released multi-modal models, which can take a sequence of text and images as input."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "id": "1c8c3965-d3c9-4186-b5f3-5e67855ef916",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "AIMessage(content='The image appears to be a diagram representing the architecture or components of a software system or framework related to language processing, possibly named LangChain or associated with a project or product called LangChain, based on the prominent appearance of that term. The diagram is organized into several layers or aspects, each containing various elements or modules:\\n\\n1. **Protocol**: This may be the foundational layer, which includes \"LCEL\" and terms like parallelization, fallbacks, tracing, batching, streaming, async, and composition. These seem related to communication and execution protocols for the system.\\n\\n2. **Integrations Components**: This layer includes \"Model I/O\" with elements such as the model, output parser, prompt, and example selector. It also has a \"Retrieval\" section with a document loader, retriever, embedding model, vector store, and text splitter. Lastly, there\\'s an \"Agent Tooling\" section. These components likely deal with the interaction with external data, models, and tools.\\n\\n3. **Application**: The application layer features \"LangChain\" with chains, agents, agent executors, and common application logic. This suggests that the system uses a modular approach with chains and agents to process language tasks.\\n\\n4. **Deployment**: This contains \"Lang')"
      ]
     },
     "execution_count": 2,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "chat = ChatOpenAI(model=\"gpt-4-vision-preview\", max_tokens=256)\n",
    "chat.invoke(\n",
    "    [\n",
    "        HumanMessage(\n",
    "            content=[\n",
    "                {\"type\": \"text\", \"text\": \"What is this image showing\"},\n",
    "                {\n",
    "                    \"type\": \"image_url\",\n",
    "                    \"image_url\": {\n",
    "                        \"url\": \"https://raw.githubusercontent.com/langchain-ai/langchain/master/docs/static/img/langchain_stack.png\",\n",
    "                        \"detail\": \"auto\",\n",
    "                    },\n",
    "                },\n",
    "            ]\n",
    "        )\n",
    "    ]\n",
    ")"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "210f8248-fcf3-4052-a4a3-0684e08f8785",
   "metadata": {},
   "source": [
    "## [OpenAI assistants](https://platform.openai.com/docs/assistants/overview)\n",
    "\n",
    "> The Assistants API allows you to build AI assistants within your own applications. An Assistant has instructions and can leverage models, tools, and knowledge to respond to user queries. The Assistants API currently supports three types of tools: Code Interpreter, Retrieval, and Function calling\n",
    "\n",
    "\n",
    "You can interact with OpenAI Assistants using OpenAI tools or custom tools. When using exclusively OpenAI tools, you can just invoke the assistant directly and get final answers. When using custom tools, you can run the assistant and tool execution loop using the built-in AgentExecutor or easily write your own executor.\n",
    "\n",
    "Below we show the different ways to interact with Assistants. As a simple example, let's build a math tutor that can write and run code."
   ]
  },
  {
   "cell_type": "markdown",
   "id": "318da28d-4cec-42ab-ae3e-76d95bb34fa5",
   "metadata": {},
   "source": [
    "### Using only OpenAI tools"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "id": "a9064bbe-d9f7-4a29-a7b3-73933b3197e7",
   "metadata": {},
   "outputs": [],
   "source": [
    "from langchain.agents.openai_assistant import OpenAIAssistantRunnable"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "id": "7a20a008-49ac-46d2-aa26-b270118af5ea",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "[ThreadMessage(id='msg_g9OJv0rpPgnc3mHmocFv7OVd', assistant_id='asst_hTwZeNMMphxzSOqJ01uBMsJI', content=[MessageContentText(text=Text(annotations=[], value='The result of \\\\(10 - 4^{2.7}\\\\) is approximately \\\\(-32.224\\\\).'), type='text')], created_at=1699460600, file_ids=[], metadata={}, object='thread.message', role='assistant', run_id='run_nBIT7SiAwtUfSCTrQNSPLOfe', thread_id='thread_14n4GgXwxgNL0s30WJW5F6p0')]"
      ]
     },
     "execution_count": 2,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "interpreter_assistant = OpenAIAssistantRunnable.create_assistant(\n",
    "    name=\"langchain assistant\",\n",
    "    instructions=\"You are a personal math tutor. Write and run code to answer math questions.\",\n",
    "    tools=[{\"type\": \"code_interpreter\"}],\n",
    "    model=\"gpt-4-1106-preview\",\n",
    ")\n",
    "output = interpreter_assistant.invoke({\"content\": \"What's 10 - 4 raised to the 2.7\"})\n",
    "output"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "a8ddd181-ac63-4ab6-a40d-a236120379c1",
   "metadata": {},
   "source": [
    "### As a LangChain agent with arbitrary tools\n",
    "\n",
    "Now let's recreate this functionality using our own tools. For this example we'll use the [E2B sandbox runtime tool](https://e2b.dev/docs?ref=landing-page-get-started)."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "ee4cc355-f2d6-4c51-bcf7-f502868357d3",
   "metadata": {},
   "outputs": [],
   "source": [
    "!pip install e2b duckduckgo-search"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "id": "48681ac7-b267-48d4-972c-8a7df8393a21",
   "metadata": {},
   "outputs": [],
   "source": [
    "from langchain.tools import DuckDuckGoSearchRun, E2BDataAnalysisTool\n",
    "\n",
    "tools = [E2BDataAnalysisTool(api_key=\"...\"), DuckDuckGoSearchRun()]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "id": "1c01dd79-dd3e-4509-a2e2-009a7f99f16a",
   "metadata": {},
   "outputs": [],
   "source": [
    "agent = OpenAIAssistantRunnable.create_assistant(\n",
    "    name=\"langchain assistant e2b tool\",\n",
    "    instructions=\"You are a personal math tutor. Write and run code to answer math questions. You can also search the internet.\",\n",
    "    tools=tools,\n",
    "    model=\"gpt-4-1106-preview\",\n",
    "    as_agent=True,\n",
    ")"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "1ac71d8b-4b4b-4f98-b826-6b3c57a34166",
   "metadata": {},
   "source": [
    "#### Using AgentExecutor"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "id": "1f137f94-801f-4766-9ff5-2de9df5e8079",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "{'content': \"What's the weather in SF today divided by 2.7\",\n",
       " 'output': \"The weather in San Francisco today is reported to have temperatures as high as 66 °F. To get the temperature divided by 2.7, we will calculate that:\\n\\n66 °F / 2.7 = 24.44 °F\\n\\nSo, when the high temperature of 66 °F is divided by 2.7, the result is approximately 24.44 °F. Please note that this doesn't have a meteorological meaning; it's purely a mathematical operation based on the given temperature.\"}"
      ]
     },
     "execution_count": 5,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "from langchain.agents import AgentExecutor\n",
    "\n",
    "agent_executor = AgentExecutor(agent=agent, tools=tools)\n",
    "agent_executor.invoke({\"content\": \"What's the weather in SF today divided by 2.7\"})"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "2d0a0b1d-c1b3-4b50-9dce-1189b51a6206",
   "metadata": {},
   "source": [
    "#### Custom execution"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "id": "c0475fa7-b6c1-4331-b8e2-55407466c724",
   "metadata": {},
   "outputs": [],
   "source": [
    "agent = OpenAIAssistantRunnable.create_assistant(\n",
    "    name=\"langchain assistant e2b tool\",\n",
    "    instructions=\"You are a personal math tutor. Write and run code to answer math questions.\",\n",
    "    tools=tools,\n",
    "    model=\"gpt-4-1106-preview\",\n",
    "    as_agent=True,\n",
    ")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "id": "b76cb669-6aba-4827-868f-00aa960026f2",
   "metadata": {},
   "outputs": [],
   "source": [
    "from langchain_core.agents import AgentFinish\n",
    "\n",
    "\n",
    "def execute_agent(agent, tools, input):\n",
    "    tool_map = {tool.name: tool for tool in tools}\n",
    "    response = agent.invoke(input)\n",
    "    while not isinstance(response, AgentFinish):\n",
    "        tool_outputs = []\n",
    "        for action in response:\n",
    "            tool_output = tool_map[action.tool].invoke(action.tool_input)\n",
    "            print(action.tool, action.tool_input, tool_output, end=\"\\n\\n\")\n",
    "            tool_outputs.append(\n",
    "                {\"output\": tool_output, \"tool_call_id\": action.tool_call_id}\n",
    "            )\n",
    "        response = agent.invoke(\n",
    "            {\n",
    "                \"tool_outputs\": tool_outputs,\n",
    "                \"run_id\": action.run_id,\n",
    "                \"thread_id\": action.thread_id,\n",
    "            }\n",
    "        )\n",
    "\n",
    "    return response"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "id": "7946116a-b82f-492e-835e-ca958a8949a5",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "e2b_data_analysis {'python_code': 'print(10 - 4 ** 2.7)'} {\"stdout\": \"-32.22425314473263\", \"stderr\": \"\", \"artifacts\": []}\n",
      "\n",
      "\\( 10 - 4^{2.7} \\) is approximately \\(-32.22425314473263\\).\n"
     ]
    }
   ],
   "source": [
    "response = execute_agent(agent, tools, {\"content\": \"What's 10 - 4 raised to the 2.7\"})\n",
    "print(response.return_values[\"output\"])"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 9,
   "id": "f2744a56-9f4f-4899-827a-fa55821c318c",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "e2b_data_analysis {'python_code': 'result = 10 - 4 ** 2.7\\nprint(result + 17.241)'} {\"stdout\": \"-14.983253144732629\", \"stderr\": \"\", \"artifacts\": []}\n",
      "\n",
      "When you add \\( 17.241 \\) to \\( 10 - 4^{2.7} \\), the result is approximately \\( -14.98325314473263 \\).\n"
     ]
    }
   ],
   "source": [
    "next_response = execute_agent(\n",
    "    agent, tools, {\"content\": \"now add 17.241\", \"thread_id\": response.thread_id}\n",
    ")\n",
    "print(next_response.return_values[\"output\"])"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "71c34763-d1e7-4b9a-a9d7-3e4cc0dfc2c4",
   "metadata": {},
   "source": [
    "## [JSON mode](https://platform.openai.com/docs/guides/text-generation/json-mode)\n",
    "\n",
    "Constrain the model to only generate valid JSON. Note that you must include a system message with instructions to use JSON for this mode to work.\n",
    "\n",
    "Only works with certain models. "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "db6072c4-f3f3-415d-872b-71ea9f3c02bb",
   "metadata": {},
   "outputs": [],
   "source": [
    "chat = ChatOpenAI(model=\"gpt-3.5-turbo-1106\").bind(\n",
    "    response_format={\"type\": \"json_object\"}\n",
    ")\n",
    "\n",
    "output = chat.invoke(\n",
    "    [\n",
    "        SystemMessage(\n",
    "            content=\"Extract the 'name' and 'origin' of any companies mentioned in the following statement. Return a JSON list.\"\n",
    "        ),\n",
    "        HumanMessage(\n",
    "            content=\"Google was founded in the USA, while Deepmind was founded in the UK\"\n",
    "        ),\n",
    "    ]\n",
    ")\n",
    "print(output.content)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "08e00ccf-b991-4249-846b-9500a0ccbfa0",
   "metadata": {},
   "outputs": [],
   "source": [
    "import json\n",
    "\n",
    "json.loads(output.content)"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "aa9a94d9-4319-4ab7-a979-c475ce6b5f50",
   "metadata": {},
   "source": [
    "## [System fingerprint](https://platform.openai.com/docs/guides/text-generation/reproducible-outputs)\n",
    "\n",
    "OpenAI sometimes changes model configurations in a way that impacts outputs. Whenever this happens, the system_fingerprint associated with a generation will change."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "1281883c-bf8f-4665-89cd-4f33ccde69ab",
   "metadata": {},
   "outputs": [],
   "source": [
    "chat = ChatOpenAI(model=\"gpt-3.5-turbo-1106\")\n",
    "output = chat.generate(\n",
    "    [\n",
    "        [\n",
    "            SystemMessage(\n",
    "                content=\"Extract the 'name' and 'origin' of any companies mentioned in the following statement. Return a JSON list.\"\n",
    "            ),\n",
    "            HumanMessage(\n",
    "                content=\"Google was founded in the USA, while Deepmind was founded in the UK\"\n",
    "            ),\n",
    "        ]\n",
    "    ]\n",
    ")\n",
    "print(output.llm_output)"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "aa6565be-985d-4127-848e-c3bca9d7b434",
   "metadata": {},
   "source": [
    "## Breaking changes to Azure classes\n",
    "\n",
    "OpenAI V1 rewrote their clients and separated Azure and OpenAI clients. This has led to some changes in LangChain interfaces when using OpenAI V1.\n",
    "\n",
    "BREAKING CHANGES:\n",
    "- To use Azure embeddings with OpenAI V1, you'll need to use the new `AzureOpenAIEmbeddings` instead of the existing `OpenAIEmbeddings`. `OpenAIEmbeddings` continue to work when using Azure with `openai<1`.\n",
    "```python\n",
    "from langchain_openai import AzureOpenAIEmbeddings\n",
    "```\n",
    "\n",
    "\n",
    "RECOMMENDED CHANGES:\n",
    "- When using `AzureChatOpenAI` or `AzureOpenAI`, if passing in an Azure endpoint (eg https://example-resource.azure.openai.com/) this should be specified via the `azure_endpoint` parameter or the `AZURE_OPENAI_ENDPOINT`. We're maintaining backwards compatibility for now with specifying this via `openai_api_base`/`base_url` or env var `OPENAI_API_BASE` but this shouldn't be relied upon.\n",
    "- When using Azure chat or embedding models, pass in API keys either via `openai_api_key` parameter or `AZURE_OPENAI_API_KEY` parameter. We're maintaining backwards compatibility for now with specifying this via `OPENAI_API_KEY` but this shouldn't be relied upon."
   ]
  },
  {
   "cell_type": "markdown",
   "id": "49944887-3972-497e-8da2-6d32d44345a9",
   "metadata": {},
   "source": [
    "## Tools\n",
    "\n",
    "Use tools for parallel function calling."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "id": "916292d8-0f89-40a6-af1c-5a1122327de8",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "[GetCurrentWeather(location='New York, NY', unit='fahrenheit'),\n",
       " GetCurrentWeather(location='Los Angeles, CA', unit='fahrenheit'),\n",
       " GetCurrentWeather(location='San Francisco, CA', unit='fahrenheit')]"
      ]
     },
     "execution_count": 3,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "from typing import Literal\n",
    "\n",
    "from langchain.output_parsers.openai_tools import PydanticToolsParser\n",
    "from langchain.utils.openai_functions import convert_pydantic_to_openai_tool\n",
    "from langchain_core.prompts import ChatPromptTemplate\n",
    "from langchain_core.pydantic_v1 import BaseModel, Field\n",
    "\n",
    "\n",
    "class GetCurrentWeather(BaseModel):\n",
    "    \"\"\"Get the current weather in a location.\"\"\"\n",
    "\n",
    "    location: str = Field(description=\"The city and state, e.g. San Francisco, CA\")\n",
    "    unit: Literal[\"celsius\", \"fahrenheit\"] = Field(\n",
    "        default=\"fahrenheit\", description=\"The temperature unit, default to fahrenheit\"\n",
    "    )\n",
    "\n",
    "\n",
    "prompt = ChatPromptTemplate.from_messages(\n",
    "    [(\"system\", \"You are a helpful assistant\"), (\"user\", \"{input}\")]\n",
    ")\n",
    "model = ChatOpenAI(model=\"gpt-3.5-turbo-1106\").bind(\n",
    "    tools=[convert_pydantic_to_openai_tool(GetCurrentWeather)]\n",
    ")\n",
    "chain = prompt | model | PydanticToolsParser(tools=[GetCurrentWeather])\n",
    "\n",
    "chain.invoke({\"input\": \"what's the weather in NYC, LA, and SF\"})"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "poetry-venv",
   "language": "python",
   "name": "poetry-venv"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.9.1"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}