File size: 7,687 Bytes
c82ab6a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
import torch
from torch import nn
from torch.nn import functional as F
from loguru import logger
# from prodigyopt import Prodigy
from torch.utils.checkpoint import checkpoint
from transformers import pipeline
# from sbp.nn.model_paths import MODEL_PATHS
# # from sbp.nn.torch.models.qformer import ModifiedQFormer


class ImageEncoder(nn.Module):

    def __init__(self, output_dim, base_model='eva02_base_patch14_224.mim_in22k', layer_num=6, seq_len=3, device='cpu', use_pe=False, use_pyramid=False, use_global_feature=False, use_qformer_dim=False):
        super().__init__()
        self.output_dim = output_dim
        import timm
        # paths = {
        #     'eva02_large_patch14_448.mim_in22k_ft_in1k': MODEL_PATHS.EVA02_LARGE_448_MIM_IN22K,
        #     'eva02_base_patch14_224.mim_in22k': MODEL_PATHS.EVA02_BASE_224_MIM_IN22K,
        # }
        if base_model == 'eva02_base_patch14_224.mim_in22k':
            self.img_seq = 257
        elif base_model == 'eva02_large_patch14_448.mim_in22k_ft_in1k':
            self.img_seq = 1025
        elif base_model == 'siglip2':
            self.img_seq = 1024
        else:
            raise ValueError(f" unknown {base_model}, supported: {list(paths.keys())}")
        # self.base_model = timm.create_model(base_model, pretrained=True, pretrained_cfg_overlay={'file': paths[base_model], 'custom_load': False})
        self.base_model = timm.create_model(base_model, pretrained=False)
        del self.base_model.norm, self.base_model.fc_norm, self.base_model.head, self.base_model.head_drop
        del self.base_model.blocks[layer_num:]
        dim_mult = 3 if use_pyramid else 1
        image_output_dim = self.base_model.num_features * dim_mult
        self.seq_len = seq_len
        self.device = device
        self.use_pe = use_pe
        self.use_pyramid = use_pyramid
        self.use_global_feature = use_global_feature
        self.use_qformer = use_qformer_dim > 0
        if self.use_pe:
            self.pe = torch.zeros([1, self.seq_len * self.img_seq, self.output_dim], device=self.device, dtype=torch.bfloat16)
            for i in range(self.seq_len):
                self.pe[:, i * self.img_seq: (i + 1) * self.img_seq, i::self.seq_len] = 0.05
        if self.use_qformer:
            logger.info("image projection use qformer ...")
            self.qformer = ModifiedQFormer(
                input_dim=image_output_dim, 
                hidden_dim=use_qformer_dim, 
                num_heads=12, 
                num_layers=6, 
                output_dim=output_dim, 
                num_queries=512,
                use_self_attention=False
            ).cuda()
        else:
            self.project = nn.Linear(image_output_dim, output_dim)
        self.final_norm = nn.LayerNorm(output_dim)

    def apply_feature_pyramid(self, original_tokens, original_grid_size=32, downsample = [1, 4, 32]):
        B, seq_len, D = original_tokens[0].shape
        H = W = original_grid_size
        
        token_lst = []
        for i, tokens in enumerate(original_tokens):
            downsample_size = downsample[i]
            if downsample_size == 0:
                pass
            elif downsample_size == 1:
                token_lst.append(tokens)
            else:
                head, tokens = torch.split(tokens, [1, 1024], dim=1)
                tokens_2d = tokens.view(B, H, W, D).permute(0, 3, 1, 2) # Reshape tokens to 2D grid (B, D, H, W)
                pooled = F.avg_pool2d(tokens_2d, kernel_size=downsample_size, stride=downsample_size)  # (B, D, 32//ds, 32//ds)
                up = F.interpolate(pooled, size=(H, W), mode='nearest')  # (B, D, 32, 32)
                up = up.permute(0, 2, 3, 1).reshape(B, seq_len - 1, D)
                up = torch.cat([head, up], dim=1)
                token_lst.append(up / downsample_size ** 0.5)
        combined_tokens = torch.cat(token_lst, dim=2)
        return combined_tokens

    def apply_global_feature(self, original_tokens, original_grid_size=32, pool_size=4):
        B, seq_len, D = original_tokens.shape
        H = W = original_grid_size
        
        tokens_2d = original_tokens.view(B, H, W, D).permute(0, 3, 1, 2)
        pooled = F.avg_pool2d(tokens_2d, kernel_size=pool_size, stride=pool_size)  # (B, D, 8, 8)
        pooled = pooled.permute((0, 2, 3, 1)).reshape((B, seq_len // pool_size // pool_size, D))
        return pooled

    def forward(self, image_list):
        splits = [len(lst) for lst in image_list]
        if sum(splits) == 0:
            return torch.zeros([len(splits), self.seq_len * self.img_seq, self.output_dim], device=self.device, dtype=torch.bfloat16)
        x = torch.concat(image_list, dim=0).to(device=self.device, dtype=torch.bfloat16)
        x = self.base_model.patch_embed(x)
        x, rot_pos_embed = self.base_model._pos_embed(x)
        intermediates = []
        for i, blk in enumerate(self.base_model.blocks):
            x = blk(x, rope=rot_pos_embed)
            if i in [11]:
                intermediates.append(x)
                intermediates.append(x)
        if self.use_pyramid:
            x = self.apply_feature_pyramid(intermediates + [x])
        elif self.use_global_feature:
            x = self.apply_global_feature(x)
        
        if self.use_qformer:
            x = self.qformer(x)
        else:
            x = self.project(x)
        x = self.final_norm(x) 

        b, seq_len, c= x.shape
        split_patches = torch.split(x, splits, dim=0)
        split_patches = [nn.functional.pad(sample, (0, 0, 0, 0, 0, self.seq_len - len(sample))) for sample in split_patches]
        x = torch.stack(split_patches, dim=0)
        x = x.reshape((len(splits), self.seq_len * seq_len, c))
        if self.use_pe:
            x = x + self.pe
        return x


class ImageEncoderWithSiglip(nn.Module):

    def __init__(self, output_dim, base_model="siglip2-so400m-patch16-512", layer_num=6, seq_len=3, device='cpu', use_pe=False):
        super().__init__()
        self.output_dim = output_dim
        ckpt = {
            'siglip-so400m-patch14-384': MODEL_PATHS.SIGLIP_SO400M_384,
            'siglip2-so400m-patch16-512': MODEL_PATHS.SIGLIP2_SO400M_512
        }[base_model]
        image_classifier = pipeline(model=ckpt, task="zero-shot-image-classification", device='cpu')
        logger.info(f"using {layer_num} / {len(image_classifier.model.vision_model.encoder.layers)} layers of {base_model} ... ")
        del image_classifier.model.vision_model.encoder.layers[layer_num:]
        num_features = image_classifier.model.vision_model.post_layernorm.normalized_shape[0]
        self.base_model = image_classifier.model.vision_model
        self.project = nn.Linear(num_features, output_dim)
        self.final_norm = nn.LayerNorm(output_dim)
        self.seq_len = seq_len
        self.device = device
        self.use_pe = use_pe

    def forward(self, image_list):
        splits = [len(lst) for lst in image_list]
        if sum(splits) == 0:
            return torch.zeros([len(splits), self.seq_len * self.img_seq, self.output_dim], device=self.device, dtype=torch.bfloat16)
        x = torch.concat(image_list, dim=0).to(device=self.device, dtype=torch.bfloat16)
        x = self.base_model(x).last_hidden_state
        x = self.project(x)
        x = self.final_norm(x)
        b, seq_len, c= x.shape
        split_patches = torch.split(x, splits, dim=0)
        split_patches = [nn.functional.pad(sample, (0, 0, 0, 0, 0, self.seq_len - len(sample))) for sample in split_patches]
        x = torch.stack(split_patches, dim=0)
        x = x.reshape((len(splits), self.seq_len * seq_len, c))
        if self.use_pe:
            x = x + self.pe
        return x