Spaces:
Running
on
Zero
Running
on
Zero
| #==================================================================== | |
| # https://huggingface.co/spaces/asigalov61/Godzilla-Piano-Transformer | |
| #==================================================================== | |
| """ | |
| Godzilla Piano Transformer Gradio App - Single Model, Simplified Version | |
| Fast 807M 4k solo Piano music transformer trained on 1.14M+ MIDIs (2.7M+ samples) | |
| Using only one model: "without velocity - 3 epochs" | |
| """ | |
| import os | |
| os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1" | |
| import time as reqtime | |
| import datetime | |
| from pytz import timezone | |
| import torch | |
| import matplotlib.pyplot as plt | |
| import gradio as gr | |
| import spaces | |
| from huggingface_hub import hf_hub_download | |
| import TMIDIX | |
| from midi_to_colab_audio import midi_to_colab_audio | |
| from x_transformer_2_3_1 import TransformerWrapper, AutoregressiveWrapper, Decoder | |
| # ----------------------------- | |
| # CONFIGURATION & GLOBALS | |
| # ----------------------------- | |
| SEP = '=' * 70 | |
| PDT = timezone('US/Pacific') | |
| MODEL_CHECKPOINT = 'Godzilla_Piano_Transformer_No_Velocity_Trained_Model_21113_steps_0.3454_loss_0.895_acc.pth' | |
| SOUDFONT_PATH = 'SGM-v2.01-YamahaGrand-Guit-Bass-v2.7.sf2' | |
| NUM_OUT_BATCHES = 12 | |
| PREVIEW_LENGTH = 120 # in tokens | |
| # ----------------------------- | |
| # PRINT START-UP INFO | |
| # ----------------------------- | |
| def print_sep(): | |
| print(SEP) | |
| print_sep() | |
| print("Godzilla Piano Transformer Gradio App") | |
| print_sep() | |
| print("Loading modules...") | |
| # ----------------------------- | |
| # ENVIRONMENT & PyTorch Settings | |
| # ----------------------------- | |
| os.environ['USE_FLASH_ATTENTION'] = '1' | |
| torch.set_float32_matmul_precision('high') | |
| torch.backends.cuda.matmul.allow_tf32 = True | |
| torch.backends.cudnn.allow_tf32 = True | |
| torch.backends.cuda.enable_mem_efficient_sdp(True) | |
| torch.backends.cuda.enable_math_sdp(True) | |
| torch.backends.cuda.enable_flash_sdp(True) | |
| torch.backends.cuda.enable_cudnn_sdp(True) | |
| print_sep() | |
| print("PyTorch version:", torch.__version__) | |
| print("Done loading modules!") | |
| print_sep() | |
| # ----------------------------- | |
| # MODEL INITIALIZATION | |
| # ----------------------------- | |
| print_sep() | |
| print("Instantiating model...") | |
| device_type = 'cuda' | |
| dtype = 'bfloat16' | |
| ptdtype = {'bfloat16': torch.bfloat16, 'float16': torch.float16}[dtype] | |
| ctx = torch.amp.autocast(device_type=device_type, dtype=ptdtype) | |
| SEQ_LEN = 4096 | |
| PAD_IDX = 384 | |
| model = TransformerWrapper( | |
| num_tokens=PAD_IDX + 1, | |
| max_seq_len=SEQ_LEN, | |
| attn_layers=Decoder( | |
| dim=2048, | |
| depth=16, | |
| heads=32, | |
| rotary_pos_emb=True, | |
| attn_flash=True | |
| ) | |
| ) | |
| model = AutoregressiveWrapper(model, ignore_index=PAD_IDX, pad_value=PAD_IDX) | |
| print_sep() | |
| print("Loading model checkpoint...") | |
| checkpoint = hf_hub_download( | |
| repo_id='asigalov61/Godzilla-Piano-Transformer', | |
| filename=MODEL_CHECKPOINT | |
| ) | |
| model.load_state_dict(torch.load(checkpoint, map_location='cuda', weights_only=True)) | |
| model = torch.compile(model, mode='max-autotune') | |
| print_sep() | |
| print("Done!") | |
| print("Model will use", dtype, "precision...") | |
| print_sep() | |
| model.cuda() | |
| model.eval() | |
| # ----------------------------- | |
| # HELPER FUNCTIONS | |
| # ----------------------------- | |
| def render_midi_output(final_composition): | |
| """Generate MIDI score, plot, and audio from final composition.""" | |
| fname, midi_score = save_midi(final_composition) | |
| time_val = midi_score[-1][1] / 1000 # seconds marker from last note | |
| midi_plot = TMIDIX.plot_ms_SONG( | |
| midi_score, | |
| plot_title='Godzilla Piano Transformer Composition', | |
| block_lines_times_list=[], | |
| return_plt=True | |
| ) | |
| midi_audio = midi_to_colab_audio( | |
| fname + '.mid', | |
| soundfont_path=SOUDFONT_PATH, | |
| sample_rate=16000, | |
| output_for_gradio=True | |
| ) | |
| return (16000, midi_audio), midi_plot, fname + '.mid', time_val | |
| # ----------------------------- | |
| # MIDI PROCESSING FUNCTIONS | |
| # ----------------------------- | |
| def load_midi(input_midi): | |
| """Process the input MIDI file and create a token sequence using without velocity logic.""" | |
| raw_score = TMIDIX.midi2single_track_ms_score(input_midi.name) | |
| escore_notes = TMIDIX.advanced_score_processor( | |
| raw_score, return_enhanced_score_notes=True, apply_sustain=True | |
| )[0] | |
| sp_escore_notes = TMIDIX.solo_piano_escore_notes(escore_notes) | |
| zscore = TMIDIX.recalculate_score_timings(sp_escore_notes) | |
| zscore = TMIDIX.augment_enhanced_score_notes(zscore, timings_divider=32) | |
| fscore = TMIDIX.fix_escore_notes_durations(zscore) | |
| cscore = TMIDIX.chordify_score([1000, fscore]) | |
| score = [] | |
| prev_chord = cscore[0] | |
| for chord in cscore: | |
| # Time difference token. | |
| score.append(max(0, min(127, chord[0][1] - prev_chord[0][1]))) | |
| for note in chord: | |
| score.extend([ | |
| max(1, min(127, note[2])) + 128, | |
| max(1, min(127, note[4])) + 256 | |
| ]) | |
| prev_chord = chord | |
| return score | |
| def save_midi(tokens, batch_number=None): | |
| """Convert token sequence back to a MIDI score and write it using TMIDIX (without velocity). | |
| The output MIDI file name incorporates a date-time stamp. | |
| """ | |
| song_events = [] | |
| time_marker = 0 | |
| duration = 0 | |
| pitch = 0 | |
| patches = [0] * 16 | |
| for token in tokens: | |
| if 0 <= token < 128: | |
| time_marker += token * 32 | |
| elif 128 <= token < 256: | |
| duration = (token - 128) * 32 | |
| elif 256 <= token < 384: | |
| pitch = token - 256 | |
| song_events.append(['note', time_marker, duration, 0, pitch, max(40, pitch), 0]) | |
| # No velocity tokens are used. | |
| # Generate a time stamp using the PDT timezone. | |
| timestamp = datetime.datetime.now(PDT).strftime("%Y%m%d_%H%M%S") | |
| if batch_number is None: | |
| fname = f"Godzilla-Piano-Transformer-Music-Composition_{timestamp}" | |
| else: | |
| fname = f"Godzilla-Piano-Transformer-Music-Composition_{timestamp}_Batch_{batch_number}" | |
| TMIDIX.Tegridy_ms_SONG_to_MIDI_Converter( | |
| song_events, | |
| output_signature='Godzilla Piano Transformer', | |
| output_file_name=fname, | |
| track_name='Project Los Angeles', | |
| list_of_MIDI_patches=patches, | |
| verbose=False | |
| ) | |
| return fname, song_events | |
| # ----------------------------- | |
| # MUSIC GENERATION FUNCTION (Combined) | |
| # ----------------------------- | |
| def generate_music(prime, num_gen_tokens, num_mem_tokens, num_gen_batches, model_temperature): | |
| """Generate music tokens given prime tokens and parameters.""" | |
| inputs = prime[-num_mem_tokens:] if prime else [0] | |
| print("Generating...") | |
| inp = torch.LongTensor([inputs] * num_gen_batches).cuda() | |
| with ctx: | |
| out = model.generate( | |
| inp, | |
| num_gen_tokens, | |
| temperature=model_temperature, | |
| return_prime=False, | |
| verbose=False | |
| ) | |
| print("Done!") | |
| print_sep() | |
| return out.tolist() | |
| def generate_music_and_state(input_midi, num_prime_tokens, num_gen_tokens, num_mem_tokens, | |
| model_temperature, final_composition, generated_batches, block_lines): | |
| """ | |
| Generate tokens using the model, update the composition state, and prepare outputs. | |
| This function combines seed loading, token generation, and UI output packaging. | |
| """ | |
| print_sep() | |
| print("Request start time:", datetime.datetime.now(PDT).strftime("%Y-%m-%d %H:%M:%S")) | |
| print('=' * 70) | |
| if input_midi is not None: | |
| fn = os.path.basename(input_midi.name) | |
| fn1 = fn.split('.')[0] | |
| print('Input file name:', fn) | |
| print('Num prime tokens:', num_prime_tokens) | |
| print('Num gen tokens:', num_gen_tokens) | |
| print('Num mem tokens:', num_mem_tokens) | |
| print('Model temp:', model_temperature) | |
| print('=' * 70) | |
| # Load seed from MIDI if there is no existing composition. | |
| if not final_composition and input_midi is not None: | |
| final_composition = load_midi(input_midi)[:num_prime_tokens] | |
| midi_fname, midi_score = save_midi(final_composition) | |
| # Use the last note's time as a marker. | |
| TMIDIX.Tegridy_ms_SONG_to_MIDI_Converter( | |
| midi_score, | |
| output_signature='Godzilla Piano Transformer', | |
| output_file_name=midi_fname, | |
| track_name='Project Los Angeles', | |
| list_of_MIDI_patches=[0]*16, | |
| verbose=False | |
| ) | |
| block_lines.append(midi_score[-1][1] / 1000 if final_composition else 0) | |
| batched_gen_tokens = generate_music(final_composition, num_gen_tokens, num_mem_tokens, | |
| NUM_OUT_BATCHES, model_temperature) | |
| output_batches = [] | |
| for i, tokens in enumerate(batched_gen_tokens): | |
| preview_tokens = final_composition[-PREVIEW_LENGTH:] | |
| midi_fname, midi_score = save_midi(preview_tokens + tokens, batch_number=i) | |
| plot_kwargs = {'plot_title': f'Batch # {i}', 'return_plt': True} | |
| if len(final_composition) > PREVIEW_LENGTH: | |
| plot_kwargs['preview_length_in_notes'] = int(PREVIEW_LENGTH / 3) | |
| TMIDIX.Tegridy_ms_SONG_to_MIDI_Converter( | |
| midi_score, | |
| output_signature='Godzilla Piano Transformer', | |
| output_file_name=midi_fname, | |
| track_name='Project Los Angeles', | |
| list_of_MIDI_patches=[0]*16, | |
| verbose=False | |
| ) | |
| midi_plot = TMIDIX.plot_ms_SONG(midi_score, **plot_kwargs) | |
| midi_audio = midi_to_colab_audio(midi_fname + '.mid', | |
| soundfont_path=SOUDFONT_PATH, | |
| sample_rate=16000, | |
| output_for_gradio=True) | |
| output_batches.append([(16000, midi_audio), midi_plot, tokens]) | |
| # Update generated_batches (for use by add/remove functions) | |
| generated_batches = batched_gen_tokens | |
| print("Request end time:", datetime.datetime.now(PDT).strftime("%Y-%m-%d %H:%M:%S")) | |
| print_sep() | |
| # Flatten outputs: states then audio and plots for each batch. | |
| outputs_flat = [] | |
| for batch in output_batches: | |
| outputs_flat.extend([batch[0], batch[1]]) | |
| return [final_composition, generated_batches, block_lines] + outputs_flat | |
| # ----------------------------- | |
| # BATCH HANDLING FUNCTIONS | |
| # ----------------------------- | |
| def add_batch(batch_number, final_composition, generated_batches, block_lines): | |
| """Add tokens from the specified batch to the final composition and update outputs.""" | |
| if generated_batches: | |
| final_composition.extend(generated_batches[batch_number]) | |
| midi_fname, midi_score = save_midi(final_composition) | |
| block_lines.append(midi_score[-1][1] / 1000 if final_composition else 0) | |
| TMIDIX.Tegridy_ms_SONG_to_MIDI_Converter( | |
| midi_score, | |
| output_signature='Godzilla Piano Transformer', | |
| output_file_name=midi_fname, | |
| track_name='Project Los Angeles', | |
| list_of_MIDI_patches=[0]*16, | |
| verbose=False | |
| ) | |
| midi_plot = TMIDIX.plot_ms_SONG( | |
| midi_score, | |
| plot_title='Godzilla Piano Transformer Composition', | |
| block_lines_times_list=block_lines[:-1], | |
| return_plt=True | |
| ) | |
| midi_audio = midi_to_colab_audio(midi_fname + '.mid', | |
| soundfont_path=SOUDFONT_PATH, | |
| sample_rate=16000, | |
| output_for_gradio=True) | |
| print("Added batch #", batch_number) | |
| print_sep() | |
| return (16000, midi_audio), midi_plot, midi_fname + '.mid', final_composition, generated_batches, block_lines | |
| else: | |
| return None, None, None, [], [], [] | |
| def remove_batch(batch_number, num_tokens, final_composition, generated_batches, block_lines): | |
| """Remove tokens from the final composition and update outputs.""" | |
| if final_composition and len(final_composition) > num_tokens: | |
| final_composition = final_composition[:-num_tokens] | |
| if block_lines: | |
| block_lines.pop() | |
| midi_fname, midi_score = save_midi(final_composition) | |
| TMIDIX.Tegridy_ms_SONG_to_MIDI_Converter( | |
| final_composition, | |
| output_signature='Godzilla Piano Transformer', | |
| output_file_name=midi_fname, | |
| track_name='Project Los Angeles', | |
| list_of_MIDI_patches=[0]*16, | |
| verbose=False | |
| ) | |
| midi_plot = TMIDIX.plot_ms_SONG( | |
| midi_score, | |
| plot_title='Godzilla Piano Transformer Composition', | |
| block_lines_times_list=block_lines[:-1], | |
| return_plt=True | |
| ) | |
| midi_audio = midi_to_colab_audio(midi_fname + '.mid', | |
| soundfont_path=SOUDFONT_PATH, | |
| sample_rate=16000, | |
| output_for_gradio=True) | |
| print("Removed batch #", batch_number) | |
| print_sep() | |
| return (16000, midi_audio), midi_plot, midi_fname + '.mid', final_composition, generated_batches, block_lines | |
| else: | |
| return None, None, None, [], [], [] | |
| def clear(): | |
| """Clear outputs and reset state.""" | |
| return None, None, None, [], [] | |
| def reset(final_composition=[], generated_batches=[], block_lines=[]): | |
| """Reset composition state.""" | |
| return [], [], [] | |
| # ----------------------------- | |
| # GRADIO INTERFACE SETUP | |
| # ----------------------------- | |
| with gr.Blocks() as demo: | |
| gr.Markdown("<h1 style='text-align: left; margin-bottom: 1rem'>Godzilla Piano Transformer</h1>") | |
| gr.Markdown("<h1 style='text-align: left; margin-bottom: 1rem'>Fast 807M 4k solo Piano music transformer trained on 1.14M+ MIDIs (2.7M+ samples)</h1>") | |
| gr.HTML(""" | |
| Check out <a href="https://huggingface.co/datasets/asigalov61/Godzilla-Piano">Godzilla Piano dataset</a> on Hugging Face | |
| <p> | |
| <a href="https://huggingface.co/spaces/asigalov61/Godzilla-Piano-Transformer?duplicate=true"> | |
| <img src="https://huggingface.co/datasets/huggingface/badges/resolve/main/duplicate-this-space-md.svg" alt="Duplicate in Hugging Face"> | |
| </a> | |
| </p> | |
| for faster execution and endless generation! | |
| """) | |
| # Global state variables for composition | |
| final_composition = gr.State([]) | |
| generated_batches = gr.State([]) | |
| block_lines = gr.State([]) | |
| gr.Markdown("## Upload seed MIDI or click 'Generate' for a random output") | |
| input_midi = gr.File(label="Input MIDI", file_types=[".midi", ".mid", ".kar"]) | |
| input_midi.upload(reset, [final_composition, generated_batches, block_lines], | |
| [final_composition, generated_batches, block_lines]) | |
| gr.Markdown("## Generate") | |
| num_prime_tokens = gr.Slider(15, 3072, value=3072, step=1, label="Number of prime tokens") | |
| num_gen_tokens = gr.Slider(15, 1024, value=512, step=1, label="Number of tokens to generate") | |
| num_mem_tokens = gr.Slider(15, 4096, value=4096, step=1, label="Number of memory tokens") | |
| model_temperature = gr.Slider(0.1, 1, value=0.9, step=0.01, label="Model temperature") | |
| generate_btn = gr.Button("Generate", variant="primary") | |
| gr.Markdown("## Batch Previews") | |
| outputs = [final_composition, generated_batches, block_lines] | |
| # Two outputs (audio and plot) for each batch | |
| for i in range(NUM_OUT_BATCHES): | |
| with gr.Tab(f"Batch # {i}"): | |
| audio_output = gr.Audio(label=f"Batch # {i} MIDI Audio", format="mp3") | |
| plot_output = gr.Plot(label=f"Batch # {i} MIDI Plot") | |
| outputs.extend([audio_output, plot_output]) | |
| generate_btn.click( | |
| generate_music_and_state, | |
| [input_midi, num_prime_tokens, num_gen_tokens, num_mem_tokens, model_temperature, | |
| final_composition, generated_batches, block_lines], | |
| outputs | |
| ) | |
| gr.Markdown("## Add/Remove Batch") | |
| batch_number = gr.Slider(0, NUM_OUT_BATCHES - 1, value=0, step=1, label="Batch number to add/remove") | |
| add_btn = gr.Button("Add batch", variant="primary") | |
| remove_btn = gr.Button("Remove batch", variant="stop") | |
| clear_btn = gr.ClearButton() | |
| final_audio_output = gr.Audio(label="Final MIDI audio", format="mp3") | |
| final_plot_output = gr.Plot(label="Final MIDI plot") | |
| final_file_output = gr.File(label="Final MIDI file") | |
| add_btn.click( | |
| add_batch, | |
| [batch_number, final_composition, generated_batches, block_lines], | |
| [final_audio_output, final_plot_output, final_file_output, final_composition, generated_batches, block_lines] | |
| ) | |
| remove_btn.click( | |
| remove_batch, | |
| [batch_number, num_gen_tokens, final_composition, generated_batches, block_lines], | |
| [final_audio_output, final_plot_output, final_file_output, final_composition, generated_batches, block_lines] | |
| ) | |
| clear_btn.click(clear, inputs=None, | |
| outputs=[final_audio_output, final_plot_output, final_file_output, final_composition, block_lines]) | |
| demo.launch() |