asigalov61's picture
Update app.py
2abc7eb verified
#====================================================================
# https://huggingface.co/spaces/asigalov61/Godzilla-Piano-Transformer
#====================================================================
"""
Godzilla Piano Transformer Gradio App - Single Model, Simplified Version
Fast 807M 4k solo Piano music transformer trained on 1.14M+ MIDIs (2.7M+ samples)
Using only one model: "without velocity - 3 epochs"
"""
import os
os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1"
import time as reqtime
import datetime
from pytz import timezone
import torch
import matplotlib.pyplot as plt
import gradio as gr
import spaces
from huggingface_hub import hf_hub_download
import TMIDIX
from midi_to_colab_audio import midi_to_colab_audio
from x_transformer_2_3_1 import TransformerWrapper, AutoregressiveWrapper, Decoder
# -----------------------------
# CONFIGURATION & GLOBALS
# -----------------------------
SEP = '=' * 70
PDT = timezone('US/Pacific')
MODEL_CHECKPOINT = 'Godzilla_Piano_Transformer_No_Velocity_Trained_Model_21113_steps_0.3454_loss_0.895_acc.pth'
SOUDFONT_PATH = 'SGM-v2.01-YamahaGrand-Guit-Bass-v2.7.sf2'
NUM_OUT_BATCHES = 12
PREVIEW_LENGTH = 120 # in tokens
# -----------------------------
# PRINT START-UP INFO
# -----------------------------
def print_sep():
print(SEP)
print_sep()
print("Godzilla Piano Transformer Gradio App")
print_sep()
print("Loading modules...")
# -----------------------------
# ENVIRONMENT & PyTorch Settings
# -----------------------------
os.environ['USE_FLASH_ATTENTION'] = '1'
torch.set_float32_matmul_precision('high')
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True
torch.backends.cuda.enable_mem_efficient_sdp(True)
torch.backends.cuda.enable_math_sdp(True)
torch.backends.cuda.enable_flash_sdp(True)
torch.backends.cuda.enable_cudnn_sdp(True)
print_sep()
print("PyTorch version:", torch.__version__)
print("Done loading modules!")
print_sep()
# -----------------------------
# MODEL INITIALIZATION
# -----------------------------
print_sep()
print("Instantiating model...")
device_type = 'cuda'
dtype = 'bfloat16'
ptdtype = {'bfloat16': torch.bfloat16, 'float16': torch.float16}[dtype]
ctx = torch.amp.autocast(device_type=device_type, dtype=ptdtype)
SEQ_LEN = 4096
PAD_IDX = 384
model = TransformerWrapper(
num_tokens=PAD_IDX + 1,
max_seq_len=SEQ_LEN,
attn_layers=Decoder(
dim=2048,
depth=16,
heads=32,
rotary_pos_emb=True,
attn_flash=True
)
)
model = AutoregressiveWrapper(model, ignore_index=PAD_IDX, pad_value=PAD_IDX)
print_sep()
print("Loading model checkpoint...")
checkpoint = hf_hub_download(
repo_id='asigalov61/Godzilla-Piano-Transformer',
filename=MODEL_CHECKPOINT
)
model.load_state_dict(torch.load(checkpoint, map_location='cuda', weights_only=True))
model = torch.compile(model, mode='max-autotune')
print_sep()
print("Done!")
print("Model will use", dtype, "precision...")
print_sep()
model.cuda()
model.eval()
# -----------------------------
# HELPER FUNCTIONS
# -----------------------------
def render_midi_output(final_composition):
"""Generate MIDI score, plot, and audio from final composition."""
fname, midi_score = save_midi(final_composition)
time_val = midi_score[-1][1] / 1000 # seconds marker from last note
midi_plot = TMIDIX.plot_ms_SONG(
midi_score,
plot_title='Godzilla Piano Transformer Composition',
block_lines_times_list=[],
return_plt=True
)
midi_audio = midi_to_colab_audio(
fname + '.mid',
soundfont_path=SOUDFONT_PATH,
sample_rate=16000,
output_for_gradio=True
)
return (16000, midi_audio), midi_plot, fname + '.mid', time_val
# -----------------------------
# MIDI PROCESSING FUNCTIONS
# -----------------------------
def load_midi(input_midi):
"""Process the input MIDI file and create a token sequence using without velocity logic."""
raw_score = TMIDIX.midi2single_track_ms_score(input_midi.name)
escore_notes = TMIDIX.advanced_score_processor(
raw_score, return_enhanced_score_notes=True, apply_sustain=True
)[0]
sp_escore_notes = TMIDIX.solo_piano_escore_notes(escore_notes)
zscore = TMIDIX.recalculate_score_timings(sp_escore_notes)
zscore = TMIDIX.augment_enhanced_score_notes(zscore, timings_divider=32)
fscore = TMIDIX.fix_escore_notes_durations(zscore)
cscore = TMIDIX.chordify_score([1000, fscore])
score = []
prev_chord = cscore[0]
for chord in cscore:
# Time difference token.
score.append(max(0, min(127, chord[0][1] - prev_chord[0][1])))
for note in chord:
score.extend([
max(1, min(127, note[2])) + 128,
max(1, min(127, note[4])) + 256
])
prev_chord = chord
return score
def save_midi(tokens, batch_number=None):
"""Convert token sequence back to a MIDI score and write it using TMIDIX (without velocity).
The output MIDI file name incorporates a date-time stamp.
"""
song_events = []
time_marker = 0
duration = 0
pitch = 0
patches = [0] * 16
for token in tokens:
if 0 <= token < 128:
time_marker += token * 32
elif 128 <= token < 256:
duration = (token - 128) * 32
elif 256 <= token < 384:
pitch = token - 256
song_events.append(['note', time_marker, duration, 0, pitch, max(40, pitch), 0])
# No velocity tokens are used.
# Generate a time stamp using the PDT timezone.
timestamp = datetime.datetime.now(PDT).strftime("%Y%m%d_%H%M%S")
'''if batch_number is None:
fname = f"Godzilla-Piano-Transformer-Music-Composition_{timestamp}"
else:
fname = f"Godzilla-Piano-Transformer-Music-Composition_{timestamp}_Batch_{batch_number}"'''
fname = f"Godzilla-Piano-Transformer-Music-Composition"
TMIDIX.Tegridy_ms_SONG_to_MIDI_Converter(
song_events,
output_signature='Godzilla Piano Transformer',
output_file_name=fname,
track_name='Project Los Angeles',
list_of_MIDI_patches=patches,
verbose=False
)
return fname, song_events
# -----------------------------
# MUSIC GENERATION FUNCTION (Combined)
# -----------------------------
@spaces.GPU
def generate_music(prime, num_gen_tokens, num_mem_tokens, num_gen_batches, model_temperature):
"""Generate music tokens given prime tokens and parameters."""
inputs = prime[-num_mem_tokens:] if prime else [0]
print("Generating...")
inp = torch.LongTensor([inputs] * num_gen_batches).cuda()
with ctx:
out = model.generate(
inp,
num_gen_tokens,
temperature=model_temperature,
return_prime=False,
verbose=False
)
print("Done!")
print_sep()
return out.tolist()
def generate_music_and_state(input_midi, num_prime_tokens, num_gen_tokens, num_mem_tokens,
model_temperature, final_composition, generated_batches, block_lines):
"""
Generate tokens using the model, update the composition state, and prepare outputs.
This function combines seed loading, token generation, and UI output packaging.
"""
print_sep()
print("Request start time:", datetime.datetime.now(PDT).strftime("%Y-%m-%d %H:%M:%S"))
print('=' * 70)
if input_midi is not None:
fn = os.path.basename(input_midi.name)
fn1 = fn.split('.')[0]
print('Input file name:', fn)
print('Num prime tokens:', num_prime_tokens)
print('Num gen tokens:', num_gen_tokens)
print('Num mem tokens:', num_mem_tokens)
print('Model temp:', model_temperature)
print('=' * 70)
# Load seed from MIDI if there is no existing composition.
if not final_composition and input_midi is not None:
final_composition = load_midi(input_midi)[:num_prime_tokens]
midi_fname, midi_score = save_midi(final_composition)
# Use the last note's time as a marker.
TMIDIX.Tegridy_ms_SONG_to_MIDI_Converter(
midi_score,
output_signature='Godzilla Piano Transformer',
output_file_name=midi_fname,
track_name='Project Los Angeles',
list_of_MIDI_patches=[0]*16,
verbose=False
)
block_lines.append(midi_score[-1][1] / 1000 if final_composition else 0)
batched_gen_tokens = generate_music(final_composition, num_gen_tokens, num_mem_tokens,
NUM_OUT_BATCHES, model_temperature)
output_batches = []
for i, tokens in enumerate(batched_gen_tokens):
preview_tokens = final_composition[-PREVIEW_LENGTH:]
midi_fname, midi_score = save_midi(preview_tokens + tokens, batch_number=i)
plot_kwargs = {'plot_title': f'Batch # {i}', 'return_plt': True}
if len(final_composition) > PREVIEW_LENGTH:
plot_kwargs['preview_length_in_notes'] = len([t for t in preview_tokens if t > 256])
TMIDIX.Tegridy_ms_SONG_to_MIDI_Converter(
midi_score,
output_signature='Godzilla Piano Transformer',
output_file_name=midi_fname,
track_name='Project Los Angeles',
list_of_MIDI_patches=[0]*16,
verbose=False
)
midi_plot = TMIDIX.plot_ms_SONG(midi_score, **plot_kwargs)
midi_audio = midi_to_colab_audio(midi_fname + '.mid',
soundfont_path=SOUDFONT_PATH,
sample_rate=16000,
output_for_gradio=True)
output_batches.append([(16000, midi_audio), midi_plot, tokens])
# Update generated_batches (for use by add/remove functions)
generated_batches = batched_gen_tokens
print("Request end time:", datetime.datetime.now(PDT).strftime("%Y-%m-%d %H:%M:%S"))
print_sep()
# Flatten outputs: states then audio and plots for each batch.
outputs_flat = []
for batch in output_batches:
outputs_flat.extend([batch[0], batch[1]])
return [final_composition, generated_batches, block_lines] + outputs_flat
# -----------------------------
# BATCH HANDLING FUNCTIONS
# -----------------------------
def add_batch(batch_number, final_composition, generated_batches, block_lines):
"""Add tokens from the specified batch to the final composition and update outputs."""
if generated_batches:
final_composition.extend(generated_batches[batch_number])
midi_fname, midi_score = save_midi(final_composition)
block_lines.append(midi_score[-1][1] / 1000 if final_composition else 0)
TMIDIX.Tegridy_ms_SONG_to_MIDI_Converter(
midi_score,
output_signature='Godzilla Piano Transformer',
output_file_name=midi_fname,
track_name='Project Los Angeles',
list_of_MIDI_patches=[0]*16,
verbose=False
)
midi_plot = TMIDIX.plot_ms_SONG(
midi_score,
plot_title='Godzilla Piano Transformer Composition',
block_lines_times_list=block_lines[:-1],
return_plt=True
)
midi_audio = midi_to_colab_audio(midi_fname + '.mid',
soundfont_path=SOUDFONT_PATH,
sample_rate=16000,
output_for_gradio=True)
print("Added batch #", batch_number)
print_sep()
return (16000, midi_audio), midi_plot, midi_fname + '.mid', final_composition, generated_batches, block_lines
else:
return None, None, None, [], [], []
def remove_batch(batch_number, num_tokens, final_composition, generated_batches, block_lines):
"""Remove tokens from the final composition and update outputs."""
if final_composition and len(final_composition) > num_tokens:
final_composition = final_composition[:-num_tokens]
if block_lines:
block_lines.pop()
midi_fname, midi_score = save_midi(final_composition)
TMIDIX.Tegridy_ms_SONG_to_MIDI_Converter(
midi_score,
output_signature='Godzilla Piano Transformer',
output_file_name=midi_fname,
track_name='Project Los Angeles',
list_of_MIDI_patches=[0]*16,
verbose=False
)
midi_plot = TMIDIX.plot_ms_SONG(
midi_score,
plot_title='Godzilla Piano Transformer Composition',
block_lines_times_list=block_lines[:-1],
return_plt=True
)
midi_audio = midi_to_colab_audio(midi_fname + '.mid',
soundfont_path=SOUDFONT_PATH,
sample_rate=16000,
output_for_gradio=True)
print("Removed batch #", batch_number)
print_sep()
return (16000, midi_audio), midi_plot, midi_fname + '.mid', final_composition, generated_batches, block_lines
else:
return None, None, None, [], [], []
def clear():
"""Clear outputs and reset state."""
return None, None, None, [], []
def reset(final_composition=[], generated_batches=[], block_lines=[]):
"""Reset composition state."""
return [], [], []
# -----------------------------
# GRADIO INTERFACE SETUP
# -----------------------------
with gr.Blocks() as demo:
gr.Markdown("<h1 style='text-align: left; margin-bottom: 1rem'>Godzilla Piano Transformer</h1>")
gr.Markdown("<h1 style='text-align: left; margin-bottom: 1rem'>Fast 807M 4k solo Piano music transformer trained on 1.14M+ MIDIs (2.7M+ samples)</h1>")
gr.HTML("""
Check out <a href="https://huggingface.co/datasets/asigalov61/Godzilla-Piano">Godzilla Piano dataset</a> on Hugging Face
<p>
<a href="https://huggingface.co/spaces/asigalov61/Godzilla-Piano-Transformer?duplicate=true">
<img src="https://huggingface.co/datasets/huggingface/badges/resolve/main/duplicate-this-space-md.svg" alt="Duplicate in Hugging Face">
</a>
</p>
for faster execution and endless generation!
""")
# Global state variables for composition
final_composition = gr.State([])
generated_batches = gr.State([])
block_lines = gr.State([])
gr.Markdown("## Upload seed MIDI or click 'Generate' for a random output")
input_midi = gr.File(label="Input MIDI", file_types=[".midi", ".mid", ".kar"])
input_midi.upload(reset, [final_composition, generated_batches, block_lines],
[final_composition, generated_batches, block_lines])
gr.Markdown("## Generate")
num_prime_tokens = gr.Slider(15, 3072, value=3072, step=1, label="Number of prime tokens")
num_gen_tokens = gr.Slider(15, 1024, value=512, step=1, label="Number of tokens to generate")
num_mem_tokens = gr.Slider(15, 4096, value=4096, step=1, label="Number of memory tokens")
model_temperature = gr.Slider(0.1, 1, value=0.9, step=0.01, label="Model temperature")
generate_btn = gr.Button("Generate", variant="primary")
gr.Markdown("## Batch Previews")
outputs = [final_composition, generated_batches, block_lines]
# Two outputs (audio and plot) for each batch
for i in range(NUM_OUT_BATCHES):
with gr.Tab(f"Batch # {i}"):
audio_output = gr.Audio(label=f"Batch # {i} MIDI Audio", format="mp3")
plot_output = gr.Plot(label=f"Batch # {i} MIDI Plot")
outputs.extend([audio_output, plot_output])
generate_btn.click(
generate_music_and_state,
[input_midi, num_prime_tokens, num_gen_tokens, num_mem_tokens, model_temperature,
final_composition, generated_batches, block_lines],
outputs
)
gr.Markdown("## Add/Remove Batch")
batch_number = gr.Slider(0, NUM_OUT_BATCHES - 1, value=0, step=1, label="Batch number to add/remove")
add_btn = gr.Button("Add batch", variant="primary")
remove_btn = gr.Button("Remove batch", variant="stop")
clear_btn = gr.ClearButton()
final_audio_output = gr.Audio(label="Final MIDI audio", format="mp3")
final_plot_output = gr.Plot(label="Final MIDI plot")
final_file_output = gr.File(label="Final MIDI file")
add_btn.click(
add_batch,
[batch_number, final_composition, generated_batches, block_lines],
[final_audio_output, final_plot_output, final_file_output, final_composition, generated_batches, block_lines]
)
remove_btn.click(
remove_batch,
[batch_number, num_gen_tokens, final_composition, generated_batches, block_lines],
[final_audio_output, final_plot_output, final_file_output, final_composition, generated_batches, block_lines]
)
clear_btn.click(clear, inputs=None,
outputs=[final_audio_output, final_plot_output, final_file_output, final_composition, block_lines])
demo.launch()