#==================================================================== # https://huggingface.co/spaces/asigalov61/Godzilla-Piano-Transformer #==================================================================== """ Godzilla Piano Transformer Gradio App - Single Model, Simplified Version Fast 807M 4k solo Piano music transformer trained on 1.14M+ MIDIs (2.7M+ samples) Using only one model: "without velocity - 3 epochs" """ import os os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1" import time as reqtime import datetime from pytz import timezone import torch import matplotlib.pyplot as plt import gradio as gr import spaces from huggingface_hub import hf_hub_download import TMIDIX from midi_to_colab_audio import midi_to_colab_audio from x_transformer_2_3_1 import TransformerWrapper, AutoregressiveWrapper, Decoder # ----------------------------- # CONFIGURATION & GLOBALS # ----------------------------- SEP = '=' * 70 PDT = timezone('US/Pacific') MODEL_CHECKPOINT = 'Godzilla_Piano_Transformer_No_Velocity_Trained_Model_21113_steps_0.3454_loss_0.895_acc.pth' SOUDFONT_PATH = 'SGM-v2.01-YamahaGrand-Guit-Bass-v2.7.sf2' NUM_OUT_BATCHES = 12 PREVIEW_LENGTH = 120 # in tokens # ----------------------------- # PRINT START-UP INFO # ----------------------------- def print_sep(): print(SEP) print_sep() print("Godzilla Piano Transformer Gradio App") print_sep() print("Loading modules...") # ----------------------------- # ENVIRONMENT & PyTorch Settings # ----------------------------- os.environ['USE_FLASH_ATTENTION'] = '1' torch.set_float32_matmul_precision('high') torch.backends.cuda.matmul.allow_tf32 = True torch.backends.cudnn.allow_tf32 = True torch.backends.cuda.enable_mem_efficient_sdp(True) torch.backends.cuda.enable_math_sdp(True) torch.backends.cuda.enable_flash_sdp(True) torch.backends.cuda.enable_cudnn_sdp(True) print_sep() print("PyTorch version:", torch.__version__) print("Done loading modules!") print_sep() # ----------------------------- # MODEL INITIALIZATION # ----------------------------- print_sep() print("Instantiating model...") device_type = 'cuda' dtype = 'bfloat16' ptdtype = {'bfloat16': torch.bfloat16, 'float16': torch.float16}[dtype] ctx = torch.amp.autocast(device_type=device_type, dtype=ptdtype) SEQ_LEN = 4096 PAD_IDX = 384 model = TransformerWrapper( num_tokens=PAD_IDX + 1, max_seq_len=SEQ_LEN, attn_layers=Decoder( dim=2048, depth=16, heads=32, rotary_pos_emb=True, attn_flash=True ) ) model = AutoregressiveWrapper(model, ignore_index=PAD_IDX, pad_value=PAD_IDX) print_sep() print("Loading model checkpoint...") checkpoint = hf_hub_download( repo_id='asigalov61/Godzilla-Piano-Transformer', filename=MODEL_CHECKPOINT ) model.load_state_dict(torch.load(checkpoint, map_location='cuda', weights_only=True)) model = torch.compile(model, mode='max-autotune') print_sep() print("Done!") print("Model will use", dtype, "precision...") print_sep() model.cuda() model.eval() # ----------------------------- # HELPER FUNCTIONS # ----------------------------- def render_midi_output(final_composition): """Generate MIDI score, plot, and audio from final composition.""" fname, midi_score = save_midi(final_composition) time_val = midi_score[-1][1] / 1000 # seconds marker from last note midi_plot = TMIDIX.plot_ms_SONG( midi_score, plot_title='Godzilla Piano Transformer Composition', block_lines_times_list=[], return_plt=True ) midi_audio = midi_to_colab_audio( fname + '.mid', soundfont_path=SOUDFONT_PATH, sample_rate=16000, output_for_gradio=True ) return (16000, midi_audio), midi_plot, fname + '.mid', time_val # ----------------------------- # MIDI PROCESSING FUNCTIONS # ----------------------------- def load_midi(input_midi): """Process the input MIDI file and create a token sequence using without velocity logic.""" raw_score = TMIDIX.midi2single_track_ms_score(input_midi.name) escore_notes = TMIDIX.advanced_score_processor( raw_score, return_enhanced_score_notes=True, apply_sustain=True )[0] sp_escore_notes = TMIDIX.solo_piano_escore_notes(escore_notes) zscore = TMIDIX.recalculate_score_timings(sp_escore_notes) zscore = TMIDIX.augment_enhanced_score_notes(zscore, timings_divider=32) fscore = TMIDIX.fix_escore_notes_durations(zscore) cscore = TMIDIX.chordify_score([1000, fscore]) score = [] prev_chord = cscore[0] for chord in cscore: # Time difference token. score.append(max(0, min(127, chord[0][1] - prev_chord[0][1]))) for note in chord: score.extend([ max(1, min(127, note[2])) + 128, max(1, min(127, note[4])) + 256 ]) prev_chord = chord return score def save_midi(tokens, batch_number=None): """Convert token sequence back to a MIDI score and write it using TMIDIX (without velocity). The output MIDI file name incorporates a date-time stamp. """ song_events = [] time_marker = 0 duration = 0 pitch = 0 patches = [0] * 16 for token in tokens: if 0 <= token < 128: time_marker += token * 32 elif 128 <= token < 256: duration = (token - 128) * 32 elif 256 <= token < 384: pitch = token - 256 song_events.append(['note', time_marker, duration, 0, pitch, max(40, pitch), 0]) # No velocity tokens are used. # Generate a time stamp using the PDT timezone. timestamp = datetime.datetime.now(PDT).strftime("%Y%m%d_%H%M%S") '''if batch_number is None: fname = f"Godzilla-Piano-Transformer-Music-Composition_{timestamp}" else: fname = f"Godzilla-Piano-Transformer-Music-Composition_{timestamp}_Batch_{batch_number}"''' fname = f"Godzilla-Piano-Transformer-Music-Composition" TMIDIX.Tegridy_ms_SONG_to_MIDI_Converter( song_events, output_signature='Godzilla Piano Transformer', output_file_name=fname, track_name='Project Los Angeles', list_of_MIDI_patches=patches, verbose=False ) return fname, song_events # ----------------------------- # MUSIC GENERATION FUNCTION (Combined) # ----------------------------- @spaces.GPU def generate_music(prime, num_gen_tokens, num_mem_tokens, num_gen_batches, model_temperature): """Generate music tokens given prime tokens and parameters.""" inputs = prime[-num_mem_tokens:] if prime else [0] print("Generating...") inp = torch.LongTensor([inputs] * num_gen_batches).cuda() with ctx: out = model.generate( inp, num_gen_tokens, temperature=model_temperature, return_prime=False, verbose=False ) print("Done!") print_sep() return out.tolist() def generate_music_and_state(input_midi, num_prime_tokens, num_gen_tokens, num_mem_tokens, model_temperature, final_composition, generated_batches, block_lines): """ Generate tokens using the model, update the composition state, and prepare outputs. This function combines seed loading, token generation, and UI output packaging. """ print_sep() print("Request start time:", datetime.datetime.now(PDT).strftime("%Y-%m-%d %H:%M:%S")) print('=' * 70) if input_midi is not None: fn = os.path.basename(input_midi.name) fn1 = fn.split('.')[0] print('Input file name:', fn) print('Num prime tokens:', num_prime_tokens) print('Num gen tokens:', num_gen_tokens) print('Num mem tokens:', num_mem_tokens) print('Model temp:', model_temperature) print('=' * 70) # Load seed from MIDI if there is no existing composition. if not final_composition and input_midi is not None: final_composition = load_midi(input_midi)[:num_prime_tokens] midi_fname, midi_score = save_midi(final_composition) # Use the last note's time as a marker. TMIDIX.Tegridy_ms_SONG_to_MIDI_Converter( midi_score, output_signature='Godzilla Piano Transformer', output_file_name=midi_fname, track_name='Project Los Angeles', list_of_MIDI_patches=[0]*16, verbose=False ) block_lines.append(midi_score[-1][1] / 1000 if final_composition else 0) batched_gen_tokens = generate_music(final_composition, num_gen_tokens, num_mem_tokens, NUM_OUT_BATCHES, model_temperature) output_batches = [] for i, tokens in enumerate(batched_gen_tokens): preview_tokens = final_composition[-PREVIEW_LENGTH:] midi_fname, midi_score = save_midi(preview_tokens + tokens, batch_number=i) plot_kwargs = {'plot_title': f'Batch # {i}', 'return_plt': True} if len(final_composition) > PREVIEW_LENGTH: plot_kwargs['preview_length_in_notes'] = len([t for t in preview_tokens if t > 256]) TMIDIX.Tegridy_ms_SONG_to_MIDI_Converter( midi_score, output_signature='Godzilla Piano Transformer', output_file_name=midi_fname, track_name='Project Los Angeles', list_of_MIDI_patches=[0]*16, verbose=False ) midi_plot = TMIDIX.plot_ms_SONG(midi_score, **plot_kwargs) midi_audio = midi_to_colab_audio(midi_fname + '.mid', soundfont_path=SOUDFONT_PATH, sample_rate=16000, output_for_gradio=True) output_batches.append([(16000, midi_audio), midi_plot, tokens]) # Update generated_batches (for use by add/remove functions) generated_batches = batched_gen_tokens print("Request end time:", datetime.datetime.now(PDT).strftime("%Y-%m-%d %H:%M:%S")) print_sep() # Flatten outputs: states then audio and plots for each batch. outputs_flat = [] for batch in output_batches: outputs_flat.extend([batch[0], batch[1]]) return [final_composition, generated_batches, block_lines] + outputs_flat # ----------------------------- # BATCH HANDLING FUNCTIONS # ----------------------------- def add_batch(batch_number, final_composition, generated_batches, block_lines): """Add tokens from the specified batch to the final composition and update outputs.""" if generated_batches: final_composition.extend(generated_batches[batch_number]) midi_fname, midi_score = save_midi(final_composition) block_lines.append(midi_score[-1][1] / 1000 if final_composition else 0) TMIDIX.Tegridy_ms_SONG_to_MIDI_Converter( midi_score, output_signature='Godzilla Piano Transformer', output_file_name=midi_fname, track_name='Project Los Angeles', list_of_MIDI_patches=[0]*16, verbose=False ) midi_plot = TMIDIX.plot_ms_SONG( midi_score, plot_title='Godzilla Piano Transformer Composition', block_lines_times_list=block_lines[:-1], return_plt=True ) midi_audio = midi_to_colab_audio(midi_fname + '.mid', soundfont_path=SOUDFONT_PATH, sample_rate=16000, output_for_gradio=True) print("Added batch #", batch_number) print_sep() return (16000, midi_audio), midi_plot, midi_fname + '.mid', final_composition, generated_batches, block_lines else: return None, None, None, [], [], [] def remove_batch(batch_number, num_tokens, final_composition, generated_batches, block_lines): """Remove tokens from the final composition and update outputs.""" if final_composition and len(final_composition) > num_tokens: final_composition = final_composition[:-num_tokens] if block_lines: block_lines.pop() midi_fname, midi_score = save_midi(final_composition) TMIDIX.Tegridy_ms_SONG_to_MIDI_Converter( midi_score, output_signature='Godzilla Piano Transformer', output_file_name=midi_fname, track_name='Project Los Angeles', list_of_MIDI_patches=[0]*16, verbose=False ) midi_plot = TMIDIX.plot_ms_SONG( midi_score, plot_title='Godzilla Piano Transformer Composition', block_lines_times_list=block_lines[:-1], return_plt=True ) midi_audio = midi_to_colab_audio(midi_fname + '.mid', soundfont_path=SOUDFONT_PATH, sample_rate=16000, output_for_gradio=True) print("Removed batch #", batch_number) print_sep() return (16000, midi_audio), midi_plot, midi_fname + '.mid', final_composition, generated_batches, block_lines else: return None, None, None, [], [], [] def clear(): """Clear outputs and reset state.""" return None, None, None, [], [] def reset(final_composition=[], generated_batches=[], block_lines=[]): """Reset composition state.""" return [], [], [] # ----------------------------- # GRADIO INTERFACE SETUP # ----------------------------- with gr.Blocks() as demo: gr.Markdown("

Godzilla Piano Transformer

") gr.Markdown("

Fast 807M 4k solo Piano music transformer trained on 1.14M+ MIDIs (2.7M+ samples)

") gr.HTML(""" Check out Godzilla Piano dataset on Hugging Face

Duplicate in Hugging Face

for faster execution and endless generation! """) # Global state variables for composition final_composition = gr.State([]) generated_batches = gr.State([]) block_lines = gr.State([]) gr.Markdown("## Upload seed MIDI or click 'Generate' for a random output") input_midi = gr.File(label="Input MIDI", file_types=[".midi", ".mid", ".kar"]) input_midi.upload(reset, [final_composition, generated_batches, block_lines], [final_composition, generated_batches, block_lines]) gr.Markdown("## Generate") num_prime_tokens = gr.Slider(15, 3072, value=3072, step=1, label="Number of prime tokens") num_gen_tokens = gr.Slider(15, 1024, value=512, step=1, label="Number of tokens to generate") num_mem_tokens = gr.Slider(15, 4096, value=4096, step=1, label="Number of memory tokens") model_temperature = gr.Slider(0.1, 1, value=0.9, step=0.01, label="Model temperature") generate_btn = gr.Button("Generate", variant="primary") gr.Markdown("## Batch Previews") outputs = [final_composition, generated_batches, block_lines] # Two outputs (audio and plot) for each batch for i in range(NUM_OUT_BATCHES): with gr.Tab(f"Batch # {i}"): audio_output = gr.Audio(label=f"Batch # {i} MIDI Audio", format="mp3") plot_output = gr.Plot(label=f"Batch # {i} MIDI Plot") outputs.extend([audio_output, plot_output]) generate_btn.click( generate_music_and_state, [input_midi, num_prime_tokens, num_gen_tokens, num_mem_tokens, model_temperature, final_composition, generated_batches, block_lines], outputs ) gr.Markdown("## Add/Remove Batch") batch_number = gr.Slider(0, NUM_OUT_BATCHES - 1, value=0, step=1, label="Batch number to add/remove") add_btn = gr.Button("Add batch", variant="primary") remove_btn = gr.Button("Remove batch", variant="stop") clear_btn = gr.ClearButton() final_audio_output = gr.Audio(label="Final MIDI audio", format="mp3") final_plot_output = gr.Plot(label="Final MIDI plot") final_file_output = gr.File(label="Final MIDI file") add_btn.click( add_batch, [batch_number, final_composition, generated_batches, block_lines], [final_audio_output, final_plot_output, final_file_output, final_composition, generated_batches, block_lines] ) remove_btn.click( remove_batch, [batch_number, num_gen_tokens, final_composition, generated_batches, block_lines], [final_audio_output, final_plot_output, final_file_output, final_composition, generated_batches, block_lines] ) clear_btn.click(clear, inputs=None, outputs=[final_audio_output, final_plot_output, final_file_output, final_composition, block_lines]) demo.launch()