File size: 28,577 Bytes
131da64
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
import math
import typing
from pathlib import Path

import tokenizers
import torch
import transformers
from unidisc.datasets.sampler import WeightedDatasetSampler

from models.datasets.image_datasets import TensorCollate, get_image_dataset, get_unpaired_dataset
from models.datasets.text_datasets import Text8Tokenizer, get_text_dataset
from torch.utils.data import default_collate
from decoupled_utils import breakpoint_on_error, gprint, rprint, is_torch_xla_available
from datasets import load_dataset


def identity(x):
    return x


def get_dataset(dataset_name, tokenizer, *args, config=None, **kwargs):
    rprint(f"getting dataset {dataset_name}")
    if getattr(config.data, "unpaired", False):
        return get_unpaired_dataset(config=config, tokenizer=tokenizer, **kwargs)
    elif getattr(config.model, "image_model", False) or getattr(config.data, "force_image_dataset", False):
        return get_image_dataset(config=config, tokenizer=tokenizer, **kwargs)
    else:
        rprint(f"getting text dataset")
        return get_text_dataset(dataset_name, tokenizer, *args, **kwargs)

def tokenize_text(tokenizer, block_size, text, return_token_type_ids=True):
    return tokenizer(text, max_length=block_size, padding="max_length", truncation=True, add_special_tokens=True, return_attention_mask=True, return_token_type_ids=return_token_type_ids).convert_to_tensors("pt")

def get_tokenizer(config):
    if config.data.tokenizer_name_or_path is None or config.data.tokenizer_name_or_path == "None":
        return None
    elif config.data.tokenizer_name_or_path == "text8":
        tokenizer = Text8Tokenizer()
    elif config.data.tokenizer_name_or_path == "bert-base-uncased":
        tokenizer = transformers.BertTokenizer.from_pretrained("bert-base-uncased")
    else:
        tokenizer_kwargs = dict()
        if config.data.tokenizer_name_or_path == "NousResearch/Llama-2-7b-hf":
            tokenizer_kwargs["add_eos_token"] = True
            tokenizer_kwargs["padding_side"] = 'right'
            rprint("Using Llama tokenizer, adding add_eos_token and setting padding_side to right")
        if getattr(config.data, "use_slow_tokenizer", False):
            tokenizer_kwargs["use_fast"] = False
        tokenizer = transformers.AutoTokenizer.from_pretrained(config.data.tokenizer_name_or_path, **tokenizer_kwargs)

        if getattr(config.data, "add_image_token", False):
            special_token = '<image>'
            existing_id = 811
            tmp_index = len(tokenizer)
            tokenizer.add_special_tokens({
                    'additional_special_tokens': [special_token]
            }, replace_additional_special_tokens=False)
            tokenizer._added_tokens_decoder[existing_id] = tokenizer._added_tokens_decoder.pop(tmp_index)
            assert len(tokenizer.additional_special_tokens_ids) == 1
            tokenizer.additional_special_tokens_ids = [existing_id]
            tokenizer._added_tokens_encoder['<image>'] = existing_id
            tokenizer.total_vocab_size = tmp_index
            
    if isinstance(tokenizer, transformers.GPT2TokenizerFast) or isinstance(tokenizer, transformers.GPT2Tokenizer):
        tokenizer._tokenizer.post_processor = tokenizers.processors.BertProcessing(
            (tokenizer.bos_token, tokenizer.bos_token_id), (tokenizer.eos_token, tokenizer.eos_token_id)
        )

    # For wrapped batches:
    #  [BOS] sent1 [EOS] sent2-fragment [EOS]
    #  [BOS] sent2-fragment [EOS] sent3 [EOS]
    if tokenizer.bos_token is None:
        if tokenizer.cls_token is None:
            raise AttributeError("Tokenizer must have a bos_token or " f"cls_token: {tokenizer}")
        tokenizer.bos_token = tokenizer.cls_token
    if tokenizer.eos_token is None:
        if tokenizer.sep_token is None:
            raise AttributeError("Tokenizer must have a eos_token " f"or sep_token: {tokenizer}")
        tokenizer.eos_token = tokenizer.sep_token
    if tokenizer.pad_token is None:
        if config.data.tokenizer_name_or_path != "gpt2":
            rprint(f"Adding pad token to tokenizer")
        tokenizer.add_special_tokens({"pad_token": "[PAD]"})

    assert tokenizer.padding_side == 'right'
    assert tokenizer.truncation_side == 'right'

    return tokenizer


class SimpleDataLoader:
    def __init__(self, dataset, batch_size=1, collate_fn=default_collate, **kwargs):
        self.dataset = dataset
        self.batch_size = batch_size
        self.collate_fn = collate_fn
        self.idx = 0

    def __iter__(self):
        return self

    def __next__(self):
        if self.idx < len(self.dataset):
            batch = []
            for _ in range(self.batch_size):
                if self.idx >= len(self.dataset):
                    break
                batch.append(self.dataset[self.idx])
                self.idx += 1
            return self.collate_fn(batch)
        else:
            raise StopIteration

    def __len__(self):
        return (len(self.dataset) + self.batch_size - 1) // self.batch_size
    
def get_zero_shot_dataloader(config, tokenizer, device=None, **kwargs):
    if config.data.zero_shot_eval_dataset is None:
        rprint("No zero shot eval dataset provided")
        return None, None

    dataset_name = config.data.zero_shot_eval_dataset
    dataloader_seed = config.seed if config.mode == "eval" else 42
    if dataset_name == "nlphuji/flickr30k":
        data = load_dataset(dataset_name, num_proc=config.data.num_proc, cache_dir=config.data.cache_dir, streaming=config.data.streaming)
        dataset = data["test"]
    elif dataset_name == "facebook/winoground":
        data = load_dataset(dataset_name, num_proc=config.data.num_proc, cache_dir=config.data.cache_dir, streaming=config.data.streaming)
        dataset = data["test"]
    breakpoint()
    dl_cls = torch.utils.data.DataLoader
    valid_loader = dl_cls(
        dataset,
        batch_size=config.loader.eval_batch_size,
        num_workers=config.loader.num_eval_workers,
        pin_memory=config.loader.pin_memory,
        generator=torch.Generator().manual_seed(dataloader_seed),
        persistent_workers=False,
        **kwargs,
    )
    valid_loader.tokenizer = tokenizer
    return valid_loader


def get_dataloaders(config, tokenizer, skip_train=False, skip_valid=False, valid_seed=None, device=None, **kwargs):
    if skip_train:
        train_set = None
    else:
        _mode = getattr(config.data, "force_train_mode", "train")
        if _mode != "train":
            rprint(f"Forcing train mode to {_mode}")
        train_set = get_dataset(
            config.data.train,
            tokenizer,
            mode=_mode,
            wrap=config.data.wrap,
            cache_dir=config.data.cache_dir,
            block_size=config.model.length,
            num_proc=config.data.num_proc,
            streaming=config.data.streaming,
            config=config,
            **kwargs,
        )
        if hasattr(train_set, '__len__'):
            rprint(f"Training set len: {len(train_set)}")

    if config.data.valid in ["text8", "lm1b", "ag_news"]:
        validation_split = "test"
    else:
        validation_split = "validation"
        
    if skip_valid:
        valid_set = None
    else:
        valid_set = get_dataset(
            config.data.valid,
            tokenizer,
            wrap=config.data.wrap,
            mode=validation_split,
            cache_dir=config.data.cache_dir,
            block_size=config.model.length,
            streaming=False,
            num_proc=config.data.num_proc,
            config=config,
            **kwargs,
        )
        if hasattr(valid_set, '__len__'):
            rprint(f"Validation set len: {len(valid_set)}")

    dataloader_seed = config.seed if (config.mode == "eval" or is_torch_xla_available() or getattr(config.data, "force_seed", False)) else 42
    gprint(f"Dataloader seed: {dataloader_seed}")

    if skip_train:
        train_loader = None
    else:
        train_kwargs = dict(drop_last=True)
        train_dataloader_generator = torch.Generator().manual_seed(dataloader_seed)
        dl_cls = torch.utils.data.DataLoader
        if getattr(config.data, "webdataset_iterable", False) or getattr(config.data, "webdataset_indexed", False):
            train_kwargs.pop("drop_last", None)

        if getattr(config.loader, "disable_prefetch", False):
            train_kwargs["prefetch_factor"] = 1

        if getattr(config.data, "force_disable_shuffle", False) is False:
            if getattr(config.data, "webdataset_iterable", False):
                import webdataset
                dl_cls = webdataset.WebLoader
                train_kwargs["shuffle"] = False
                train_kwargs["prefetch_factor"] = 8
            elif getattr(config.data, "webdataset_indexed", False):
                import wids
                train_kwargs["sampler"] = wids.DistributedChunkedSampler(train_set, shuffle=True)
            elif isinstance(train_set, torch.utils.data.IterableDataset) is False:
                train_kwargs["shuffle"] = True

        if "tokens" in config.data.train and config.data.pin_dataset_to_gpu:
            if config.backend == 'cuda':
                cur_mb = torch.cuda.memory_reserved() / 1e9
                rprint(f"Moving dataloader to device {device} with: {cur_mb} GB of memory reserved")
            train_set = train_set.to(device=device)
            if config.backend == 'cuda':
                cur_mb = torch.cuda.memory_reserved() / 1e9
                rprint(f"Moved dataloader to device {device} with: {cur_mb} GB of memory reserved")

        if "tokens" in config.data.train:
            if getattr(config.data, "use_custom_tensordict_collate", False):
                train_kwargs["collate_fn"] = TensorCollate(device=device, enable_cuda_in_tensordict_collate=config.data.enable_cuda_in_tensordict_collate)
            else:
                train_kwargs["collate_fn"] = identity

            if getattr(config.data, "use_packing_collate", False):
                generator = torch.Generator().manual_seed(dataloader_seed)
                token_collate = train_kwargs["collate_fn"] if getattr(config.data, "use_custom_tensordict_collate", False) else None
                train_kwargs["collate_fn"] = PackingCollate(config, train_set, config.model.length, generator, tensor_collate=token_collate, tokenizer=tokenizer)

            if getattr(config.data, "use_weighted_tensordict_sampler", False):
                generator = torch.Generator().manual_seed(dataloader_seed)
                train_kwargs['sampler'] = WeightedDatasetSampler(train_set, generator=generator)
                train_kwargs["shuffle"] = False
            else:
                train_kwargs["shuffle"] = True

        if getattr(config.data, "use_list_collate", False):
            train_kwargs["collate_fn"] = lambda x: x

        if getattr(config.data, "force_shuffle_train", False):
            rprint("Forcing shuffle on train dataloader")
            train_kwargs["shuffle"] = True
        
        if getattr(config.data, "force_disable_shuffle_train", False):
            rprint("Forcing disable shuffle on train dataloader")
            train_kwargs["shuffle"] = False

        if getattr(config.data, "force_distributed_sampler", False):
            import torch_xla.runtime as xr
            train_kwargs["sampler"] = torch.utils.data.distributed.DistributedSampler(
                train_set,
                num_replicas=xr.world_size(),
                rank=xr.global_ordinal(),
                shuffle=True
            )

        if getattr(config.data, "use_identity_collate", False):
            train_kwargs["collate_fn"] = lambda x: x

        if train_set.__class__.__name__ == "WebLoader":
            train_loader = train_set
        else:
            rprint(f"Train dataloader kwargs: {train_kwargs}")
            train_loader = dl_cls(
                train_set,
                batch_size=None if getattr(config.data, "webdataset_iterable", False) else config.loader.batch_size,
                num_workers=config.loader.num_workers,
                pin_memory=config.loader.pin_memory,
                persistent_workers=config.loader.num_workers > 0 and getattr(config.loader, "persistent_workers", True),
                generator=train_dataloader_generator,
                **train_kwargs,
            )
        train_loader.tokenizer = tokenizer

    if skip_valid:
        valid_loader = None
    else:
        shuffle_valid = True
        valid_dataloader_generator = torch.Generator().manual_seed(dataloader_seed)
        valid_kwargs = dict(drop_last=True)

        dl_cls = torch.utils.data.DataLoader
        if getattr(config.data, "webdataset_iterable", False) or getattr(config.data, "webdataset_indexed", False):
            valid_kwargs.pop("drop_last", None)

        if getattr(config.data, "force_disable_shuffle", False) is False:
            if getattr(config.data, "webdataset_iterable", False):
                valid_kwargs["shuffle"] = False
                import webdataset
                dl_cls = webdataset.WebLoader
            elif getattr(config.data, "webdataset_indexed", False):
                import wids
                valid_kwargs["sampler"] = wids.DistributedChunkedSampler(valid_set, shuffle=True)
            elif isinstance(valid_set, torch.utils.data.IterableDataset) is False and shuffle_valid:
                valid_kwargs["shuffle"] = shuffle_valid

        if "tokens" in config.data.valid:
            if getattr(config.data, "use_custom_tensordict_collate", False):
                valid_kwargs["collate_fn"] = TensorCollate(device=device, enable_cuda_in_tensordict_collate=config.data.enable_cuda_in_tensordict_collate)
            else:
                valid_kwargs["collate_fn"] = identity

            if getattr(config.data, "use_packing_collate", False):
                generator = torch.Generator().manual_seed(dataloader_seed)
                token_collate = valid_kwargs["collate_fn"] if getattr(config.data, "use_custom_tensordict_collate", False) else None
                valid_kwargs["collate_fn"] = PackingCollate(config, valid_set, config.model.length, generator, tensor_collate=token_collate, tokenizer=tokenizer)

            if getattr(config.data, "use_weighted_tensordict_sampler", False):
                generator = torch.Generator().manual_seed(dataloader_seed)
                valid_kwargs['sampler'] = WeightedDatasetSampler(valid_set, generator=generator)
                
            if getattr(config.data, "shuffle_valid", False):
                torch.manual_seed(config.seed)

            valid_kwargs["shuffle"] = getattr(config.data, "shuffle_valid", False)

        if getattr(config.data, "force_distributed_sampler", False):
            import torch_xla.runtime as xr
            valid_kwargs["sampler"] = torch.utils.data.distributed.DistributedSampler(
                valid_set,
                num_replicas=xr.world_size(),
                rank=xr.global_ordinal(),
                shuffle=True
            )
            
        if valid_set.__class__.__name__ == "WebLoader":
            valid_loader = valid_set
        else:
            rprint(f"Valid dataloader kwargs: {valid_kwargs}")
            valid_loader = dl_cls(
                valid_set,
                batch_size=None if getattr(config.data, "webdataset_iterable", False) else config.loader.eval_batch_size,
                num_workers=getattr(config.loader, "num_eval_workers", config.loader.num_workers),
                pin_memory=config.loader.pin_memory,
                generator=valid_dataloader_generator,
                persistent_workers=False,
                **valid_kwargs,
            )
        # Will be used in generative perplexity calculation
        valid_loader.tokenizer = tokenizer

    return train_loader, valid_loader


# Samplers adapted from: https://github.com/Dao-AILab/flash-attention/blob/main/training/src/datamodules/fault_tolerant_sampler.py


class RandomFaultTolerantSampler(torch.utils.data.RandomSampler):

    def __init__(self, *args, generator=None, **kwargs):
        # TD [2022-07-17]: We don't force the seed to be zero. We generate random seed,
        # which should be reproducible if pl.seed_everything was called beforehand.
        # This means that changing the seed of the experiment will also change the
        # sampling order.
        if generator is None:
            seed = int(torch.empty((), dtype=torch.int64).random_().item())
            generator = torch.Generator().manual_seed(seed)
        kwargs.pop("shuffle", None)
        super().__init__(*args, generator=generator, **kwargs)
        self.counter = 0
        self.restarting = False

    def state_dict(self):
        return {"random_state": self.generator.get_state(), "counter": self.counter}

    def load_state_dict(self, state_dict):
        self.generator.set_state(state_dict.get("random_state"))
        self.counter = state_dict["counter"]
        # self.start_counter = self.counter
        self.restarting = True

    # TD [2022-08-28] Setting the len will cause PL to think there are only a few batches left per
    # epoch, and subsequent epoch will have very few batches.

    def __iter__(self) -> typing.Iterator[int]:
        n = len(self.data_source)

        self.state = self.generator.get_state()
        indices = torch.randperm(n, generator=self.generator).tolist()

        if not self.restarting:
            self.counter = 0
        else:
            indices = indices[self.counter :]
            self.restarting = False

        for index in indices:
            self.counter += 1
            yield index

        self.counter = 0


class FaultTolerantDistributedSampler(torch.utils.data.DistributedSampler):

    def __init__(self, *args, **kwargs):
        super().__init__(*args, **kwargs)
        self.counter = 0
        self.restarting = False

    def state_dict(self):
        return {"epoch": self.epoch, "counter": self.counter}

    def load_state_dict(self, state_dict):
        self.epoch = state_dict["epoch"]
        self.counter = state_dict["counter"]
        self.restarting = True

    # TD [2022-08-28] Setting the len will cause PL to think there are only a few batches left per
    # epoch, and subsequent epoch will have very few batches.
    def __iter__(self):
        if self.shuffle:
            # deterministically shuffle based on epoch and seed
            g = torch.Generator()
            g.manual_seed(self.seed + self.epoch)
            indices = torch.randperm(len(self.dataset), generator=g).tolist()  # type: ignore[arg-type]
        else:
            indices = list(range(len(self.dataset)))  # type: ignore[arg-type]

        if not self.drop_last:
            # add extra samples to make it evenly divisible
            padding_size = self.total_size - len(indices)
            if padding_size <= len(indices):
                indices += indices[:padding_size]
            else:
                indices += (indices * math.ceil(padding_size / len(indices)))[:padding_size]
        else:
            # remove tail of data to make it evenly divisible.
            indices = indices[: self.total_size]
        assert len(indices) == self.total_size

        # subsample
        indices = indices[self.rank : self.total_size : self.num_replicas]
        assert len(indices) == self.num_samples

        if not self.restarting:
            self.counter = 0
        else:
            indices = indices[self.counter :]
            self.restarting = False

        for index in indices:
            self.counter += 1
            yield index

        self.counter = 0


if __name__ == "__main__":
    import os

    with breakpoint_on_error():
        from omegaconf import OmegaConf

        cc12m_config = OmegaConf.create(
            {
                "model": {
                    "image_model": True,
                    "unified_model": True,
                },
                "data": {
                    "tokenizers_parallelism": False,
                    "resolution": 128,
                    "train": "pixparse/cc12m-wds",
                    "val": "pixparse/cc12m-wds",
                    "streaming": False,
                    "precache": True,
                    "tokenizer_name_or_path": "gpt2",
                    "n_val_samples": None,
                    "n_train_samples": None,
                    "block_size": 32,
                    "data_dir": "/path/to/cc12m",
                },
            }
        )

        imagenet_config = OmegaConf.create(
            {
                "model": {
                    "image_model": True,
                },
                "data": {
                    "resolution": 128,
                    "train": "ILSVRC/imagenet-1k",
                    "val": "ILSVRC/imagenet-1k",
                    "streaming": False,
                    "precache": True,
                    "tokenizer_name_or_path": "gpt2",
                },
            }
        )

        facecaption_config = OmegaConf.create(
            {
                "seed": 12345,
                "model": {
                    "image_model": True,
                },
                "data": {
                    "resolution": 256,
                    "train": "facecaption",
                    "val": "facecaption",
                    "streaming": False,
                    "precache": False,
                    "tokenizer_name_or_path": "gpt2",
                    "cache_dir": os.environ["HF_DATASETS_CACHE"],
                    "raw_data_dir": "/grogu/user/mprabhud/data/diffusion/facecaption",
                    "block_size": 32,
                },
                "loader": {
                    "num_workers": 0,
                    "batch_size": 1,
                    "eval_batch_size": 1,
                },
                "trainer": {
                    "devices": 1,
                    "num_nodes": 1,
                    "accumulate_grad_batches": 1,
                },
            }
        )

        tokenizer = get_tokenizer(facecaption_config)
        dataset = get_dataset(
            dataset_name=facecaption_config.data.train,
            mode="train",
            config=facecaption_config,
            tokenizer=tokenizer,
        )
        test = next(iter(dataset))
        breakpoint()



from typing import List, Dict
import torch
from tensordict import TensorDict
def process_batch(batch: TensorDict):
    if isinstance(batch, list):
        return [process_batch(b) for b in batch]
    else:
        if "write_flag" in batch:
            del batch["write_flag"]
        if "dataset_idx" in batch:
            del batch["dataset_idx"]
        batch.auto_batch_size_()
        return batch

def ignore_slice(tensor, slice, padding_token_id):
    tensor["modality"][slice] = -1
    tensor["attention_mask"][slice] = 0
    tensor["input_ids"][slice] = padding_token_id
    if "sample_ids" in tensor:
        tensor["sample_ids"][slice] = -1
    else:
        tensor["sample_ids"] = torch.full(tensor["input_ids"].shape, fill_value=-1, dtype=tensor["input_ids"].dtype, device=tensor["input_ids"].device)

class PackingCollate:
    def __init__(self, config, dataset, seq_length, generator, tensor_collate=None, tokenizer=None):
        self.dataset = dataset
        self.seq_length = seq_length
        self.tensor_collate = tensor_collate
        self.generator = generator
        self.tokenizer = tokenizer
        self.padding_token_id = tokenizer.pad_token_id
        self.eos_token_id = tokenizer.eos_token_id
        self.disable_packing = getattr(config.data, "disable_packing", False)
        img_special_tokens = tokenizer("<image>", add_special_tokens=False)['input_ids']
        assert len(img_special_tokens) == 1
        self.image_token_id = img_special_tokens[0]

    def __call__(self, batch: TensorDict):
        if self.tensor_collate is not None:
            if isinstance(batch, list):
                batch = [self.tensor_collate(b) for b in batch]
            else:
                batch = self.tensor_collate(batch)

        B = len(batch)
        seq_length = self.seq_length

        batch = process_batch(batch)
        assert batch[0].batch_size is None or len(batch[0].batch_size) == 1

        new_batch = batch[0].new_zeros((B, seq_length))
        ignore_slice(new_batch, slice(None, None), self.padding_token_id)

        for i in range(B):
            total_length = 0
            sample_idx = 0
            sample_queue = [batch[i]]

            # We originally get bs number of samples but since we're packing, we probably need more so we randomly select.
            while total_length < seq_length:
                if self.disable_packing and sample_idx > 0:
                    break
                if not sample_queue:
                    dataset_idx = torch.randint(len(self.dataset.datasets), (1,), generator=self.generator).item()
                    element_idx = torch.randint(len(self.dataset.datasets[dataset_idx]), (1,), generator=self.generator).item()
                    sample = self.dataset[(dataset_idx, element_idx)]
                    sample = process_batch(sample)
                else:
                    sample = sample_queue.pop(0)

                available_length = seq_length - total_length
                if available_length < sample.shape[0] // 4:
                    if total_length > 0:
                        break
                    else:
                        continue

                if "sample_ids" not in sample:
                    sequence_starts = (sample['input_ids'] == self.padding_token_id).long()
                    sample["sample_ids"] = torch.cumsum(sequence_starts, dim=0) - 1
                    processed_ids = torch.where(sample["sample_ids"] < 0, torch.zeros_like(sample["sample_ids"]), -1)
                    sample["sample_ids"] = processed_ids

                if not ((sample["sample_ids"] == 0) | (sample["sample_ids"] == -1)).all():
                    assert (sample["modality"] == 0).all()

                first_neg_one = (sample["sample_ids"] == -1).nonzero(as_tuple=True)[0]

                if first_neg_one.numel() > 0:
                    first_neg_one = first_neg_one[0].item()
                else:
                    assert sample["attention_mask"].all()
                    first_neg_one = len(sample["attention_mask"])
                
                valid_slice = slice(None, min(first_neg_one, available_length))
                new_length = min(first_neg_one, available_length)
                
                sample["sample_ids"][valid_slice] = sample_idx
                new_batch[i, total_length:total_length+new_length] = sample[valid_slice]

                total_length += new_length
                sample_idx += 1

            if (new_batch["sample_ids"] == -1).all():
                gprint(f"WARNING!!!! All sample ids are -1 in packing collate before ignore")

            if new_batch["modality"][i, -1] == 1:
                # Find contiguous sequence of image tokens from the end
                modality_slice = new_batch["modality"][i]
                is_image = modality_slice == 1
                
                # Get indices where modality changes
                change_points = torch.where(is_image[:-1] != is_image[1:])[0] + 1
                
                if change_points.numel() > 0 and is_image[-1]:
                    # Get start of last contiguous image sequence
                    start_pos = change_points[-1].item()
                    assert (new_batch["modality"][i, start_pos:] == 1).all()
                    try:
                        if start_pos > 0 and new_batch["input_ids"][i, start_pos - 1] == self.image_token_id:
                            start_pos -= 1
                    
                        if start_pos > 0 and new_batch["input_ids"][i, start_pos - 1] != self.eos_token_id:
                            new_batch["input_ids"][i, start_pos] = self.eos_token_id
                            new_batch["attention_mask"][i, start_pos] = 1
                            new_batch["modality"][i, start_pos] = 0
                            start_pos += 1

                    except IndexError:
                        print(f"WARNING!!!! ERROR IN PACKING COLLATE")

                    ignore_slice(new_batch[i], slice(start_pos, None), self.padding_token_id)

                if (new_batch["sample_ids"] == -1).all():
                    gprint(f"WARNING!!!! All sample ids are -1 in packing collate after ignore")

        return new_batch