File size: 39,501 Bytes
131da64
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
"""
A collection of assorted utilities for deep learning with no required dependencies aside from PyTorch, NumPy and the Python stdlib.

TODO: Validate required Python version.
"""
import contextlib
import builtins
import functools
import glob
import hashlib
import io
import os
import pickle
import subprocess
import sys
import time
import traceback
from collections import defaultdict
from datetime import datetime
from functools import lru_cache, partial, wraps
from importlib import import_module
from importlib.util import find_spec
from io import BytesIO
from pathlib import Path
from typing import Any, Optional
from urllib.parse import urlparse
import inspect
import numpy as np
import torch
import torch.distributed as dist
from torch import Tensor

# TPUs:
# wait_device_ops
# https://github.com/pytorch/xla/blob/2766f9f756e8c8150ea3b7df98762c2f82d66e39/examples/debug/train_resnet_benchmark.py#L18

# From diffusers
import importlib
import importlib.metadata

# TODO: This doesn't work for all packages (`bs4`, `faiss`, etc.) Talk to Sylvain to see how to do with it better.
def _is_package_available(pkg_name: str, return_version: bool = False):
    # Check if the package spec exists and grab its version to avoid importing a local directory
    package_exists = importlib.util.find_spec(pkg_name) is not None
    package_version = "N/A"
    if package_exists:
        try:
            # Primary method to get the package version
            package_version = importlib.metadata.version(pkg_name)
        except importlib.metadata.PackageNotFoundError:
            # Fallback method: Only for "torch" and versions containing "dev"
            if pkg_name == "torch":
                try:
                    package = importlib.import_module(pkg_name)
                    temp_version = getattr(package, "__version__", "N/A")
                    # Check if the version contains "dev"
                    if "dev" in temp_version:
                        package_version = temp_version
                        package_exists = True
                    else:
                        package_exists = False
                except ImportError:
                    # If the package can't be imported, it's not available
                    package_exists = False
            else:
                # For packages other than "torch", don't attempt the fallback and set as not available
                package_exists = False
    if return_version:
        return package_exists, package_version
    else:
        return package_exists

# https://github.com/huggingface/transformers/blob/main/src/transformers/utils/import_utils.py#L281
@lru_cache
def is_torch_cuda_available():
    return torch.cuda.is_available()

@lru_cache
def is_torch_xla_available(check_is_tpu=False, check_is_gpu=False):
    """
    Check if `torch_xla` is available. To train a native pytorch job in an environment with torch xla installed, set
    the USE_TORCH_XLA to false.
    """
    assert not (check_is_tpu and check_is_gpu), "The check_is_tpu and check_is_gpu cannot both be true."
    _torch_xla_available, _torch_xla_version = _is_package_available("torch_xla", return_version=True)
    if not _torch_xla_available:
        return False

    import torch_xla

    if check_is_gpu:
        return torch_xla.runtime.device_type() in ["GPU", "CUDA"]
    elif check_is_tpu:
        return torch_xla.runtime.device_type() == "TPU"

    return True

def get_available_backend():
    if is_torch_cuda_available():
        backend = "cuda"
    elif is_torch_xla_available():
        backend = "xla"
    else:
        backend = "cpu"
    return backend

if is_torch_xla_available():
    import torch_xla.core.xla_model as xm
    builtins.HAS_XLA_SPAWNED = False

def use_dist():
    return dist.is_available() and dist.is_initialized()

def get_device():
    return torch.device(f"cuda:{get_rank()}")

def get_tpu_devices():
    import torch_xla.core.xla_model as xm
    return xm.get_xla_supported_devices()

def get_num_nodes():
    if is_torch_cuda_available():
        rprint(f"Warning: get_num_nodes() is not supported for CUDA. Returning world size // num devices.")
        return get_world_size() // get_num_devices()
    if is_torch_xla_available():
        from torch_xla._internal import tpu
        return tpu.num_tpu_workers()
    
def get_num_devices():
    """
    Number of physical "devices" on a single node. In CUDA, this is the number of GPUs. In XLA, this is the number of TPUs *chips* so, e.g., a v4 slice will always return 4 (even if part of a larger slice).
    """
    if is_torch_cuda_available():
        return torch.cuda.device_count()
    else:
        return 1

def get_world_size():
    if is_torch_xla_available():
        import torch_xla.runtime as xr
        return xr.world_size()
    elif use_dist():
        return dist.get_world_size()
    elif 'WORLD_SIZE' in os.environ:
        return int(os.environ['WORLD_SIZE'])
    elif is_torch_cuda_available():
        return torch.cuda.device_count()
    else:
        return 1

@lru_cache
def get_xla_rank():
    # When using spmd, these return 0 regardless of node [e.g., essentially return the local rank]
    # import torch_xla.core.xla_model as xm
    # return xm.get_ordinal()
    # from accelerate import PartialState
    # return PartialState().local_process_index
    from torch_xla._internal import tpu
    task_id = tpu.task_id() # Num chips
    worker_id = tpu.worker_id() # Num workers [e.g., which node]
    return task_id if task_id is not None else worker_id

def get_rank(check_for_group: bool = False):
    """ Helper function that returns torch.distributed.get_rank() if DDP has been initialized otherwise it returns 0.
    """
    if os.environ.get("FORCE_MAIN_RANK", "0") == "1":
        return 0
    elif is_torch_xla_available():
        if builtins.HAS_XLA_SPAWNED:
            return get_xla_rank()
        else:
            return 0
    elif use_dist():
        return dist.get_rank()
    elif (rank := os.environ.get("RANK", None)) is not None:
        return int(rank) # RANK is set by torch.distributed.launch
    elif (rank := os.environ.get("SLURM_PROCID", None)) is not None:
        return int(rank) # SLURM_PROCID is set by SLURM
    elif check_for_group:
        # if neither pytorch, SLURM  env vars are set
        # check NODE_RANK/GROUP_RANK and LOCAL_RANK env vars
        # assume global_rank is zero if undefined
        node_rank = os.environ.get("NODE_RANK", os.environ.get("GROUP_RANK", 0))
        local_rank = os.environ.get("LOCAL_RANK", 0)
        return 0 if (int(node_rank) == 0 and int(local_rank) == 0) else 1
    else:
        return 0
    
def is_main_process():
    return get_rank() == 0

def get_local_rank():
    if is_torch_xla_available():
        import torch_xla.core.xla_model as xm
        return xm.get_local_ordinal()
    else:
        return int(os.environ.get("LOCAL_RANK", 0))

def is_local_main_process():
    return get_local_rank() == 0

def get_num_gpus() -> int:
    return get_world_size()

def rank_zero_fn(fn):
    @wraps(fn)
    def wrapped_fn(*args: Any, **kwargs: Any):
        if is_main_process():
            return fn(*args, **kwargs)
        return None

    return wrapped_fn

def barrier():
    if use_dist() or getattr(builtins, "HAS_XLA_SPAWNED", False):
        frame = inspect.currentframe().f_back
        filename = frame.f_code.co_filename
        lineno = frame.f_lineno
        code_context = inspect.getframeinfo(frame).code_context[0].strip()
        debug_log_func(f"Before barrier - {filename}:{lineno} - {code_context}")
        if is_torch_xla_available() and getattr(builtins, "HAS_XLA_SPAWNED", False):
            import torch_xla.core.xla_model as xm
            xm.rendezvous('barrier')
        else:
            torch.distributed.barrier()
        debug_log_func(f"After barrier - {filename}:{lineno} - {code_context}")
        
def get_hostname():
    return __import__('socket').gethostname().removesuffix('.eth')

def get_slurm_job_id():
    if os.environ.get("SLURM_ARRAY_JOB_ID", None) is not None and os.environ.get("SLURM_ARRAY_TASK_ID", None) is not None:
        job_str = f"{os.environ.get('SLURM_ARRAY_JOB_ID')}_{os.environ.get('SLURM_ARRAY_TASK_ID')}"
    elif os.environ.get("SLURM_JOB_ID", None) is not None:
        job_str = os.environ.get("SLURM_JOB_ID")
    else:
        job_str = None
    return job_str

def get_restart_str():
    restart_str = f"r{os.environ.get('SLURM_RESTART_COUNT', '0')}_" if os.environ.get('SLURM_RESTART_COUNT', None) is not None else ""
    if "TORCHELASTIC_RESTART_COUNT" in os.environ and os.environ.get("TORCHELASTIC_RESTART_COUNT", '0') != '0':
        restart_str = f"r{os.environ.get('TORCHELASTIC_RESTART_COUNT', '0')}_"
    return restart_str

def get_slurm_filename_info():
    job_str = f"{get_slurm_job_id()}__" if get_slurm_job_id() is not None else ""
    restart_str = get_restart_str()
    if "SLURM_NODEID" in os.environ:
        node_str = f"{os.environ.get('SLURM_NODEID', '')}_"
    elif "SLURM_PROCID" in os.environ:
        node_str = f"{os.environ.get('SLURM_PROCID', '')}_"
    else:
        node_str = ""

    return f"{job_str}{restart_str}{node_str}{get_rank()}"

def get_slurm_log_prefix():
    if "SLURM_NODEID" in os.environ:
        slurm_nodestr = f", Node:{os.environ.get('SLURM_NODEID', 'N/A')}"
    elif "SLURM_PROCID" in os.environ:
        slurm_nodestr = f", Node:{os.environ.get('SLURM_PROCID', 'N/A')}"
    else:
        slurm_nodestr = ""

    jobid = get_slurm_job_id()
    jobid_str = f", JID:{jobid}" if jobid is not None else ""
    restart_str = f", {get_restart_str()}" if get_restart_str() != "" else ""
    return f"Rank:{get_rank()}{slurm_nodestr}{jobid_str}{restart_str}"

def slurm_prefix_func():
    timestamp = datetime.now().strftime("[%Y-%m-%d %H:%M:%S]")
    return f"{timestamp} [{get_slurm_log_prefix()}]"

try:
    from unidisc.utils.logging_utils import log_info, log_debug, set_logger, log_memory
    set_logger(__name__)
    info_log_func = log_info
    debug_log_func = log_debug
    prefix_func = None
except Exception as e:
    print(e)
    def simple_print_func(*args, **kwargs):
        print(*args)
    info_log_func = simple_print_func
    debug_log_func = simple_print_func
    prefix_func = slurm_prefix_func

def gprint(*args, main_process_only=False, **kwargs):
    """
    Prints to console + log as INFO on regardless of rank.
    """
    if prefix_func is not None:
        args = (prefix_func(), *args)
    info_log_func(*args, main_process_only=main_process_only, **kwargs)

def dprint(*args, **kwargs):
    """
    Prints to console + log as DEBUG on regardless of rank.
    """
    if prefix_func is not None:
        args = (prefix_func(), *args)
    debug_log_func(*args, **kwargs)

def rprint(*args, **kwargs):
    """
    Prints to console + log as INFO on main process only. All ranks also print to log file [as DEBUG] if called, but this is not required [e.g., no barrier used]
    """
    gprint(*args, main_process_only=True, **kwargs)

def mprint(*args, **kwargs):
    log_memory(*args, **kwargs)
    # dprint(*args, **kwargs)

log_func = rprint

def process_file_prefix():
    datetime_str = datetime.now().strftime("%Y_%m_%d-%H_%M_%S_%f")[:-5]
    return f"{get_slurm_filename_info()}_{get_hostname()}_{datetime_str}"

def get_info():
    return subprocess.run(["nvidia-smi"], stdout=subprocess.PIPE).stdout.decode("utf-8")

def print_trainable_parameters(model):
    """
    Prints the number of trainable parameters in the model.
    """
    trainable_params = 0
    all_param = 0
    for _, param in model.named_parameters():
        all_param += param.numel()
        if param.requires_grad:
            trainable_params += param.numel()
    log_func(
        f"trainable params: {trainable_params} || all params: {all_param} || trainable%: {100 * trainable_params / all_param:.2f}"
    )

def print_params(model):
    log_func(f"Total Parameters: {sum(p.numel() for p in model.parameters()):,}")
    log_func(f"Unfrozen Parameters: {sum(p.numel() for p in model.parameters() if p.requires_grad):,}")
    log_func(f"Frozen Parameters: {sum(p.numel() for p in model.parameters() if not p.requires_grad):,}")


def calculate_storage_size(obj, storage_view_sizes, count_views=False):
    if isinstance(obj, torch.Tensor):
        storage = obj.storage()
        storage_id = id(storage)
        element_size = storage.element_size()
        storage_size = storage.size() * element_size
        view_size = obj.numel() * element_size

        # We count storage size only for the first time we encounter the storage
        if storage_id not in storage_view_sizes:
            storage_view_sizes[storage_id] = storage_size
            print_size = storage_size
        else:
            print_size = 0 if not count_views or not obj._is_view() else view_size

        if count_views or not obj._is_view():
            log_func(f"{'View' if obj._is_view() else 'Storage'} Tensor: " f"shape {obj.size()}, size {print_size / (1024 ** 2):.2f} MB")

        return print_size if count_views or not obj._is_view() else 0  # Count views only if requested
    elif isinstance(obj, dict):
        # Recurse for dictionaries
        return sum(calculate_storage_size(v, storage_view_sizes, count_views) for v in obj.values())
    elif isinstance(obj, (list, tuple)):
        # Recurse for lists or tuples
        return sum(calculate_storage_size(item, storage_view_sizes, count_views) for item in obj)
    elif hasattr(obj, "__dataclass_fields__"):
        # Recurse for dataclasses based on their fields
        fields = getattr(obj, "__dataclass_fields__")
        return sum(calculate_storage_size(getattr(obj, f), storage_view_sizes, count_views) for f in fields)
    else:
        # Non-Tensor, non-dict, non-list objects are not measured
        return 0


def calculate_total_size(obj, count_views=False):
    storage_view_sizes = defaultdict(int)
    total_size = calculate_storage_size(obj, storage_view_sizes, count_views)
    total_unique_storage_size = sum(storage_view_sizes.values())
    log_func(f"Total unique storage size: {total_unique_storage_size / (1024 ** 2):.2f} MB")
    if count_views:  # Only add view sizes to total if requested
        total_view_size = total_size - total_unique_storage_size
        log_func(f"Total view size (if counted): {total_view_size / (1024 ** 2):.2f} MB")
    else:
        log_func(f"Total size (without counting views): {total_size / (1024 ** 2):.2f} MB")

    return total_size


def save_tensor_dict(tensor_dict: dict, path):
    output_dict = {}
    for k, v in tensor_dict.items():
        if isinstance(v, Tensor):
            if v.dtype == torch.float16 or v.dtype == torch.bfloat16:
                output_dict[k] = v.to(dtype=torch.float32).detach().cpu().numpy()
            else:
                output_dict[k] = v.detach().cpu().numpy()
        elif isinstance(v, np.ndarray):
            output_dict[f"np_{k}"] = v
        else:
            output_dict[k] = v
    np.savez_compressed(path, **output_dict)


def load_tensor_dict(path: Path, object_keys=[]):
    from jaxtyping import BFloat16 # TODO: Remove dependency
    tensor_dict = {}
    np_dict = np.load(path, allow_pickle=True)
    for k, v in np_dict.items():
        if k in object_keys:
            tensor_dict[k] = v
        elif v.dtype == BFloat16:
            tensor_dict[k] = torch.from_numpy(v.astype(np.float32)).to(dtype=torch.bfloat16)
        elif k.startswith("np_"):
            tensor_dict[k.removeprefix("np_")] = v
        else:
            tensor_dict[k] = torch.from_numpy(v)
    return tensor_dict


def tensor_hash(tensor):
    """Computes a SHA256 hash of a tensor. Useful for debugging to check equality in different places."""
    tensor_bytes = tensor.detach().float().cpu().numpy().tobytes()
    return hashlib.sha256(tensor_bytes).hexdigest()

def module_hash(module: Optional[dict] = None, state_dict: Optional[dict] = None):
    assert module is not None or state_dict is not None
    state_dict = module.state_dict() if module is not None else state_dict
    sorted_state_dict = {k: state_dict[k] for k in sorted(state_dict)}
    params_cat = torch.cat([v.flatten() for _, v in sorted_state_dict.items()])
    return tensor_hash(params_cat)

def parameter_hash(params: list[torch.Tensor]):
    return tensor_hash(torch.cat([p.cpu().flatten() for p in params]))

def find_diff_params(state_dict_1, state_dict_2):
    diff_keys = set(state_dict_1.keys()) ^ set(state_dict_2.keys())  # Symmetric difference to find keys not in both
    matched_keys = set(state_dict_1.keys()) & set(state_dict_2.keys())  # Intersection to find keys in both

    # Check for differences in matched keys
    for key in matched_keys:
        if not torch.equal(state_dict_1[key], state_dict_2[key]):
            diff_keys.add(key)

    return diff_keys


def init_from_ckpt(module, path, ignore_keys=None, unfrozen_keys=None, strict=False, truncate=None, only_incl=None, verbose=True):
    log_func(f"Loading {module.__class__.__name__} from checkpoint: {path}")
    log_func(f"Strict Load: {strict}, Ignoring: {ignore_keys}, Unfreezing: {unfrozen_keys}, Truncating: {truncate}")

    if ignore_keys is None:
        ignore_keys = ()

    if unfrozen_keys is None:
        unfrozen_keys = ()

    sd = torch.load(path, map_location="cpu")

    if "state_dict" in sd.keys():
        sd = sd["state_dict"]
    elif "weight" in sd.keys():
        sd = sd["weight"]

    num_deleted = defaultdict(int)
    for k in list(sd):
        for ik in ignore_keys:
            if k.startswith(ik):
                num_deleted[ik] += 1
                del sd[k]

    for k, v in num_deleted.items():
        log_func(f"Deleted {v} keys due to ignore_key: {k}")

    if truncate is not None:
        for k in list(sd):
            if k.startswith(truncate):
                sd[k.replace(truncate, "")] = sd[k]
            del sd[k]

    num_ignored = defaultdict(int)
    for n in module.state_dict().keys():
        if n not in sd.keys():
            for ik in ignore_keys:
                if ik in n:
                    num_ignored[ik] += 1
                else:
                    log_func(f"Missing {n}")

    if only_incl is not None:
        for k in list(sd):
            keep = False
            for ik in only_incl:
                if ik in k:
                    keep = True
            if not keep:
                del sd[k]

    for k, v in num_ignored.items():
        log_func(f"Missing {v} keys due to ignore_key: {k}")

    for n in sd.keys():
        if n not in module.state_dict().keys():
            log_func(f"Unexpected {n}")

    checkpoint_keys = set(sd.keys())
    current_keys = set(module.state_dict().keys())

    if verbose:
        log_func(f"Loading: {checkpoint_keys.intersection(current_keys)}")
    else:
        log_func(f"Loading {len(checkpoint_keys.intersection(current_keys))} keys into the model: {str(module.__class__)}")

    module.load_state_dict(sd, strict=strict)

    if len(unfrozen_keys) > 0:
        for n, p in module.named_parameters():
            p.requires_grad_ = False
            for unfrozen_name in unfrozen_keys:
                if unfrozen_name in n:
                    p.requires_grad_ = True
                    log_func(f"Unfreezing: {n}")

    log_func(f"Restored from {path}")


def check_gpu_memory_usage():
    allocated = torch.cuda.memory_allocated()
    reserved = torch.cuda.memory_reserved()
    total_memory = torch.cuda.get_device_properties(int(get_local_rank())).total_memory

    allocated_percent = (allocated / total_memory) * 100
    reserved_percent = (reserved / total_memory) * 100

    log_func(f"Allocated memory: {allocated_percent:.2f}%")
    log_func(f"Reserved memory: {reserved_percent:.2f}%")
    log_func(f'Available devices (CUDA_VISIBLE_DEVICES): {os.environ.get("CUDA_VISIBLE_DEVICES")}')

    assert allocated_percent <= 5
    assert reserved_percent <= 5


def load_checkpoint_from_url(url: str, file_path: Optional[str] = None) -> Path:
    if file_path is None:
        parts = urlparse(url)
        filename = os.path.basename(parts.path)
        if file_path is not None:
            filename = file_path

        file_path = Path.home() / ".cache" / "pretrained_weights" / filename

    file_path.parent.mkdir(parents=True, exist_ok=True)
    if not os.path.exists(file_path):
        log_func(f'Downloading: "{url}" to {file_path}\n')
        torch.hub.download_url_to_file(url, file_path, progress=True)

    return file_path


# Copied from torch.profiler.profiler
def tensorboard_trace_handler(dir_name: str, record_memory: bool = False, worker_name: Optional[str] = None, use_gzip: bool = True):
    """
    Outputs tracing files to directory of ``dir_name``, then that directory can be
    directly delivered to tensorboard as logdir.
    ``worker_name`` should be unique for each worker in distributed scenario,
    it will be set to '[hostname]_[pid]' by default.
    """
    import os
    import socket
    import time

    def handler_fn(prof: torch.profiler.profile) -> None:
        nonlocal worker_name
        if not os.path.isdir(dir_name):
            try:
                os.makedirs(dir_name, exist_ok=True)
            except Exception as e:
                raise RuntimeError("Can't create directory: " + dir_name) from e
        if not worker_name:
            worker_name = f"{socket.gethostname()}_{os.getpid()}"
        # Use nanosecond here to avoid naming clash when exporting the trace
        file_name = f"{worker_name}.{time.time_ns()}.pt.trace.json"
        if use_gzip:
            file_name = file_name + ".gz"

        chrome_trace_path = os.path.join(dir_name, file_name)
        memory_trace_path = os.path.join(dir_name, "memory_timeline.html")
        if is_main_process() and record_memory:
            try:
                log_func(f"Exporting memory timeline: {memory_trace_path}")
                prof.export_memory_timeline(memory_trace_path)
            except Exception as e:
                log_func(f"Failed to export memory timeline: {e}")
        
            prof.key_averages().table(sort_by="self_cuda_time_total", row_limit=100)

        log_func(f"Exporting chrome trace to {chrome_trace_path}")
        prof.export_chrome_trace(chrome_trace_path)

    return handler_fn

def get_date_time_str():
    return datetime.now().strftime("%Y_%m_%d-%H_%M_%S.%f")[:-3]

def save_memory_profile(profile_dir):
    import wandb
    rank_postfix = f"_rank_{get_rank()}" if use_dist() else ""
    log_func(f"Saving memory profile to {profile_dir}")
    os.makedirs(profile_dir, exist_ok=True)
    torch.cuda.memory._dump_snapshot(f"{profile_dir}/memory_snapshot{rank_postfix}.pickle")
    os.system(
        f"python -m torch.cuda._memory_viz trace_plot {profile_dir}/memory_snapshot{rank_postfix}.pickle -o {profile_dir}/memory_snapshot{rank_postfix}.html"
    )
    torch.cuda.memory._save_segment_usage(f"{profile_dir}/segment{rank_postfix}.svg")
    torch.cuda.memory._save_memory_usage(f"{profile_dir}/memory{rank_postfix}.svg") 
    torch.cuda.memory._record_memory_history(enabled=None)

    log_func(f"Saved memory snapshot at: {profile_dir}/memory_snapshot{rank_postfix}.pickle")
    log_func(f"Run the following to view the snapshot:\npython -m http.server --directory {profile_dir.resolve()} 6008")

    if is_main_process() and wandb.run is not None:
        wandb.log({'profile': wandb.Html(f"{profile_dir}/memory_snapshot{rank_postfix}.html")})
        wandb.log({'profile': wandb.Html(f"{profile_dir}/memory_timeline{rank_postfix}.html")})

def print_memory(verbose: bool = False, print_output: bool = True):
    max_cur_reserved, max_peak_reserved, max_peak_allocated, max_cur_allocated = -1, -1, -1, -1
    max_cur_reserved_device, max_peak_reserved_device, max_peak_allocated_device, max_cur_allocated_device = -1, -1, -1, -1
    for device in range(torch.cuda.device_count()):
        current_reserved_memory_MB = torch.cuda.memory_reserved(device=torch.device(f'cuda:{device}')) / (1024**2)
        peak_reserved_memory_MB = torch.cuda.max_memory_reserved(device=torch.device(f'cuda:{device}')) / (1024**2)
        peak_allocated_memory_MB = torch.cuda.max_memory_allocated(device=torch.device(f'cuda:{device}')) / (1024**2)
        current_allocated_memory_MB = torch.cuda.memory_allocated(device=torch.device(f'cuda:{device}')) / (1024**2)

        if current_reserved_memory_MB > max_cur_reserved:
            max_cur_reserved = current_reserved_memory_MB
            max_cur_reserved_device = device
        
        if peak_reserved_memory_MB > max_peak_reserved:
            max_peak_reserved = peak_reserved_memory_MB
            max_peak_reserved_device = device

        if peak_allocated_memory_MB > max_peak_allocated:
            max_peak_allocated = peak_allocated_memory_MB
            max_peak_allocated_device = device

        if current_allocated_memory_MB > max_cur_allocated:
            max_cur_allocated = current_allocated_memory_MB
            max_cur_allocated_device = device

    if verbose:
        log_func(torch.cuda.memory_summary(abbreviated=False))

    if print_output:
        log_func(f"GPU Cur Reserved: {max_cur_reserved:.2f}MB on rank {max_cur_reserved_device}, Cur Allocated: {max_cur_allocated:.2f}MB on rank {max_cur_allocated_device}, Peak Reserved: {max_peak_reserved:.2f}MB on rank {max_peak_reserved_device}, Peak Allocated: {max_peak_allocated:.2f}MB on rank {max_peak_allocated_device}")

    return max_cur_reserved

def print_memory_summary():
    val = print_memory(verbose=False, print_output=False)
    log_func(f"GPU Cur Reserved: {val:.2f}MB, {val / (torch.cuda.get_device_properties(0).total_memory / 1024**2) * 100:.2f}%")

@contextlib.contextmanager
def show_memory_usage(empty_cache: bool = True, verbose: bool = False, print_output=False, show_caller: bool = True):
    synchronize_device()
    if empty_cache: clear_cache()
    
    if show_caller:
        callers = [
            f"{frame.function} (...{frame.filename[-10:]}:{frame.lineno})"
            for frame in inspect.stack()
            if "contextlib" not in frame.filename
        ][1:5]
    
        decorated_func_name = ", ".join([inspect.currentframe().f_back.f_code.co_name, inspect.currentframe().f_back.f_back.f_code.co_name, inspect.currentframe().f_back.f_back.f_back.f_code.co_name])
        caller_info = decorated_func_name + " " + " -> ".join(reversed(callers))
        log_func(f"Before context (called by {caller_info}): {print_memory(verbose, print_output=False)}MB cur reserved")
        caller_str = f", called by {caller_info} "
    else:
        caller_str = ""

    yield

    synchronize_device()
    if empty_cache: clear_cache()
    log_func(f"After context{caller_str}: {print_memory(verbose, print_output=print_output)}MB cur reserved")

@contextlib.contextmanager
def profile_memory(enable: bool = True, empty_cache: bool = True):
    with contextlib.ExitStack() as stack:
        stack.enter_context(show_memory_usage(empty_cache=empty_cache))
        if enable and is_main_process(): torch.cuda.memory._record_memory_history()
        yield
        if enable: save_memory_profile(Path(f"output/profile/{get_date_time_str()}"))

def profile_memory_decorator(func):
    @wraps(func)
    def wrapper(*args, **kwargs):
        with profile_memory():
            return func(*args, **kwargs)
    return wrapper

class Profiler:
    def __init__(self, output_dir, warmup_steps: int = 5, active_steps: int = 3, record_memory: bool = False, record_memory_only: bool = False):
        self.record_memory = record_memory
        self.profile_dir = Path(output_dir) / "profile"
        self.profile_dir.mkdir(parents=True, exist_ok=True)
        wait, warmup, active, repeat = 0, warmup_steps, active_steps, 0
        self.total_steps = (wait + warmup + active) * (1 + repeat)
        schedule = torch.profiler.schedule(wait=wait, warmup=warmup, active=active, repeat=repeat)
        profiler_kwargs = dict(record_shapes=True, with_stack=True)
        if record_memory_only:
            pass
        else:
            profiler_kwargs.update(
                dict(
                    with_modules=True,
                    with_flops=True,
                ),
            )

        self.profiler = torch.profiler.profile(
            schedule=schedule,
            on_trace_ready=tensorboard_trace_handler(self.profile_dir, record_memory=record_memory),
            profile_memory=record_memory,
            **profiler_kwargs
        )
        self.profiler.start()

    def step(self, global_step: int):
        self.profiler.step()
        return global_step >= (self.total_steps - 1)

    def finish(self):
        self.profiler.stop()
        if use_dist():
            torch.distributed.barrier()
        if is_main_process():
            import wandb
            traces = glob.glob(f"{self.profile_dir}/*.pt.trace.json*")
            for trace in traces:
                log_func(f"Adding {trace}")
                wandb.save(trace, base_path=self.profile_dir, policy="now")                

        if use_dist():
            torch.distributed.barrier()


def get_pdb():
    return import_module("pdb") if (any(["_pdbpp_path_hack" in str(p) for p in sys.path]) or find_spec("ipdb") is None) else import_module("ipdb")

def _breakpoint(rank: Optional[int] = None, traceback: Optional[Any] = None):
    if get_num_gpus() > 1:
        if (is_main_process() if rank is None else get_rank() == rank):
            if is_torch_xla_available():
                from fairseq import pdb
                pdb.set_trace()
            else:
                old_stdin = None
                if isinstance(sys.stdin, io.TextIOWrapper):
                    old_stdin = sys.stdin
                    sys.stdin = open(0)
                try:
                    log_func('Breakpoint triggered. You may need to type "up" to get to the correct frame')
                    log_func(f'Traceback: {traceback}')
                    if traceback is not None:
                        get_pdb().post_mortem(traceback)
                    else:
                        get_pdb().set_trace()
                finally:
                    if old_stdin is not None:
                        sys.stdin.close()
                        sys.stdin = old_stdin
        barrier()
    else:
        if traceback is not None:
            get_pdb().post_mortem(traceback)
        else:
            log_func("Breakpoint triggered. You may need to type \"up\" to get to the correct frame")
            get_pdb().set_trace(sys._getframe(1))

def set_global_exists():
    builtins.exists = lambda v: v is not None

def set_global_breakpoint():
    import ipdb

    builtins.breakpoint = _breakpoint
    builtins.st = ipdb.set_trace  # We import st everywhere
    builtins.ug = lambda: globals().update(locals())

def set_timing_builtins(enable: bool = False, sync: bool = False):
    builtins.start_timing = partial(start_timing, builtin=True, enable=False, sync=False)
    builtins.end_timing = partial(end_timing, builtin=True, enable=False, sync=False)
    builtins.ENABLE_TIMING = enable
    builtins.ENABLE_TIMING_SYNC = sync

def synchronize_device():
    if is_torch_cuda_available():
        torch.cuda.synchronize()
    elif is_torch_xla_available():
        import torch_xla
        torch_xla.sync()
        xm.wait_device_ops()

def clear_cache():
    if is_torch_cuda_available():
        # This caused untold grief. Without calling `_cuda_clearCublasWorkspaces`,
        # some model configurations would eventually cause a CUDA OOM during inference. See:
        # https://github.com/pytorch/pytorch/issues/99835, https://github.com/pytorch/pytorch/issues/105181
        torch._C._cuda_clearCublasWorkspaces()
        torch._dynamo.reset()
        import gc; gc.collect()
        torch.cuda.empty_cache()
    elif is_torch_xla_available():
        rprint("Clearing cache not supported for XLA")

def start_timing(message: str, enable: bool = False, sync: bool = False, builtin: bool = False):
    if (builtin and ENABLE_TIMING) or enable:
        if (builtin and ENABLE_TIMING_SYNC) or sync:
            synchronize_device()
        torch.cuda.nvtx.range_push(f"[SYNC] {message}" if ((builtin and ENABLE_TIMING_SYNC) or sync) else message)

    return time.time()

def end_timing(start_time: Optional[float] = None, enable: bool = False, sync: bool = False, builtin: bool = False):
    if (builtin and ENABLE_TIMING) or enable:
        if (builtin and ENABLE_TIMING_SYNC) or sync:
            synchronize_device()
        torch.cuda.nvtx.range_pop()

    if start_time is not None:
        return time.time() - start_time
    
@contextlib.contextmanager
def breakpoint_on_error():
    set_global_breakpoint()
    try:
        yield
    except Exception as e:
        print("Exception...", e)
        traceback.print_exc()
        breakpoint(traceback=e.__traceback__)
        raise e

@contextlib.contextmanager
def get_time_sync(enable: bool = True):
    if enable and is_main_process():
        synchronize_device()
        start_time = time.time()
    yield
    if enable and is_main_process():
        synchronize_device()
        end_time = time.time()
        print(f"Time taken: {end_time - start_time:.2f}s")

def write_to_file(path: Path, text: str):
    try:
        path.parent.mkdir(parents=True, exist_ok=True)
        with open(path, "a") as file:
            file.write(text + "\n")
    except:
        log_func(f"Could not write to {path}")


def to(obj, device):
  if torch.is_tensor(obj):
    return obj.to(device)
  if isinstance(obj, dict):
    return {k : to(v, device) for k, v in obj.items()}
  if isinstance(obj, tuple):
    return tuple(to(v, device) for v in obj)
  if isinstance(obj, list):
    return [to(v, device) for v in obj]
  return obj

def all_gather(data):
    """
    Run all_gather on arbitrary picklable data (not necessarily tensors)
    Args:
        data: any picklable object
    Returns:
        list[data]: list of data gathered from each rank
    """
    world_size = get_num_gpus()
    if world_size == 1:
        return [data]

    # serialized to a Tensor
    buffer = pickle.dumps(data)
    storage = torch.ByteStorage.from_buffer(buffer)
    tensor = torch.ByteTensor(storage).to("cuda")

    # obtain Tensor size of each rank
    local_size = torch.tensor([tensor.numel()], device="cuda")
    size_list = [torch.tensor([0], device="cuda") for _ in range(world_size)]
    dist.all_gather(size_list, local_size)
    size_list = [int(size.item()) for size in size_list]
    max_size = max(size_list)

    # receiving Tensor from all ranks
    # we pad the tensor because torch all_gather does not support
    # gathering tensors of different shapes
    tensor_list = []
    for _ in size_list:
        tensor_list.append(torch.empty((max_size,), dtype=torch.uint8, device="cuda"))
    if local_size != max_size:
        padding = torch.empty(size=(max_size - local_size,), dtype=torch.uint8, device="cuda")
        tensor = torch.cat((tensor, padding), dim=0)
    dist.all_gather(tensor_list, tensor)

    data_list = []
    for size, tensor in zip(size_list, tensor_list):
        buffer = tensor.cpu().numpy().tobytes()[:size]
        data_list.append(to(pickle.loads(buffer), torch.device('cpu')))

    return data_list

def get_modules(model: torch.nn.Module, cls: Any):
    children = list(model.children())
    if isinstance(model, cls):
        return [model]
    elif len(children) == 0:
        return []
    else:
        return [ci for c in children for ci in get_modules(model=c, cls=cls)]

map_chars = {
    "/" : "__",
    " " : "_",
}

def sanitize_filename(filename: str) -> str:
    return "".join(map_chars.get(c, c) for c in filename if c.isalnum() or map_chars.get(c, c) in (" ", ".", "_", "-", "__"))


def hash_str_as_int(s: str):
    return int(hashlib.sha256(s.encode('utf-8')).hexdigest(), 16) % 10**8


def torch_to_numpy(arr: Tensor):
    if arr.dtype == torch.bfloat16:
        return arr.float().cpu().detach().numpy()
    else:
        return arr.cpu().detach().numpy()
    
def to_numpy(arr):
    if isinstance(arr, Tensor):
        return torch_to_numpy(arr)
    else:
        return arr

class try_except:
    def __init__(self, raise_error: bool = False, write_error_to_file: bool = False, clear_cuda_cache: bool = False):
        self.raise_error = raise_error
        self.write_error_to_file = write_error_to_file
        self.clear_cuda_cache = clear_cuda_cache

    def __call__(self, f):
        @functools.wraps(f)
        def inner(*args, **kwargs):
            with self:
                return f(*args, **kwargs)
        return inner

    def __enter__(self):
        if self.clear_cuda_cache:
            clear_cache()
        return self

    def __exit__(self, exc_type, exc_value, tb):
        if exc_type is not None:
            try:
                log_func(f"Exception caught: {exc_type}")
                log_func(traceback.format_exc())
                if self.write_error_to_file:
                    timestamp = int(time.time_ns())
                    with open(f"exception_{timestamp}_{process_file_prefix()}.out", "w") as file:
                        file.write(traceback.format_exc())
            except Exception as e:
                print(f"Error writing to file: {e}")

            if self.clear_cuda_cache:
                clear_cache()

            if self.raise_error:
                raise exc_value
        return True  # Suppress the exception if raise_error is False

def move_to(obj, device):
    if torch.is_tensor(obj):
        return obj.to(device=device)
    elif isinstance(obj, dict):
        res = {}
        for k, v in obj.items():
            res[k] = move_to(v, device)
        return res
    elif isinstance(obj, list):
        res = []
        for v in obj:
            res.append(move_to(v, device))
        return res
    elif isinstance(obj, str):
        return obj
    else:
        raise TypeError("Invalid type for move_to")



import types
def run_with_named_function(name, func, *args, **kwargs):
    """
    Runs the given function inside a dynamically created function with the specified name.
    This causes the specified name to appear in the stack trace.

    E.g., x = run_with_named_function(f"iter_{i}", self._ddpm_update, x, t, dt, x0=x0, x0_unmask=x0_unmask, **kwargs)
    
    Parameters:
    - name (str): The desired name to appear in the stack trace.
    - func (callable): The function to execute.
    - *args: Positional arguments to pass to func.
    - **kwargs: Keyword arguments to pass to func.
    """
    def wrapper(*args, **kwargs):
        return func(*args, **kwargs)
    code = wrapper.__code__
    new_code = types.CodeType(
        code.co_argcount,
        code.co_posonlyargcount if hasattr(code, "co_posonlyargcount") else 0,
        code.co_kwonlyargcount,
        code.co_nlocals,
        code.co_stacksize,
        code.co_flags,
        code.co_code,
        code.co_consts,
        code.co_names,
        code.co_varnames,
        code.co_filename,
        name,  # Set the function name in the code object
        code.co_firstlineno,
        code.co_lnotab,
        code.co_freevars,
        code.co_cellvars
    )
    new_func = types.FunctionType(
        new_code,
        wrapper.__globals__,
        name,
        wrapper.__defaults__,
        wrapper.__closure__,
    )
    return new_func(*args, **kwargs)