File size: 55,930 Bytes
131da64 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 |
import os
import sys
from contextlib import ExitStack
from pathlib import Path
from constants import CONFIG_PATH, LIB_DIR
sys.path.append(str(LIB_DIR / "hydra_submitit_launcher"))
import builtins
import random
import re
import signal
import traceback
from copy import deepcopy
from datetime import datetime
import hydra
import numpy as np
import omegaconf
from hydra.core.hydra_config import HydraConfig
from omegaconf import DictConfig, OmegaConf, open_dict, read_write
from safetensors.torch import load_file, save_file
import dataloader
from model import Diffusion
import utils
import wandb
from decoupled_utils import (check_gpu_memory_usage, get_hostname,
get_local_rank, get_rank, get_slurm_filename_info,
get_slurm_log_prefix, get_tpu_devices,
get_world_size, gprint, is_local_main_process,
is_main_process, is_torch_cuda_available,
is_torch_xla_available, print_params,
process_file_prefix, profile_memory, rank_zero_fn,
rprint, set_global_breakpoint, set_global_exists,
set_timing_builtins, try_except)
from utils import (ErrorHandler, _print_config, convert_state_dict_keys, set_omega_conf_resolvers, set_torch_defaults)
# Only needed when debugging hydra
# os.environ["HYDRA_FULL_ERROR"] = "1"
set_global_breakpoint() # Overrides breakpoint() to use ipdb.set_trace() instead and handle distributed training
set_global_exists()
set_omega_conf_resolvers()
if is_torch_xla_available():
from jax_smi import initialise_tracking
def _load_from_checkpoint(config, tokenizer):
OmegaConf.resolve(config)
if "hf" in config.backbone:
return Diffusion(config=config, tokenizer=tokenizer).to("cuda")
return Diffusion.load_from_checkpoint(config.eval.checkpoint_path, tokenizer=tokenizer, config=config)
@rank_zero_fn
def _print_batch(train_ds, valid_ds, tokenizer, k=64):
for dl_type, dl in [("train", train_ds), ("valid", valid_ds)]:
rprint(f"Printing {dl_type} dataloader batch.")
batch = next(iter(dl))
rprint("Batch input_ids.shape", batch["input_ids"].shape)
first = batch["input_ids"][0, :k]
last = batch["input_ids"][0, -k:]
rprint(f"First {k} tokens:", tokenizer.decode(first))
rprint("ids:", first)
rprint(f"Last {k} tokens:", tokenizer.decode(last))
rprint("ids:", last)
def generate_samples(config, tokenizer):
rprint("Generating samples.")
model = _load_from_checkpoint(config=config, tokenizer=tokenizer)
model.gen_ppl_metric.reset()
if config.eval.disable_ema:
rprint("Disabling EMA.")
model.ema = None
stride_length = config.sampling.stride_length
num_strides = config.sampling.num_strides
for _ in range(config.sampling.num_sample_batches):
if config.sampling.semi_ar:
_, intermediate_samples, _ = model.restore_model_and_semi_ar_sample(
stride_length=stride_length, num_strides=num_strides, dt=1 / config.sampling.steps
)
text_samples = intermediate_samples[-1]
# Note: Samples generated using semi-ar method
# need to to be processed before computing generative perplexity
# since these samples contain numerous <|endoftext|> tokens
# and diffusion.compute_generative_perplexity() discards
# any text after the first EOS token.
else:
samples = model.restore_model_and_sample(num_steps=config.sampling.steps)
text_samples = model.tokenizer.batch_decode(samples)
model.compute_generative_perplexity(text_samples)
rprint("Text samples:", text_samples)
if not config.sampling.semi_ar:
rprint("Generative perplexity:", model.gen_ppl_metric.compute())
return text_samples
def instantiate_wandb(config, accelerator):
if is_torch_xla_available():
gprint("Initializing wandb for XLA")
if config.mode == 'eval':
config.wandb.project = f"{config.wandb.project}-eval"
elif config.mode == 'zero-shot-eval':
config.wandb.project = f"{config.wandb.project}-zero-shot-eval"
if config.wandb.group is not None:
config.wandb.group = str(config.wandb.group)
# We need to initialize the trackers we use, and also store our configuration.
# The trackers initializes automatically on the main process.
wandb_kwargs = dict(config.wandb)
if getattr(config, "sweep_id", None) is not None:
rprint(f"Setting Wandb group to {config.sweep_id}")
wandb_kwargs["group"] = config.sweep_id
del wandb_kwargs["project"]
accelerator.init_trackers(
config.wandb.project, config=OmegaConf.to_container(config, resolve=True, throw_on_missing=True), init_kwargs=dict(wandb=wandb_kwargs)
)
if getattr(config.trainer, "log_code", True) and is_main_process():
if "matrix" in get_hostname():
rprint(f"Not logging code to wandb on {get_hostname()}")
else:
rprint(f"Logging code to wandb from {Path(__file__).parent}")
try:
wandb.run.log_code(
root=str(Path(__file__).parent),
include_fn=lambda path: any(path.endswith(f) for f in (".py", ".yaml", ".yml", ".txt", ".md")),
exclude_fn=lambda path, root: any(x in os.path.relpath(path, root) for x in ("output", "multirun", "logs", "wandb")),
)
except Exception as e:
rprint(f"Failed to log code to wandb: {e}")
with open_dict(config):
try:
config.wandb_url = wandb.run.get_url()
wandb.define_metric("global_samples")
wandb.define_metric("effective_global_tokens")
wandb.define_metric("effective_global_step")
wandb.define_metric("train_metrics/samples")
wandb.define_metric("trainer/loss", step_metric="global_samples")
except Exception as e:
rprint(f"Failed to get wandb url: {e}")
def instantiate_model(config, tokenizer):
model = _load_from_checkpoint(config=config, tokenizer=tokenizer)
if config.eval.disable_ema:
rprint("Disabling EMA.")
model.ema = None
return model
def gconf(config, attr):
return getattr(config, attr, None)
def has_ckpt(config, attr):
return gconf(config, attr) is not None and utils.fsspec_exists(gconf(config, attr))
def set_env_vars(config):
import torch
hostname = __import__("socket").gethostname()
rprint(f"Starting Training on {hostname}")
import torch
# os.environ["TORCHINDUCTOR_CACHE_DIR"] = str((Path.home() / ".cache" / "torchinductor").resolve())
if not is_torch_xla_available():
try:
# Applies the equivalent of ulimit -l unlimited to this process [and children]
# This caused a significant amount of pain to figure out
import resource
soft, hard = resource.getrlimit(resource.RLIMIT_MEMLOCK)
resource.setrlimit(resource.RLIMIT_MEMLOCK, (hard, hard))
if is_local_main_process():
gprint(f"Successfully set RLIMIT_MEMLOCK to {hard}")
except ValueError as e:
rprint(f"Failed to set RLIMIT_MEMLOCK: {e}")
except resource.error as e:
rprint(f"Error setting RLIMIT_MEMLOCK: {e}")
else:
rprint(f"Not setting RLIMIT_MEMLOCK on XLA")
if "matrix-3-28" in hostname or "matrix-3-26" in hostname:
rprint(f"Disabling NCCL P2P")
os.environ["NCCL_P2P_DISABLE"] = "1"
if os.environ.get("TORCH_DISTRIBUTED_DEBUG", "") != "":
assert False, f"TORCH_DISTRIBUTED_DEBUG is set to: {os.environ.get('TORCH_DISTRIBUTED_DEBUG')}. Please unset it as it starts a gloo backend."
if config.model.use_spda_attn:
os.environ["TORCH_CUDNN_SDPA_ENABLED"] = "1"
os.environ["TORCH_CUDNN_MHA_ENABLED"] = "1"
rprint("Setting SPDA Flags")
if config.trainer.detect_anomaly:
torch.autograd.set_detect_anomaly(True)
def update_config_before_resolution(config):
import torch
if hasattr(config, "training"):
rprint(f"'training' has been refactored to 'trainer'. Please update the config.")
with open_dict(config):
config.output_dir = os.getcwd()
config.logging_dir = os.getcwd()
if config.model.use_kv_cache is False and config.mode == "eval" and config.loader.eval_batch_size > 1:
config.loader.eval_batch_size = max(config.loader.eval_batch_size, 16)
# todo revert?
if getattr(config.eval, 'txt_img_ratio', None) is not None:
# 2,1,0.5,0.25
tot = config.model.length
# if its 2:1, then distribute the tokens as 2/3, 1/3
# if its 1:1, then distribute the tokens as 1/2, 1/2
# if its 0.5:1, then distribute the tokens as 2/3, 1/3
# if its 0.25:1, then distribute the tokens as 1/4, 3/4
if config.eval.txt_img_ratio == 2:
# do first 2/3 tokens as text, last 1/3 as image
config.model.txt_length = int(tot * 2/3)
elif config.eval.txt_img_ratio == 1:
config.model.txt_length = int(tot / 2)
elif config.eval.txt_img_ratio == 0.5:
config.model.txt_length = int(tot * 2/3)
elif config.eval.txt_img_ratio == 0.25:
config.model.txt_length = int(tot / 4)
config.model.img_length = tot - config.model.txt_length
config.model.length = config.model.txt_length + config.model.img_length
# config.eval.attention_caching_txt_to_img_ratio = config.model.txt_length // 20
if getattr(config.eval, "varying_seq_len_ratio", False):
assert getattr(config.eval, "sampling_step_ratio", None) is not None, "Must set both varying_seq_len_ratio and sampling_step_ratio"
config.sampling.steps = int(config.model.length * config.eval.sampling_step_ratio)
if getattr(config.eval, "ablation_config", False):
if config.parameterization == "ar":
rprint(f"WARNING!!!!! FORCING AR PARAMS")
config.trainer.ar_shift = True
config.model.full_attention = False
config.data.keep_tensordict_on_disk = True
if is_torch_cuda_available():
if any(x.lower() in torch.cuda.get_device_name().lower() for x in ["v100", "1080", "2080", "quadro", "titan"]) or torch.cuda.get_device_capability()[0] <= 7:
rprint(f"Using 2080Ti/V100, setting precision to fp32")
config.trainer.precision = "no"
config.model.force_optimized_native_attn = False
config.trainer.compile = False
if any(x.lower() in torch.cuda.get_device_name().lower() for x in ["2080", "quadro"]):
config.loader.eval_batch_size = config.loader.eval_batch_size // 7
config.loader.batch_size = config.loader.batch_size // 7
elif any(x.lower() in torch.cuda.get_device_name().lower() for x in ["1080", "titan"]):
config.loader.eval_batch_size = config.loader.eval_batch_size // 6
config.loader.batch_size = config.loader.batch_size // 6
else:
config.loader.eval_batch_size = config.loader.eval_batch_size // 2
config.loader.batch_size = config.loader.batch_size // 2
elif "a5000" in torch.cuda.get_device_name().lower() or "a4500" in torch.cuda.get_device_name().lower():
config.loader.eval_batch_size = config.loader.eval_batch_size // 2
config.loader.batch_size = config.loader.batch_size // 2
else:
rprint(f"Found {torch.cuda.get_device_name()}")
config.loader.eval_batch_size = config.loader.eval_batch_size // 2
config.loader.batch_size = config.loader.batch_size // 2
if getattr(config, "parametierzation", None) == "ar" and config.eval.cfg is not None:
config.loader.eval_batch_size = config.loader.eval_batch_size // 2
config.loader.batch_size = config.loader.batch_size // 2
config.loader.eval_batch_size = max(config.loader.eval_batch_size, 1)
config.loader.batch_size = max(config.loader.batch_size, 1)
if getattr(config, "parametierzation", None) == "ar":
config.trainer.compile = False
if getattr(config.sampling, "sampling_step_frac", None) is not None:
config.sampling.steps = int(config.model.length * config.sampling.sampling_step_frac)
rprint(f"Setting sampling steps to {config.sampling.steps}")
if os.environ.get("SUBMITIT_FOLDER") is not None or os.environ.get("CUSTOM_SBATCH_LAUNCHER", "0") == "1":
rprint(f'Using submitit folder: {os.environ.get("SUBMITIT_FOLDER", "")}, setting slurm=True')
config.slurm = True
if (config.debug is False or os.environ.get("HYDRA_RUN_DIR_NAME", None) is not None) and torch.distributed.is_torchelastic_launched():
config.trainer.restart_on_failure = True
rprint(f"Setting restart_on_failure to True")
if config.trainer.restart_on_failure and config.mode == 'train':
if os.environ.get("HYDRA_RUN_DIR", None) is None and os.environ.get("HYDRA_RUN_DIR_NAME", None) is None:
os.environ["HYDRA_RUN_DIR"] = config.output_dir
rprint(f"Setting HYDRA_RUN_DIR to {os.environ['HYDRA_RUN_DIR']}")
else:
rprint(f"Not setting HYDRA_RUN_DIR, already set to {os.environ.get('HYDRA_RUN_DIR', 'N/A')}, and HYDRA_RUN_DIR_NAME is set to {os.environ.get('HYDRA_RUN_DIR_NAME', 'N/A')}")
os.environ["RESTART_FAULT_TOLERANT"] = "1"
rprint(f"Setting RESTART_FAULT_TOLERANT to 1")
elif config.trainer.restart_on_failure:
rprint(f"Restart_on_failure is True, but mode is not 'train', so not setting restart fault tolerant")
relevant_vars = {}
for key, value in os.environ.items():
if "SLURM" in key or "NCCL" in key or "TORCH" in key:
relevant_vars[key] = value
config.env_vars = relevant_vars
if config.trainer.profile_memory:
config.trainer.max_steps = 2
if config.debug and config.trainer.force_enable_checkpointing is False and (config.trainer.ckpt_steps is None or config.trainer.ckpt_steps > 0):
config.trainer.ckpt_steps = 10000
rprint(f"Only checkpointing every {config.trainer.ckpt_steps} steps in debug mode")
if config.loader.global_batch_size is None:
config.loader.global_batch_size = config.loader.batch_size * config.trainer.accumulate_grad_batches * (1 if is_torch_xla_available() else get_world_size())
config.loader.eval_global_batch_size = config.loader.global_batch_size
if config.trainer.scale_lr_by_batch_size:
config.optim.lr = config.optim.lr * (config.loader.global_batch_size / 512)
rprint(f"Setting global batch size to {config.loader.global_batch_size}, lr to {config.optim.lr}")
if config.mode != 'train':
config.checkpointing.resume_wandb = False
config.wandb.resume = None
if config.trainer.use_spmd_distributed_checkpointing is None:
config.trainer.use_spmd_distributed_checkpointing = is_torch_xla_available() and config.trainer.xla_spmd
if config.trainer.disable_all_eval_generation:
config.eval.num_masking_viz_batches=0
config.eval.num_uncond_sample_batches=0
config.eval.num_sample_batches=0
config.eval.num_random_masking=0
config.eval.generate_samples=False
config.trainer.log_flops=False
config.eval.log_every_n_evals=-1
config.eval.log_every_n_fid = -1
config.model.image_model_fid_eval = False
rprint("Disabling all eval generation!!!")
if os.environ.get("XLA_IR_DEBUG", "0") == "1":
config.trainer.tpu_profile = True
if config.checkpointing_root_dir is not None:
assert "checkpoints" in config.checkpointing.save_dir
relative_path = Path(*Path(config.checkpointing.save_dir).relative_to(config.root_output_dir).parts[1:])
full_checkpointing_dir = Path(config.checkpointing_root_dir) / relative_path
if config.checkpointing_root_dir is not None:
old_save_dir = Path(config.output_dir) / "checkpoints"
full_checkpointing_dir.mkdir(parents=True, exist_ok=True)
try:
if old_save_dir.exists():
rprint(f"WARNING: Cannot create symlink from {old_save_dir} to {full_checkpointing_dir} because {old_save_dir} exists.")
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
old_save_dir = Path(*old_save_dir.parts[:-1]) / f"checkpoints_{timestamp}"
old_save_dir.symlink_to(full_checkpointing_dir, target_is_directory=True)
rprint(f"Created softlink from {old_save_dir} to {full_checkpointing_dir}")
# Create a symlink from the parent of full_checkpointing_dir named "original" back to config.output_dir
original_link = full_checkpointing_dir.parent / "original_output_dir"
if not original_link.exists():
original_link.symlink_to(Path(config.output_dir).resolve(), target_is_directory=True)
rprint(f"Created softlink from {original_link} to {config.output_dir}")
else:
rprint(f"WARNING: Symlink {original_link} already exists. Skipping creation.")
except OSError as e:
rprint(f"Error creating softlinks: {e}")
assert getattr(config.data, "allow_label", False) == getattr(config.trainer, "add_label", False) == (getattr(config.model, "add_labels", None) is not None) == getattr(config.eval, "class_conditional_fid", False), f"Mismatching values: data.allow_label={config.data.allow_label}, trainer.add_label={config.trainer.add_label}, model.add_labels={config.model.add_labels}, eval.class_conditional_fid={config.eval.class_conditional_fid}"
if getattr(config.loader, "num_eval_workers", None) is not None and config.loader.num_workers == 0:
rprint(f"Setting num_eval_workers to 0 because num_workers is 0")
config.loader.num_eval_workers = 0
if config.trainer.disable_all_checkpointing:
gprint("-"*50)
gprint(f"WARNING: DISABLING ALL CHECKPOINTING!!!!")
gprint("-"*50)
gprint(f"WARNING: DISABLING ALL CHECKPOINTING!!!!")
gprint("-"*50)
config.trainer.ckpt_steps = 100000000
if config.sampling.steps != config.sampling.max_sampling_steps:
rprint(f"WARNING!!!! steps {config.sampling.steps} != max_sampling_steps {config.sampling.max_sampling_steps}")
config.sampling.max_sampling_steps = config.sampling.steps
def get_latest_ckpt(config, input_dir):
if input_dir is None or not Path(input_dir).exists():
rprint(f"Project dir {input_dir} does not exist")
return None
if config.trainer.xla_spmd and is_torch_xla_available():
rprint(f"XLA SPMD detected, using XLA checkpointing")
if any(Path(input_dir).iterdir()):
rprint(f"Found existing files/folders in {input_dir}")
return input_dir
else:
rprint(f"No folders found in {input_dir}")
return None
folders = [str(folder) for folder in Path(input_dir).iterdir() if folder.is_dir() and ((folder / "model.safetensors").exists() or (folder / "config.yaml").exists())]
if len(folders) == 0:
rprint(f"No folders found in {input_dir}")
return None
def _inner(folder):
return list(map(int, re.findall(r"[\/]?([0-9]+)(?=[^\/]*$)", folder)))[0]
folders.sort(key=_inner)
rprint(f"Found folders: {folders}")
input_dir = folders[-1]
return input_dir
def is_sweep():
try:
subdir = HydraConfig.get().sweep.subdir
rprint(f"Found sweep subdir: {subdir}")
return True
except omegaconf.errors.InterpolationToMissingValueError:
return False
def get_sweep_run_name(config):
try:
subdir = HydraConfig.get().sweep.subdir
sweep_str = f"{subdir}_"
is_sweep = True
except omegaconf.errors.InterpolationToMissingValueError:
is_sweep = False
sweep_str = f"{os.environ.get('SLURM_JOB_ID', '')}_"
if getattr(config, "training", None) is not None and getattr(getattr(config, "training", None), "force_keys", None) is not None:
rprint("Using legacy keys")
forced_keys = set(config.training.force_keys)
else:
forced_keys = set(getattr(config.trainer, "forced_keys", []))
if is_sweep:
print(
f"Getting sweep keys: {HydraConfig.get().job.sweep_keys}, Tasks: {HydraConfig.get().overrides.task}, {getattr(config.trainer, 'forced_keys', [])}"
)
valid_keys = set(HydraConfig.get().job.sweep_keys)
for task in HydraConfig.get().overrides.task:
if task.removeprefix("+").split("=")[0] in valid_keys or task.removeprefix("+").split("=")[0] in forced_keys:
sweep_str += f"{task.removeprefix('+').split('=')[0].split('.')[-1]}={task.removeprefix('+').split('=')[1]}__"
if task.removeprefix("+").split("=")[0] in forced_keys:
forced_keys.remove(task.removeprefix("+").split("=")[0])
print(f"Forced key: {task.removeprefix('+').split('=')[0]}={task.removeprefix('+').split('=')[1]}")
for key in sorted(list(forced_keys)):
sweep_str += f"{key.split('.')[-1]}={OmegaConf.select(config, key)}__"
rprint(f"Sweep: {is_sweep=}, {sweep_str=}")
return "" if sweep_str == "" else sweep_str[:-2]
def save_config_to_ckpt(config, output_dir, model):
with try_except(write_error_to_file=True, clear_cuda_cache=True):
with read_write(config):
with open_dict(config):
config.state.ckpt_step = model.global_step
config.state.num_evals = model.num_evals
OmegaConf.save(config=config, f=Path(output_dir) / "config.yaml")
rprint(f"Saved global step {model.global_step}")
def determine_ckpt(config):
has_recent_ckpt = False
rprint(f"Looking at checkpoint path: {getattr(config.checkpointing, 'resume_ckpt_path', None)}")
if (
config.checkpointing.resume_from_ckpt
and (latest_ckpt := get_latest_ckpt(config, getattr(config.checkpointing, "resume_ckpt_path", None))) is not None
and (Path(latest_ckpt) / "config.yaml").exists()
):
ckpt_path = latest_ckpt
has_recent_ckpt = True
if config.slurm:
config.wandb.resume = "must"
rprint(f"Resuming from checkpoint {ckpt_path}")
elif config.checkpointing.resume_from_ckpt and getattr(config.checkpointing, "initial_resume_ckpt_path", None) is not None:
ckpt_path = config.checkpointing.initial_resume_ckpt_path
rprint(f"Resuming from initial checkpoint {ckpt_path}")
else:
ckpt_path = None
if ckpt_path is not None and (config.checkpointing.resume_wandb or has_recent_ckpt):
loaded = OmegaConf.load(Path(ckpt_path) / "config.yaml")
if loaded.wandb.id is not None:
config.wandb.id = str(loaded.wandb.id)
rprint(f"Found wandb id: {config.wandb.id}")
else:
rprint(f"No wandb id found in checkpoint {ckpt_path}")
if config.checkpointing.resume_wandb and config.wandb.id is not None:
config.wandb.resume = "must"
rprint(f"Resuming wandb, setting must, run id: {config.wandb.id}")
elif config.slurm and config.wandb.id is None:
if os.environ.get("SLURM_ARRAY_TASK_COUNT", "") != "" and int(os.environ.get("SLURM_ARRAY_TASK_COUNT", "")) > 1:
config.wandb.id = str(os.environ.get("SLURM_ARRAY_JOB_ID")) + f"_{os.environ.get('SLURM_ARRAY_TASK_ID')}"
else:
config.wandb.id = str(os.environ.get("SLURM_JOB_ID"))
rprint(f"Setting wandb id to {config.wandb.id}")
if config.checkpointing.initial_resume_ckpt_path is not None and config.checkpointing.resume_wandb:
assert config.wandb.id is not None
if config.ckpt is not None:
ckpt_path = config.ckpt
rprint(f"Running eval with checkpoint {ckpt_path}")
if config.wandb.id is not None:
config.wandb.id = str(config.wandb.id)
if config.wandb.id is None or getattr(config.trainer, "force_new_wandb_id", False):
config.wandb.id = wandb.util.generate_id()
config.wandb.resume = "allow"
rprint(f"Set wandb id: {config.wandb.id}")
rprint(f"Using wandb id: {config.wandb.id}")
subdir = get_sweep_run_name(config)
rprint(f"Wandb name: {config.wandb.name}, Wandb subdir: {subdir}")
if config.wandb.name == 'default':
config.wandb.name = None
else:
config.wandb.name = (
(f"{config.wandb.name}_" if config.wandb.name else "")
+ (f"{subdir}_" if (subdir is not None and subdir != "") else "")
+ f"{datetime.now().strftime('%Y-%m-%d-%H-%M-%S')}"
)
if getattr(config.wandb, "group", None) is None and subdir is not None and config.debug and os.environ.get("SLURM_ARRAY_JOB_ID", "") != "":
config.wandb.group = os.environ.get("SLURM_ARRAY_JOB_ID")
rprint(f"Wandb group: {config.wandb.group}")
return ckpt_path
def run(config, tokenizer):
import torch
from accelerate import (Accelerator, DataLoaderConfiguration,
DDPCommunicationHookType,
DistributedDataParallelKwargs,
FullyShardedDataParallelPlugin)
from accelerate.state import AcceleratorState
from accelerate.utils import GradientAccumulationPlugin, ProjectConfiguration
set_torch_defaults(config.trainer.benchmark)
set_env_vars(config)
update_config_before_resolution(config)
ckpt_path = determine_ckpt(config)
OmegaConf.resolve(config)
if is_torch_cuda_available():
check_gpu_memory_usage()
if is_torch_cuda_available():
rprint(f"pt={torch.__version__}, cuda={torch.version.cuda}, nccl={torch.cuda.nccl.version()}")
rprint(f"GPU={torch.cuda.get_device_name()}, device compute capabilities={torch.cuda.get_device_capability()}, pytorch compute capabilities={torch.cuda.get_arch_list()}")
elif is_torch_xla_available():
rprint(f"XLA Devices={get_tpu_devices()}")
rprint(
f"Initial GROUP_RANK: {os.environ.get('GROUP_RANK', 'N/A')}, RANK: {os.environ.get('RANK', 'N/A')}, LOCAL_RANK: {os.environ.get('LOCAL_RANK', 'N/A')}, WORLD_SIZE: {os.environ.get('WORLD_SIZE', 'N/A')}, MASTER_ADDR: {os.environ.get('MASTER_ADDR', 'N/A')}, MASTER_PORT: {os.environ.get('MASTER_PORT', 'N/A')}, TORCHELASTIC_RUN_ID: {os.environ.get('TORCHELASTIC_RUN_ID', 'N/A')}, TORCHELASTIC_RESTART_COUNT: {os.environ.get('TORCHELASTIC_RESTART_COUNT', 'N/A')}, TORCHELASTIC_MAX_RESTARTS: {os.environ.get('TORCHELASTIC_MAX_RESTARTS', 'N/A')}, LOCAL_WORLD_SIZE: {os.environ.get('LOCAL_WORLD_SIZE', 'N/A')}, Elastic: {torch.distributed.is_torchelastic_launched()}"
)
rprint(f"Computed Rank: {get_rank()}, Local Rank: {get_local_rank()}, World Size: {get_world_size()}")
# This lets us have start_timing and end_timing functions and a global enable/disable
# We always use torch.cuda.synchronize before/after as otherwise the timing is not very meaningful
sync_timing = (config.trainer.nvtx_profile and getattr(config.trainer, "sync_nvtx_timing", True)) or getattr(config.trainer, "sync_timing", False)
set_timing_builtins(enable=config.trainer.nvtx_profile, sync=sync_timing)
num_nodes = config.trainer.num_nodes
with open_dict(config):
config.trainer = OmegaConf.merge(config.trainer, dict(mixed_precision=config.trainer.precision, log_with="wandb", log_gradients=None))
if getattr(config.trainer, "process_dataloader_only", False):
gprint("Processing dataloader only")
train_ds, valid_ds = dataloader.get_dataloaders(config, tokenizer, device="cpu", skip_train=(config.mode == 'eval' and not config.eval.val_with_train_data))
gprint(f"Exiting after processing dataloader")
return
accelerator_project_config = ProjectConfiguration(
project_dir=config.output_dir,
logging_dir=config.logging_dir,
automatic_checkpoint_naming=config.checkpointing.use_automatic_naming,
save_on_each_node=False,
)
accelerate_kwargs = dict()
gradient_kwargs = dict()
if config.trainer.fsdp and not (config.trainer.xla_spmd and is_torch_xla_available()):
rprint("Using FSDP...")
if config.backbone == "llama" or config.backbone == "gemma":
os.environ["ACCELERATE_USE_FSDP"] = "true"
os.environ["FSDP_AUTO_WRAP_POLICY"] = "TRANSFORMER_BASED_WRAP"
os.environ["FSDP_BACKWARD_PREFETCH"] = "NO_PREFETCH" # Saved memory
os.environ["FSDP_CPU_RAM_EFFICIENT_LOADING"] = "true"
os.environ["FSDP_FORWARD_PREFETCH"] = "false"
os.environ["FSDP_OFFLOAD_PARAMS"] = "false"
os.environ["FSDP_SHARDING_STRATEGY"] = "FULL_SHARD"
os.environ["FSDP_STATE_DICT_TYPE"] = "SHARDED_STATE_DICT"
os.environ["FSDP_SYNC_MODULE_STATES"] = "true"
os.environ["FSDP_USE_ORIG_PARAMS"] = "true"
fsdp_plugin = FullyShardedDataParallelPlugin()
else:
os.environ["ACCELERATE_USE_FSDP"] = "true"
os.environ["FSDP_AUTO_WRAP_POLICY"] = "TRANSFORMER_BASED_WRAP" # or "SIZE_BASED_WRAP"
if config.backbone == "elm":
os.environ["FSDP_TRANSFORMER_CLS_TO_WRAP"] = "OpenELMDecoderLayer"
os.environ["FSDP_BACKWARD_PREFETCH"] = "BACKWARD_PRE"
os.environ["FSDP_SHARDING_STRATEGY"] = "HYBRID_SHARD_ZERO2"
else:
# Fastest but requires more memory: https://pytorch.org/docs/stable/fsdp.html#torch.distributed.fsdp.BackwardPrefetch
os.environ["FSDP_BACKWARD_PREFETCH"] = "BACKWARD_PRE"
# See: https://pytorch.org/docs/stable/fsdp.html#torch.distributed.fsdp.ShardingStrategy
os.environ["FSDP_SHARDING_STRATEGY"] = "HYBRID_SHARD_ZERO2"
os.environ["FSDP_TRANSFORMER_CLS_TO_WRAP"] = "DDiTBlock"
# SHARDED_STATE_DICT is a bit faster, but more complicated as later on we need to merge the shards.
from torch.distributed.fsdp.fully_sharded_data_parallel import (
FullOptimStateDictConfig, FullStateDictConfig)
fsdp_plugin = FullyShardedDataParallelPlugin(
state_dict_config=FullStateDictConfig(offload_to_cpu=True, rank0_only=True),
optim_state_dict_config=FullOptimStateDictConfig(offload_to_cpu=True, rank0_only=True), # SHARDED_STATE_DICT
)
if config.trainer.compile or config.trainer.use_orig_params is True:
# https://github.com/huggingface/transformers/pull/24591/files
fsdp_plugin.use_orig_params = True
rprint("Using orig params for FSDP. This is required for torch.compile to work.")
accelerate_kwargs["fsdp_plugin"] = fsdp_plugin
gradient_kwargs["sync_each_batch"] = False
if getattr(config.trainer, "fsdp_sync_each_batch", False): # Reduce memory usage: https://huggingface.co/docs/accelerate/en/concept_guides/gradient_synchronization#nosync-requires-additional-gpu-memory-when-using-fsdp
rprint("Using sync each batch for Chameleon")
gradient_kwargs["sync_each_batch"] = True
elif config.trainer.xla_spmd is False: # For XLA FSDP, we init where we normally prepare()
rprint("Using DDP...")
ddp_kwargs = DistributedDataParallelKwargs(
find_unused_parameters=config.trainer.find_unused_parameters,
comm_hook=DDPCommunicationHookType.BF16,
static_graph=config.trainer.accumulate_grad_batches == 1,
gradient_as_bucket_view=True,
)
# bucket_cap_mb=32,
# Not needed right now
from datetime import timedelta
from accelerate.utils import InitProcessGroupKwargs
init_process_group_kwargs = InitProcessGroupKwargs(timeout=timedelta(seconds=1800))
accelerate_kwargs["kwargs_handlers"] = [ddp_kwargs, init_process_group_kwargs]
else:
rprint(f"Did not choose DDP or FSDP.")
if config.trainer.accumulate_grad_batches <= 0:
gprint("WARNING!!!!!! Accumulate grad batches is <= 0, setting to 1")
config.trainer.accumulate_grad_batches = 1
gradient_accumulation_plugin = GradientAccumulationPlugin(
num_steps=config.trainer.accumulate_grad_batches,
adjust_scheduler=False, # We manually adjust our LR for accumulate_grad_batches
sync_with_dataloader=False,
**gradient_kwargs
)
if config.trainer.mixed_precision == "bf16" and (is_torch_cuda_available() and not torch.cuda.is_bf16_supported()):
rprint(f"No BF16 GPU found, falling back to FP16")
config.trainer.mixed_precision = "fp16"
if config.trainer.mixed_precision == "fp32":
config.trainer.mixed_precision = "no"
else:
if is_torch_xla_available():
os.environ["ACCELERATE_DOWNCAST_BF16"] = "true"
rprint(f"Mixed precision: {config.trainer.mixed_precision}")
if config.seed is None or getattr(config.eval, 'set_random_gen_seed', False):
# do not ask why, has to do something with seeds being reset by val_epoch_end so if you don't execute this code, your generations in val_epoch_end will be same across gpus
accelerate_kwargs["rng_types"] = []
rprint("No seed provided, disabling accelerate RNG synchronization")
accelerator = Accelerator(
mixed_precision=config.trainer.mixed_precision,
log_with=config.trainer.log_with,
project_config=accelerator_project_config,
gradient_accumulation_plugin=gradient_accumulation_plugin,
dataloader_config=DataLoaderConfiguration(split_batches=False, dispatch_batches=False, non_blocking=False),
**accelerate_kwargs,
)
gprint(f"Distributed Type: {accelerator.distributed_type}, Accelerator state: {AcceleratorState()}")
num_processes = AcceleratorState().num_processes
if getattr(config.trainer, "global_num_warmup_steps", None) is not None:
rprint(f"Global num_warmup_steps was: {config.lr_scheduler.num_warmup_steps}. Applying to num_warmup_steps")
config.lr_scheduler.num_warmup_steps = config.trainer.global_num_warmup_steps
if getattr(config.trainer, "global_num_training_steps", None) is not None:
rprint(f"Global num_training_steps was: {config.lr_scheduler.num_training_steps}. Applying to num_training_steps")
config.lr_scheduler.num_training_steps = config.trainer.global_num_training_steps
if not config.trainer.disable_adjust_num_warmup_steps:
rprint(f"Original num_warmup_steps was: {config.lr_scheduler.num_warmup_steps}")
config.lr_scheduler.num_warmup_steps = config.lr_scheduler.num_warmup_steps * num_processes
rprint(f"Setting num_warmup_steps to: {config.lr_scheduler.num_warmup_steps}")
if hasattr(config.lr_scheduler, "num_training_steps"):
rprint(f"Original num_training_steps was: {config.lr_scheduler.num_training_steps}")
config.lr_scheduler.num_training_steps = config.lr_scheduler.num_training_steps * num_processes
rprint(f"Setting num_training_steps to: {config.lr_scheduler.num_training_steps}")
assert config.trainer.allow_dynamic_nodes or (os.environ.get("XLA_USE_SPMD", "0") == "1") or accelerator.num_processes == (
config.trainer.devices * num_nodes
), f"Expected {config.trainer.devices * num_nodes} GPUs but got {accelerator.num_processes} processes."
compute_dtyle = torch.float32
if accelerator.mixed_precision == "fp16":
compute_dtyle = torch.float16
elif accelerator.mixed_precision == "bf16":
compute_dtyle = torch.bfloat16
if compute_dtyle != torch.bfloat16:
rprint(f"WARNING!!!! Compute dtype is: {compute_dtyle}")
else:
rprint(f"Compute dtype is: {compute_dtyle}")
if is_main_process():
instantiate_wandb(config, accelerator)
run_cmd = get_run_cmd(config)
with open_dict(config):
config.trainer.devices = accelerator.num_processes
config.trainer.dtype = str(compute_dtyle)
if hasattr(config, "state"):
config.state.cmd = run_cmd
else:
config.state = OmegaConf.create(dict(cmd=run_cmd))
OmegaConf.set_readonly(config, True)
if getattr(config.trainer, "attach_oom_observer", False):
from torchtnt.utils.oom import attach_oom_observer
attach_oom_observer(output_dir=str(os.getcwd()), trace_max_entries=500000)
rprint(f"Attached OOM observer to {os.getcwd()}")
train_ds, valid_ds = dataloader.get_dataloaders(config, tokenizer, device=accelerator.device, skip_train=(config.mode == 'eval' and not config.eval.val_with_train_data))
model = Diffusion(config=config, tokenizer=valid_ds.tokenizer, device=accelerator.device)
if is_main_process():
print_params(model.backbone)
try:
if getattr(config.model, "image_model", False) is False:
_print_batch(train_ds, valid_ds, tokenizer)
except:
pass
get_ema_path = lambda x: Path(x) / "ema.ckpt"
SAMPLER_NAME = "weighted_dataset_sampler"
def save_model_hook(models, weights, output_dir):
nonlocal model, accelerator, train_ds
if is_main_process():
with try_except(write_error_to_file=True):
if getattr(model, "ema", None) is not None:
torch.save(accelerator.unwrap_model(model).ema.state_dict(), get_ema_path(output_dir))
rprint(f"Saved EMA to {get_ema_path(output_dir)}")
save_config_to_ckpt(config, output_dir, model)
with try_except(write_error_to_file=True):
if config.data.use_weighted_tensordict_sampler:
from accelerate.utils import save
output_sampler_file = output_dir.joinpath(f"{SAMPLER_NAME}_train.bin")
save(train_ds.sampler.state_dict(), output_sampler_file, save_on_each_node=False, safe_serialization=False)
rprint(f"Sampler state for dataloader saved in {output_sampler_file}")
initial_global_step = None
def load_model_hook(models, input_dir):
nonlocal initial_global_step, model, train_ds
config_path = os.path.join(input_dir, "config.yaml")
ckpt_config = OmegaConf.load(config_path)
initial_global_step = ckpt_config.state.ckpt_step
model.global_step = initial_global_step
try:
if hasattr(config.state, "num_evals"):
model.num_evals = config.state.num_evals
except Exception as e:
rprint(f"Error loading model: {e}")
rprint(f"Loaded global step {initial_global_step}")
state_dict = None
if getattr(config.checkpointing, "load_from_old_attention_format", False):
state_dict = load_file(os.path.join(input_dir, "model.safetensors"))
state_dict = convert_state_dict_keys(state_dict)
if getattr(model, "ema", None) is not None:
if get_ema_path(input_dir).exists():
rprint(f"Loading EMA from {get_ema_path(input_dir)}")
model.ema.load_state_dict(torch.load(get_ema_path(input_dir), map_location='cpu'))
else:
rprint(f"No EMA found, initializing EMA with state_dict")
if state_dict is None:
state_dict = load_file(os.path.join(input_dir, "model.safetensors"))
# We likely don't need the unwrap, but just to be safe
accelerator.unwrap_model(models[0]).load_state_dict(state_dict)
from models.ema import EMAModel
model.ema = EMAModel(accelerator.unwrap_model(models[0]).parameters(), decay=config.trainer.ema)
if config.data.use_weighted_tensordict_sampler and not is_torch_xla_available(): # and not config.eval.test_eval_speed:
input_sampler_file = Path(input_dir).joinpath(f"{SAMPLER_NAME}_train.bin")
if train_ds is not None and input_sampler_file.exists():
train_ds.sampler.load_state_dict(torch.load(input_sampler_file))
rprint("All dataloader sampler states loaded successfully")
accelerator.register_save_state_pre_hook(save_model_hook)
accelerator.register_load_state_pre_hook(load_model_hook)
model.init_dataloader(train_ds, valid_ds)
model.set_accelerator(accelerator, ckpt_path)
model.set_callbacks()
if getattr(config.checkpointing, "load_from_text_model", None) is not None:
rprint(f"Loading from text model")
model.custom_load_checkpoint()
if getattr(config.checkpointing, "load_from_lightning_ckpt", None) is not None:
ckpt = torch.load(config.checkpointing.load_from_lightning_ckpt)
initial_global_step = ckpt["global_step"]
state_dict_ = {k.removeprefix("backbone."): v for k, v in ckpt["state_dict"].items() if "backbone" in k}
state_dict_ = {k.replace(".attn_", ".attention.attn_"): v for k, v in state_dict_.items()}
accelerator.unwrap_model(model.backbone).load_state_dict(state_dict_)
if config.trainer.ema > 0:
model.ema.load_state_dict(ckpt["ema"])
rprint(f"Loaded lightning ckpt: {config.checkpointing.load_from_lightning_ckpt}")
if initial_global_step is not None:
# The load_hooks are before accelerate does it's loading and it overwrites model.global_step if we set it there
model.global_step = initial_global_step
rprint(f"Set global step to {initial_global_step}")
contexts = []
if config.trainer.nvtx_profile:
contexts.append(torch.autograd.profiler.emit_nvtx(record_shapes=True))
if config.trainer.profile_memory:
contexts.append(profile_memory())
using_torch_elastic = torch.distributed.is_torchelastic_launched()
if using_torch_elastic:
rprint(f"Torchelastic launched: {torch.distributed.is_torchelastic_launched()}")
contexts.append(ErrorHandler())
with ExitStack() as stack:
for ctx in contexts:
stack.enter_context(ctx)
rprint(f"output_dir: {config.output_dir}")
model.to(accelerator.device)
if config.mode == 'train':
model.train()
elif config.mode == 'eval':
if config.eval.standalone_fid:
model.validate(None)
else:
model.validate(None)
elif config.mode == 'zero-shot-eval':
model.zero_shot_eval()
else:
raise ValueError(f"Invalid mode: {config.mode}")
accelerator.end_training()
def get_run_cmd(config):
orig_argv = deepcopy(sys.argv)
prepend_argv = []
if "HYDRA_RUN_DIR" in os.environ:
prepend_argv.append(f"HYDRA_RUN_DIR='{os.environ['HYDRA_RUN_DIR']}'")
else:
prepend_argv.append(f"HYDRA_RUN_DIR='{str(Path(config.output_dir).resolve())}'")
if orig_argv[1].startswith("experiments=["):
orig_argv[1] = orig_argv[1].removeprefix("experiments=[").removesuffix("]")
orig_argv[1] = f"experiments=\'[{orig_argv[1]}]\'"
if os.environ.get("CUSTOM_SBATCH_LAUNCHER", "0") == "1":
sbatch_script_path = 'scripts/slurm.sh'
orig_argv.pop(0)
orig_argv = ["sbatch", f"--nodes={os.environ.get('SLURM_NNODES', '1')}", f"--gpus-per-node={os.environ.get('SLURM_GPUS_PER_NODE', '1')}", f"--partition={os.environ.get('SLURM_JOB_PARTITION', 'all')}", sbatch_script_path] + orig_argv
else:
prepend_argv.append("accelerate launch")
full_run_cmd = " ".join(prepend_argv + orig_argv)
rprint(f"Full run cmd: {full_run_cmd}")
return full_run_cmd
@hydra.main(version_base=None, config_path=CONFIG_PATH, config_name="config")
@try_except()
def main(config):
if is_sweep():
print(f"Checking if we need to requeue for job id {os.environ['SLURM_JOB_ID']}")
from unidisc.utils.slurm_requeue import check_requeue
check_requeue()
print(f"Done checking if we need to requeue for job id {os.environ['SLURM_JOB_ID']}.")
"""Main entry point for trainer."""
import torch # Causes issue pickling if imported by default.
if is_torch_xla_available():
builtins.HAS_XLA_SPAWNED = True
os.environ['PJRT_DEVICE'] = 'TPU'
if config.trainer.precision == "bf16":
os.environ['XLA_USE_BF16'] = '1'
if config.devices == 1 and config.trainer.xla_spmd is False and config.trainer.fsdp is False:
os.environ['TPU_PROCESS_BOUNDS'] = '1,1,1'
os.environ['TPU_VISIBLE_CHIPS'] = '0'
gprint(f"Setting TPU_PROCESS_BOUNDS: {os.environ['TPU_PROCESS_BOUNDS']}")
gprint(f"Setting TPU_VISIBLE_CHIPS: {os.environ['TPU_VISIBLE_CHIPS']}")
if config.trainer.tpu_eager:
os.environ['XLA_USE_EAGER_DEBUG_MODE'] = '1'
if config.trainer.tpu_compile_debug:
os.environ['PT_XLA_DEBUG'] = '1'
os.environ['PT_XLA_DEBUG_LEVEL'] = '2'
os.environ['XLA_IR_DEBUG'] = '1'
os.environ['XLA_HLO_DEBUG'] = '1'
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '0'
os.environ['TF_CPP_VMODULE'] = 'xla_graph_executor=5,pjrt_computation_client=3'
# We intentionally set these after to avoid import side effects
spmd_mesh, axis_names, num_nodes = None, None, None
if config.trainer.xla_spmd:
import torch_xla.core.xla_model as xm
import torch_xla.distributed.spmd as xs
import torch_xla.runtime as xr
from accelerate import PartialState
from torch_xla._internal import tpu
auto_spmd = getattr(config.trainer, "auto_spmd", False)
xr.use_spmd(auto=auto_spmd) # Auto causes a crash
force_global_devices = getattr(config.trainer, "force_global_devices", None)
force_local_devices = getattr(config.trainer, "force_local_devices", None)
assert (force_global_devices is None) == (force_local_devices is None), "Must set both or neither"
if force_global_devices is not None:
num_global_devices = force_global_devices
num_local_devices = force_local_devices
gprint(f"Using force global devices: num_global_devices={num_global_devices}, num_local_devices={num_local_devices}")
else:
num_global_devices = xr.global_runtime_device_count()
num_local_devices = tpu.num_available_devices()
assert num_global_devices == tpu.num_expected_global_devices()
assert tpu.num_available_devices() == tpu.num_available_chips() == tpu.num_local_processes()
num_nodes = num_global_devices // num_local_devices
spmd_mesh_shape = getattr(config.trainer, "spmd_mesh", None)
if spmd_mesh_shape is None:
spmd_mesh_shape = (num_nodes, num_local_devices, 1)
if getattr(config.trainer, "force_disable_replicas", False):
spmd_mesh_shape = (1, num_global_devices, 1)
rprint(f"Forcing disable replicas: {spmd_mesh_shape}")
if auto_spmd is False:
if getattr(config.trainer, "spmd_multislice", None) is not None:
from torch_xla.distributed.spmd import HybridMesh
ici_mesh_shape = spmd_mesh_shape
dcn_mesh_shape = (config.trainer.spmd_multislice, 1, 1)
spmd_mesh = HybridMesh(ici_mesh_shape=ici_mesh_shape, dcn_mesh_shape=dcn_mesh_shape, axis_names=('data','fsdp','tensor'))
rprint(f"Using multislice: {config.trainer.spmd_multislice}: {ici_mesh_shape} {dcn_mesh_shape}, {spmd_mesh.shape()}")
else:
spmd_mesh = xs.Mesh(np.array(range(num_global_devices)), spmd_mesh_shape, ('dcn', 'fsdp', 'model'))
xs.set_global_mesh(spmd_mesh)
config.devices = 1
config.nodes = 1
with read_write(config):
with open_dict(config):
config.state = OmegaConf.create(dict(spmd_mesh=spmd_mesh_shape))
config.state.axis_names = axis_names
config.state.num_nodes = num_nodes
config.state.num_global_devices = num_global_devices
config.state.num_local_devices = num_local_devices
config.state.worker_ips = tpu.get_worker_ips()
if os.environ.get("TPU_NAME") is not None:
config.state.tpu_name = os.environ.get("TPU_NAME")
if config.trainer.tpu_eager:
import torch_xla
torch_xla.experimental.eager_mode(True)
if config.trainer.tpu_profile:
if config.trainer.tpu_profile_markers:
os.environ['XLA_IR_DEBUG'] = '1'
os.environ['XLA_HLO_DEBUG'] = '1'
import torch_xla.debug.profiler as xp
server = xp.start_server(9012)
if config.trainer.tpu_cache:
import torch_xla.runtime as xr
readonly = not is_main_process()
rprint(f"Initializing TPU cache with readonly={readonly}")
xr.initialize_cache(str((Path.home() / '.cache' / 'unidisc' / f"tpu_{get_rank()}_{get_hostname().replace('-', '_')}").resolve()), readonly=readonly)
if config.trainer.enable_jax_smi:
initialise_tracking()
rprint("Initializing jax-smi")
from unidisc.utils.logging_utils import set_logger
set_logger(f"{__name__} {get_slurm_log_prefix()}", Path(f"{get_slurm_filename_info()}_{get_hostname().replace('-', '_')}.out"))
if is_torch_xla_available():
import torch_xla.runtime as xr
gprint(
f"Computed Rank: {get_rank()}, "
f"Is Main Process: {is_main_process()}, "
f"Is Local Main Process: {is_local_main_process()}, "
f"XLA world size: {xr.world_size()}, "
f"XLA Model Ordinal: {xm.get_ordinal()}, "
f"XLA Global Ordinal: {xr.global_ordinal()}, "
f"XLA Supported Devices: {xm.get_xla_supported_devices()}, "
f"Accelerate Local Process Index: {PartialState().local_process_index}, "
f"Task ID: {tpu.task_id()}, "
f"Worker ID: {tpu.worker_id()} "
f"global device count: {xr.global_runtime_device_count()}, "
f"local process count: {xr.local_process_count()}, "
f"local device count: {xr.local_device_count()}, "
f"addressable device count: {xr.addressable_device_count()}, "
f"num_expected_global_devices: {tpu.num_expected_global_devices()}, "
f"num_available_devices: {tpu.num_available_devices()}, "
f"num_available_chips: {tpu.num_available_chips()}, "
f"num_local_processes: {tpu.num_local_processes()}, "
f"process_bounds_size: {tpu.process_bounds_size()}, "
f"get_worker_ips: {tpu.get_worker_ips()}, "
f"Computed Num Nodes: {num_nodes}, "
f"Specified Mesh: {spmd_mesh_shape}, "
f"Specified Mesh Axes: {axis_names}"
)
gprint(f"LIBTPU_INIT_ARGS: {os.environ.get('LIBTPU_INIT_ARGS', 'None')}")
gprint(f"XLA_FLAGS: {os.environ.get('XLA_FLAGS', 'None')}")
if getattr(config.trainer, "disable_ddp_optimizer", False):
torch._dynamo.config.optimize_ddp = False
if config.seed is not None:
if config.mode == 'eval':
config.seed = config.seed + 1000 * int(get_rank())
else:
config.seed = config.seed + int(get_rank())
np.random.seed(config.seed)
random.seed(config.seed)
torch.manual_seed(config.seed)
if is_torch_cuda_available():
# TODO: Is seed all desired? Does it set the same one on all GPUs even in multi-process?
torch.cuda.manual_seed_all(config.seed)
if is_torch_xla_available():
import torch_xla.core.xla_model as xm
xm.set_rng_state(config.seed)
gprint(f"Set seed: {config.seed}")
else:
rprint("No seed provided")
_print_config(config, resolve=True, save_cfg=True)
with open(f"env_vars_{get_slurm_filename_info()}_{get_hostname().replace('-', '_')}.txt", "w") as f:
for key, value in os.environ.items():
f.write(f"{key}={value}\n")
tokenizer = dataloader.get_tokenizer(config)
if "tokens" in config.data.train and (config.loader.num_workers > 0 or getattr(config.data, "force_mp_spawn", False)):
from torch import multiprocessing as mp
try:
rprint(f"Start already method set to: {mp.get_start_method()}")
except:
mp.set_start_method("spawn")
rprint(f"Start method set to: {mp.get_start_method()}")
rprint(f"Mode: {config.mode}")
if config.mode == "sample_eval":
generate_samples(config, tokenizer)
else:
try:
run(config, tokenizer)
except Exception as e:
rprint(f"Traceback: {traceback.format_exc()}")
rprint(f"Exception: {e}")
timestamp = int(__import__("time").time_ns())
error_filepath = f"exception_{timestamp}_{process_file_prefix()}.out"
with open(error_filepath, "w") as file:
file.write(traceback.format_exc())
rprint(f"See error file {Path(error_filepath).resolve()} for traceback")
if is_torch_xla_available():
exit(1)
if ("SLURM_JOB_ID" not in os.environ) and ("RESTART_FAULT_TOLERANT" not in os.environ) and not is_torch_xla_available():
gprint(f"Entering debugger")
breakpoint(traceback=e.__traceback__)
else:
rprint(f"Not breaking, SLURM_JOB_ID: {os.environ.get('SLURM_JOB_ID')}, RESTART_FAULT_TOLERANT: {os.environ.get('RESTART_FAULT_TOLERANT')}")
if "RESTART_FAULT_TOLERANT" in os.environ:
sigterm_handler = signal.getsignal(signal.SIGTERM)
if callable(sigterm_handler):
rprint(f"Calling SIGTERM handler")
sigterm_handler(signal.SIGTERM, None)
try:
if config.trainer.num_nodes > 1 and config.debug is False and is_main_process():
wandb.alert(title="Exception!", text=f"{e}, {traceback.format_exc()}")
except:
pass
raise e
finally:
pass
if __name__ == "__main__":
main()
|