File size: 93,909 Bytes
131da64
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
import math
import random
import types
import time
from collections import defaultdict
from contextlib import nullcontext
from functools import cached_property, partial
from contextlib import ExitStack

from numpy import mask_indices
from unidisc.utils.tensor_utils import get_contiguous_blocks, get_contiguous_blocks_per_sample, get_interleaved_indices
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.checkpoint
from accelerate.utils import gather, gather_object
from einops import rearrange
from tensordict import TensorDict
from torch import Tensor, nn
from tqdm.auto import tqdm

import model_eval
import model_setup
import model_utils
import utils
from decoupled_utils import (Profiler, barrier, dprint, get_rank, get_world_size, gprint,
                             is_local_main_process, is_main_process,
                             is_torch_cuda_available, is_torch_xla_available,
                             print_memory, rprint, save_memory_profile,
                             synchronize_device, try_except, use_dist)
from unidisc.tokenizers.image_tokenizers import (decode_latents, get_image_batch,
                                              get_vae, vae_encode_image)
from unidisc.utils.cuda_utils import sync_times
from unidisc.utils.xla_utils import shard_output
from model_utils import (Loss, ddprint, ema_update, empty_device_cache, get_chameleon_txt_indices, get_interleaved_block_mask, log,
                         replace_nan_dict, update_histogram, update_logs, get_block_mask)
from unidisc.utils.trainer_utils import TrainingState, incremental_dict_update, linear_warmup

is_xla_available = is_torch_xla_available()

if is_xla_available:
    import torch_xla
    from torch_xla.distributed.spmd import XLAShardedTensor




def maybe_unwrap(t: torch.Tensor) -> torch.Tensor:
    return t.global_tensor if isinstance(t, XLAShardedTensor) else t

class Diffusion:
    def __init__(self, config, tokenizer, device, disable_init=False):
        super().__init__()
        setup_methods = [
            'init', 'to', 'get_params', 'get_vae', 'get_cond_vae', 'configure_optimizers',
            '_validate_configuration', 'register_signal_handler', 'on_train_start',
            'optimizer_step', 'init_dataloader', 'set_accelerator', 'set_callbacks', 
            'on_train_step_end', 'init_optimizer_lr_scheduler', 'after_backward', 'checkpoint', 
            'print_hashes', 'shortcut_return', 'reset_validation_metrics', 'unwrap_model'
        ]
        for method_name in setup_methods:
            setattr(self, method_name, types.MethodType(getattr(model_setup, method_name), self))

        utils_methods = [
            'get_coord_plot', '_score_entropy', 'sample_subs_guidance',
            'restore_model_and_semi_ar_sample', '_reconstruction_loss',
            'restore_model_and_sample', 'get_score', '_staggered_score',
            '_analytic_update', '_denoiser_update', '_transp_transition',
            'eval_retokenize', 'compute_generative_perplexity', '_d3pm_loss',
            '_d3pm_parameterization', '_sedd_parameterization',
            'get_base_shapes_for_mup', 'update_histogram', '_maybe_sub_sample',
             'viz_images_from_dataloader', 'compute_cider'
        ]
        for method_name in utils_methods:
            setattr(self, method_name, types.MethodType(getattr(model_utils, method_name), self))

        eval_methods = [
            'get_every_n_evals', 'on_validation_epoch_start', 'sample',
            'predict_step', 'validation_step', 'on_validation_epoch_end',
            'on_validation_epoch_cleanup', '_sample_prior', '_ddpm_forward',
            '_ddpm_update', '_ddpm_caching_update', '_sample', '_ar_sampler',
            'decode_batch', 'sample_transfusion', 'sample_continuous_image',
            'decode_sampling', '_ddpm_update_finetune_controlled_tweedie', 
            'sample_masking', 'log_flops', "visualize_samples", "_maskgit_update", 
            "_first_hitting_update", "update_inline_fid", "compute_inline_fid",
            "update_clean_fid", "compute_clean_fid_eval", "sample_for_fid",
            "compute_clip_score", "mauve_store_references", "zero_shot_eval_step",
            "zero_shot_eval_epoch_end", "get_cfg_weight", "cleanup_fid_output",
            "calculate_chameleon_perplexity", "get_anole_data",
            "update_img_to_txt_mauve_clip", "compute_mauve_entropy",
            "get_top_k", "compute_entropy", "get_mauve_score", "get_valid_seq", "gather_tokens",
            "count_valid_tokens", "compute_val_metrics_standalone", "_maskgit_nucleus_update",
            "get_img_text_saturation_batch", "handle_interleaved_decode", "get_interleaved_image",
            "auto_enhance", "get_clip_score", "get_dfn_score", "get_hpsv2_score", "get_model_likelihood_score",
            "get_laion_aesthetic_score", "get_rewards", "get_chameleon_score", "clear_reward_models",
            "get_text_likelihood_score", "get_text_reward_model_score", "save_image_text_pair"
        ]
        for method_name in eval_methods:
            setattr(self, method_name, types.MethodType(getattr(model_eval, method_name), self))

        if disable_init:
            pass
        else:
            model_setup.init(self, config, tokenizer, device)

    @cached_property
    def xla_mesh(self):
        import torch_xla.distributed.spmd as xs
        return xs.get_global_mesh()

    def on_train_resume(self):
        if not is_torch_xla_available():
            empty_device_cache()

            if self.ema is not None and not self.config.trainer.use_custom_ema:
                self.ema.restore(self.get_params(), raise_error_if_already_restored=False)

            self.backbone.train()
            
    def zero_shot_update_batch(self, batch):
        dataset = self.config.data.train
        if dataset is None:
            return batch

        def get_attr(attr_name):
            return getattr(self.config.model, attr_name, None)

        if dataset == "nlphuji/flickr30k":
            # image captioning dataset
            # above thing but order is [txt, img]
            batch['gt_input_ids'] = batch['input_ids']
            image_input_ids = get_image_batch(self.config, self.get_vae(), batch, self.device)
            image_input_ids += self.text_vocab_size
            batch["input_ids"] = torch.cat([torch.zeros_like(batch['gt_input_ids'], dtype=torch.int64), image_input_ids], dim=-1).to(self.device)
            batch['attention_mask'] = torch.cat([torch.zeros_like(batch['gt_input_ids'], dtype=torch.bool), torch.ones_like(image_input_ids, dtype=torch.bool)], dim=-1).to(self.device)
            batch["modality"] = torch.cat([torch.zeros_like(batch['gt_input_ids'], dtype=torch.int64), torch.ones_like(image_input_ids, dtype=torch.int64)], dim=-1).to(self.device)
        elif dataset == "facebook/winoground":
            # get image and text input ids
            caption_0_input_ids = batch['caption_0_input_ids']
            caption_1_input_ids = batch['caption_1_input_ids']
            image_0 = batch['img_0']
            image_1 = batch['img_1']
            # tokenize and store captions separately
            image_0_input_ids = vae_encode_image(self.config, self.get_vae(), image_0, self.device, get_attr("vae_type")) + self.text_vocab_size
            image_1_input_ids = vae_encode_image(self.config, self.get_vae(), image_1, self.device, get_attr("vae_type")) + self.text_vocab_size
            # make 4 combinat ions of image and text
            batch['input_ids_0_0'] = torch.cat([caption_0_input_ids, image_0_input_ids], dim=-1).to(self.device)
            batch['input_ids_0_1'] = torch.cat([caption_0_input_ids, image_1_input_ids], dim=-1).to(self.device)
            batch['input_ids_1_0'] = torch.cat([caption_1_input_ids, image_0_input_ids], dim=-1).to(self.device)
            batch['input_ids_1_1'] = torch.cat([caption_1_input_ids, image_1_input_ids], dim=-1).to(self.device)
            batch['attention_mask'] = torch.cat([torch.zeros_like(caption_0_input_ids, dtype=torch.bool), torch.ones_like(image_0_input_ids, dtype=torch.bool)], dim=-1).to(self.device)
            batch['modality'] = torch.cat([torch.zeros_like(caption_0_input_ids, dtype=torch.int64), torch.ones_like(image_0_input_ids, dtype=torch.int64)], dim=-1).to(self.device)
        # elif dataset == "facebook/winoground":
        batch["modality_mask"] = F.one_hot(batch["modality"], num_classes=2).to(torch.bool)
        return batch

    def update_batch(self, batch):
        if getattr(self.config.eval, 'big_seq_len_eval', False):
            # new batch of 8192 seq length with txt length 4096 and img length 4096s
            N = self.config.model.length
            new_batch = dict()
            new_batch['input_ids'] = torch.zeros(batch['input_ids'].shape[0], N, device=self.device, dtype=batch['input_ids'].dtype)
            new_batch['attention_mask'] = torch.ones(batch['attention_mask'].shape[0], N, device=self.device, dtype=batch['attention_mask'].dtype)
            new_batch['modality'] = torch.zeros(batch['modality'].shape[0], N, device=self.device, dtype=batch['modality'].dtype)
            new_batch['modality'][:, N//2:] = 1
            new_batch['modality_mask'] = F.one_hot(new_batch['modality'], num_classes=2).to(torch.bool)
            batch = new_batch
            return batch
        
        continuous_mode = self.config.trainer.image_mode == "continuous"
        if batch is None:
            gprint(f"Warning! Batch is None")
            return batch
        
        if isinstance(batch, TensorDict):
            batch.batch_size = (batch.batch_size[0],)
        
        if self.image_model or getattr(self.config.data, "force_image_dataset", False):
            text_input_ids = None
            if isinstance(batch, TensorDict) and (self.is_compiled or getattr(self.config.trainer, "force_convert_to_dict", False)):
                batch = dict(batch.items())

            if "txt_input_ids" in batch or "img_input_ids" in batch:
                index_keys = ["img_input_ids", "txt_input_ids", "sample_ids"]
                for key in index_keys:
                    if key in batch:
                        if isinstance(batch[key], list):
                            batch[key] = torch.stack(batch[key], dim=0)
                        batch[key] = batch[key].to(torch.int64)

                index_keys = ["img_label"]
                for key in index_keys:
                    if key in batch:
                        batch[key] = batch[key].squeeze(-1)

                img_input_ids = batch.pop("img_input_ids")
                batch["input_ids"] = img_input_ids
                batch["attention_mask"] = torch.ones_like(img_input_ids).to(torch.bool)
                if "txt_input_ids" in batch:
                    batch["input_ids"] = torch.cat([batch["txt_input_ids"], batch["input_ids"] + self.text_vocab_size], dim=-1)
                    batch["attention_mask"] = torch.cat([batch["txt_attention_mask"], batch["attention_mask"]], dim=-1)

                batch["input_ids"] = batch["input_ids"].to(torch.int64)

                if "modality" not in batch:
                    if getattr(self.config.trainer, "ignore_text_in_unified", False):
                        modality = torch.ones_like(batch["input_ids"], dtype=torch.int64)
                    else:
                        assert self.config.model.txt_length > 0 and self.config.model.img_length > 0
                        modality = torch.zeros_like(batch["input_ids"], dtype=torch.int64)
                        modality[:, -img_input_ids.shape[-1]:] = 1
                    batch["modality"] = modality

            elif (self.config.trainer.multimodal_batches or continuous_mode) and \
                not getattr(self.config.trainer, "use_legacy_update_batch_fn", False):

                if "img" in batch:
                    is_image_batch = (batch["modality"] == 1).all(dim=-1)
                    image_input_ids = get_image_batch(self.config, self.get_vae(), batch, self.device)
                    assert ((batch["modality"].sum(dim=-1) == 0) | (batch["modality"].sum(dim=-1) >= image_input_ids.shape[1])).all()

                    if getattr(self.config.trainer, "add_label", False):
                        assert (batch["modality"] == 1).all()
                        batch["input_ids"][:, 1:] = torch.where(is_image_batch[:, None], image_input_ids, batch["input_ids"][:, 1:])
                    elif image_input_ids.ndim == 3:
                        batch["img_emb"] = torch.where((batch["modality"] == 1)[:, :, None], image_input_ids, torch.nan)
                    elif (batch["input_ids"][batch["modality"] == 1] == -1).all():
                        batch["input_ids"].masked_scatter_(batch["modality"] == 1, image_input_ids)
                    else:
                        batch["input_ids"] = torch.where(is_image_batch[:, None], image_input_ids, batch["input_ids"])

                    if getattr(self.config.trainer, "force_shift_raw_image_batches", False):
                        assert not getattr(self.config.trainer, "force_shift_image_batches", False)
                        batch["input_ids"] = torch.where(batch["modality"] == 1, batch["input_ids"] + self.text_vocab_size, batch["input_ids"])
                else:
                    if getattr(self.config.trainer, "add_label", False):
                        shift_index = self.vocab_size - self.config.model.add_labels
                        batch["input_ids"] = torch.cat([batch["label"] + shift_index, batch["input_ids"]], dim=-1)
                        batch["attention_mask"] = torch.cat([torch.zeros_like(batch["label"], dtype=torch.bool), batch["attention_mask"]], dim=-1)
                        batch["modality"] = torch.cat([torch.ones_like(batch["label"], dtype=torch.int64), batch["modality"]], dim=-1)
                        assert (batch["modality"] == 1).all()

                batch["input_ids"] = batch["input_ids"].to(torch.int64)
                if "sample_ids" in batch:
                    batch["sample_ids"] = batch["sample_ids"].to(torch.int64)

                if getattr(self.config.trainer, "force_shift_image_batches", False):
                    batch["input_ids"] = torch.where(batch["modality"] == 1, batch["input_ids"] + self.text_vocab_size, batch["input_ids"])
            else:
                if continuous_mode:
                    assert False
                else:
                    if "input_ids" in batch and not self.config.trainer.ignore_text_in_unified:
                        assert self.config.model.unified_model
                        assert "attention_mask" in batch
                        text_input_ids = batch["input_ids"]

                    image_ids = get_image_batch(self.config, self.get_vae(), batch, self.device)
                    image_attention_mask = torch.ones_like(image_ids).to(torch.bool)

                    if "cond_img" in batch:
                        cond_image_ids = get_image_batch(self.config, self.get_cond_vae(), batch, self.device, use_cond=True)
                        batch["cond_input_ids"] = cond_image_ids

                    if text_input_ids is not None:
                        assert batch["input_ids"].shape[1] == self.config.model.txt_length
                        assert image_ids.shape[1] == self.config.model.img_length
                        image_ids = image_ids + self.text_vocab_size

                        batch["input_ids"] = torch.cat([batch["input_ids"].to(self.device), image_ids], dim=-1)
                        batch["attention_mask"] = torch.cat([batch["attention_mask"].to(self.device), image_attention_mask], dim=-1).to(torch.bool)
                        assert batch["input_ids"].shape[1] == batch["attention_mask"].shape[1] == self.config.model.length
                        batch["modality"] = torch.zeros_like(batch["input_ids"], dtype=torch.int64)
                        batch["modality"][:, -image_ids.shape[-1]:] = 1
                    else:
                        assert self.unified_model is False
                        batch["input_ids"] = image_ids
                        batch["attention_mask"] = image_attention_mask
                        batch["modality"] = torch.ones_like(batch["input_ids"], dtype=torch.int64)

            if "txt_x0_unmask" in batch and "img_x0_unmask" in batch:
                assert not continuous_mode
                batch["gt_img_input_ids"] = image_ids
                batch["x0_unmask"] = torch.cat([batch["txt_x0_unmask"], batch["img_x0_unmask"]], dim=-1)
                batch["input_ids"][~batch["x0_unmask"]] = self.mask_index

            if (batch["input_ids"].shape[1] != self.config.model.length) and not self.config.trainer.ar_inpainting:
                gprint(f"Warning! Input ids shape: {batch['input_ids'].shape}, model length: {self.config.model.length}")
                batch["input_ids"] = batch["input_ids"][:, : self.config.model.length]
                assert False, f"input ids are not the correct length input ids shape: {batch['input_ids'].shape}, model length: {self.config.model.length}"

        if getattr(self.config.model, "img_cond", False):
            assert "cond_input_ids" in batch
            assert not continuous_mode

        if "modality" in batch:
            batch["modality"] = batch["modality"].to(torch.int64)
            if self.config.trainer.multimodal_batches and batch["modality"].ndim == 2 and batch["modality"].shape[-1] == 1:
                batch["modality"] = batch["modality"].repeat(1, self.config.model.length)
        else:
            if self.image_model and not self.config.trainer.multimodal_batches:
                assert self.config.model.txt_length > 0 and self.config.model.img_length > 0
                modality = torch.zeros_like(batch["input_ids"], dtype=torch.int64)
                modality[:, self.static_img_sl] = 1
                batch["modality"] = modality
            elif self.config.data.txt_only:
                batch["modality"] = torch.zeros_like(batch["input_ids"], dtype=torch.int64)

        if "modality" in batch:
            batch["modality"][batch["modality"] == -1] = 0
            assert batch["modality"].min() == 0 and batch["modality"].max() == 1
            batch["modality_mask"] = F.one_hot(batch["modality"], num_classes=2).to(torch.bool)
            batch["batch_contains_img"] = (batch["modality"] == 1).any(dim=-1)
            batch['txt_sl'] = self.txt_sl(batch)
            batch['img_sl'] = self.img_sl(batch)

        if getattr(self.config.trainer, "force_remove_img_tokens", False):
            assert not continuous_mode
            batch["input_ids"] = batch["input_ids"][batch['txt_sl']]
            batch["attention_mask"] = batch["attention_mask"][batch['txt_sl']]

        if getattr(self.config.trainer, "add_label", False):
            assert getattr(self.config.model, "add_labels", False)
            assert "label" in batch
            batch["label"] = batch["label"].to(torch.int64)
            assert 0 <= batch["label"].min() and batch["label"].max() < self.config.model.add_labels
            shift_index = self.vocab_size - self.config.model.add_labels

            assert batch["input_ids"].shape[-1] == self.config.model.length
            if batch["label"].ndim == 1:
                batch["input_ids"][:, [0]] = (batch["label"] + shift_index).unsqueeze(-1)
            else:
                batch["input_ids"][:, [0]] = batch["label"] + shift_index

            batch["attention_mask"][:, 0] = False

        if isinstance(batch, dict):
            for key in batch.keys():
                if isinstance(batch[key], torch.Tensor):
                    batch[key] = batch[key].to(self.device)
        elif isinstance(batch, TensorDict):
            assert self.config.backbone != "gemma"
            batch = batch.to(self.device)

        if getattr(self.config.trainer, "force_full_attention_mask", False):
            batch["attention_mask"] = torch.ones_like(batch["attention_mask"], dtype=torch.bool)

        batch["attention_mask"] = batch["attention_mask"].to(torch.bool)

        if self.config.data.require_sample_ids:
            assert "sample_ids" in batch
            batch["sample_ids"][~(batch["attention_mask"].bool())] = -1
            batch["attention_mask"][batch["sample_ids"] == -1] = False

        # Flip [txt, img] -> [img, txt]
        # TODO: Flip by sample not batch. As we train w/~8 batches, it's for now
        if (self.training or getattr(self.config.trainer, "force_flip_ar_val", False)) and self.config.parameterization == "ar" and getattr(self.config.trainer, "rand_flip_ar_prob", None) is not None:
            assert (batch["modality"][:, :self.config.model.txt_length] == 0).all() and (batch["modality"][:, self.config.model.txt_length:] == 1).all(), "Modality does not match img_before_txt configuration"
            batch_flip_mask = torch.rand(batch["modality"].shape[0], device=self.device) < self.config.trainer.rand_flip_ar_prob
            img_slice = slice(-self.config.model.img_length, None)
            txt_slice = slice(None, self.config.model.txt_length)

            for key in ["modality", "attention_mask", "input_ids"]:
                batch[key][batch_flip_mask] = torch.cat([batch[key][batch_flip_mask][:, img_slice], batch[key][batch_flip_mask][:, txt_slice]], dim=1)

            if "modality_mask" in batch:
                batch["modality_mask"] = F.one_hot(batch["modality"], num_classes=2).to(torch.bool)

            batch['txt_sl'] = None
            batch['img_sl'] = None
            batch["batch_flip_mask"] = batch_flip_mask

        if self.config.trainer.interleaved and "sample_ids" not in batch:
            batch["sample_ids"] = torch.zeros_like(batch["modality"], dtype=torch.int64)

        if self.config.trainer.interleaved:
            batch_indices, start_positions, end_positions = get_contiguous_blocks(batch["modality"])
            interleaved_metadata = TensorDict({
                "batch_indices": batch_indices,
                "start_positions": start_positions,
                "end_positions": end_positions
            }, batch_size=[])
            allowed_image_sizes = (64, 256, 1024, 2304, 4096)
            block_sizes = (end_positions - start_positions).to(torch.int32)
            is_txt_block = batch["modality"][batch_indices, start_positions] == 0
            is_valid_img_size = torch.isin(block_sizes, torch.tensor(allowed_image_sizes, dtype=torch.int32, device=self.device))

            if not ((is_txt_block | is_valid_img_size).all()):
                gprint(f"WARNING: Found non-text block of size {block_sizes[~(is_txt_block | is_valid_img_size)]} in interleaved batch")

            if isinstance(batch, TensorDict):
                batch.batch_size = []
            batch["interleaved_metadata"] = interleaved_metadata

        return batch

    def get_cond_dict(self, batch):
        ret_dict = dict()
        if "cond_input_ids" in batch:
            ret_dict["x_cond"] = batch["cond_input_ids"]

        if "img_label" in batch:
            ret_dict["label"] = batch["img_label"]

        if self.config.model.use_attention_mask:
            ret_dict["attention_mask"] = batch["attention_mask"]

        if self.config.trainer.multimodal_batches:
            ret_dict["modality"] = batch["modality"]

        if self.config.trainer.image_mode == "continuous":
            ret_dict["continuous_mode"] = True
            ret_dict["modality"] = batch["modality"]
            
        if self.parameterization == "ar" and "modality" in batch:
            ret_dict["modality"] = batch["modality"]

        return ret_dict

    def training_step(self, batch, batch_idx):
        batch = self.update_batch(batch)
        return self.compute_loss(batch, prefix="train", batch_idx=batch_idx)

    def q_xt(self, x, move_chance, allow_move_mask=None, return_ignore_batch_mask_for_metrics=False, mask_image_square=False, mask_text_region=False, batch=None):
        """Computes the noisy sample xt.

        Args:
          x: int torch.Tensor with shape (batch_size,
              diffusion_model_input_length), input.
          move_chance: float torch.Tensor with shape (batch_size, 1).
        """
        if self.config.backbone == "maskdit" and getattr(self.config.trainer, "force_single_timestep_per_batch", False):
            num_to_mask = int(x.shape[1] * move_chance[0].item())
            batch_size, seq_len = x.shape
            random_indices = torch.rand(batch_size, seq_len, device=x.device).argsort(dim=1)[:, :num_to_mask]
            xt = x.scatter(1, random_indices, self.mask_index)
            return xt

        move_indices = torch.rand(*x.shape, device=x.device) < move_chance

        if mask_image_square:
            latent_dim = int(math.sqrt(self.config.model.img_length))
            img_move_indices = move_indices[:, self.static_img_sl].clone().reshape(move_indices.shape[0], latent_dim, latent_dim)
            max_d = int(math.sqrt(self.config.model.img_length))
            for b in range(move_indices.shape[0]):
                if move_chance[b] == 1:
                    continue
                h, w = img_move_indices[b].shape
                d = random.randint(max_d // 2, max_d - 2)
                i = random.randint(0, h - d)
                j = random.randint(0, w - d)

                mask = torch.zeros_like(img_move_indices[b], dtype=torch.bool)
                mask[i:i+d, j:j+d] = True
                move_indices[b, self.static_img_sl] = mask.reshape(-1)

        if mask_text_region:
            for b in range(x.shape[0]):
                if move_chance[b] == 1:
                    continue
                should_mask = torch.zeros_like(move_indices[b, self.static_txt_sl], dtype=torch.bool)
                max_valid = (x[b] == self.tokenizer.eos_token_id).nonzero()[0, 0] if self.tokenizer.eos_token_id in x[b] else x.shape[1]
                d = random.randint(max_valid//3, max_valid-1)
                start = random.randint(0, max_valid - d)
                should_mask[start:start+d] = True
                move_indices[b, self.static_txt_sl] = should_mask

        ignore_batch_mask_for_metrics = None
        should_mask_txt, should_mask_img = None, None
        if (mask_prob := getattr(self.config.trainer, "mask_entire_modality", None)) is not None \
            and (mask_image_square is False and mask_text_region is False) and self.backbone.training:

            assert batch is not None
            batch_size, seq_len = x.shape
            if getattr(self.config.trainer, "mask_txt_only", False):
                should_mask_txt = torch.rand(batch_size, 1, device=x.device) < mask_prob
                should_mask_img = torch.zeros_like(should_mask_txt, device=x.device)
            else:
                should_mask_txt = torch.rand(batch_size, 1, device=x.device) < mask_prob/2
                should_mask_img = torch.rand(batch_size, 1, device=x.device) < mask_prob/2

            if self.config.trainer.multimodal_batches:
                if self.config.trainer.interleaved:
                    batch_indices, start_positions, end_positions = get_contiguous_blocks_per_sample(batch["modality"], batch["sample_ids"])

                    block_size = end_positions - start_positions
                    size_mask = block_size > 4
                    batch_indices, start_positions, end_positions = batch_indices[size_mask], start_positions[size_mask], end_positions[size_mask]


                    block_counts = torch.zeros_like(batch_indices)
                    max_num_sample_ids = torch.zeros_like(batch_indices)


                    for i in range(len(batch_indices)):
                        curr_sample_id = batch["sample_ids"][batch_indices[i], start_positions[i]]
                        
                        # Find blocks before this one with same batch index and sample_id
                        prev_blocks_mask = (batch_indices[:i] == batch_indices[i]) & \
                            (batch["sample_ids"][batch_indices[:i], start_positions[:i]] == curr_sample_id)
                        
                        total_in_sample = ((batch_indices == batch_indices[i]) & (batch["sample_ids"][batch_indices, start_positions] == curr_sample_id)).sum()
                        
                        block_counts[i] = prev_blocks_mask.sum()
                        max_num_sample_ids[i] = total_in_sample

                    block_prob = (block_counts + 1) / max_num_sample_ids
                    positions = torch.arange(move_indices.shape[-1], device=move_indices.device).unsqueeze(0)  # Shape: [1, N]
                    mask = (positions >= start_positions.unsqueeze(1)) & (positions < end_positions.unsqueeze(1))  # Shape: [M, N]
                    mask = mask & (torch.rand(batch_indices.shape[0], 1, device=x.device) < (mask_prob * block_prob * 2)[..., None])
                    expanded_batch_indices = batch_indices.unsqueeze(1).expand(-1, move_indices.shape[1])  # Shape: [M, N]

                    # True if we should manually mask the part of the sequence
                    accum = torch.zeros_like(move_indices, dtype=torch.int32)  # Shape: [B, N]
                    accum.scatter_add_(0, expanded_batch_indices, mask.int())  # Accumulate counts
                    accum = accum.to(torch.bool)

                    move_indices = move_indices | accum

                    # We ignore the entire sequence if any of the blocks are fully masked
                    ignore_batch_mask_for_metrics = torch.zeros((move_indices.shape[0],), device=x.device, dtype=torch.bool)
                    ignore_batch_mask_for_metrics.scatter_add_(0, batch_indices, mask.any(dim=-1))
                else:
                    # TODO: Be smarter about masking for interleaved
                    # To make sure that we have even masking prob, we prefer to mask less but equally
                    both_mask = should_mask_txt & should_mask_img
                    should_mask_txt = torch.where(both_mask, False, should_mask_txt)
                    should_mask_img = torch.where(both_mask, False, should_mask_img)
                    move_indices = torch.where(should_mask_txt, batch["modality_mask"][..., 0], move_indices)
                    move_indices = torch.where(should_mask_img, batch["modality_mask"][..., 1], move_indices)
                    ignore_batch_mask_for_metrics = should_mask_img | should_mask_txt
            else:
                both_mask = should_mask_txt & should_mask_img
                should_mask_txt[both_mask] = False
                should_mask_img[both_mask] = False
                should_mask_img[batch["txt_sl"].all(dim=-1)] = False
                move_indices[:, self.static_txt_sl] = torch.where(should_mask_txt, True, move_indices[:, self.static_txt_sl])
                move_indices[:, self.static_img_sl] = torch.where(should_mask_img, True, move_indices[:, self.static_img_sl])
                ignore_batch_mask_for_metrics = should_mask_img | should_mask_txt

        joint_ar_nar_mask = None
        if self.config.trainer.joint_ar_nar_prob is not None and self.training:
            batch_size = x.shape[0]
            current_prob = linear_warmup(
                current_step=self.global_step,
                warmup_steps=self.config.trainer.joint_ar_nar_prob_warmup_steps,
                final_value=self.config.trainer.joint_ar_nar_prob,
                initial_value=1.0
            )
            joint_ar_nar_mask = torch.rand(batch_size, device=x.device) < current_prob
            move_indices = torch.where(joint_ar_nar_mask[:, None], False, move_indices)

        if self.config.trainer.add_label:
            move_indices[:, 0] = False

        if self.config.trainer.first_token_dropout is not None and self.training:
            _initial_mask = torch.rand(x.shape[0], device=x.device) < self.config.trainer.first_token_dropout
            move_indices[:, 0] = torch.where(_initial_mask, True, move_indices[:, 0])
            if ignore_batch_mask_for_metrics is None:
                ignore_batch_mask_for_metrics = _initial_mask
            else:
                ignore_batch_mask_for_metrics = ignore_batch_mask_for_metrics | _initial_mask

        if allow_move_mask is not None:
            move_indices = move_indices & allow_move_mask
        
        if getattr(self.config.trainer, "discrete_diffusion_mode", "absorbing") == "uniform":
            if getattr(self.config.model, "force_argmax_valid_indices", False):
                assert self.mask_index == self.text_vocab_size - 1
                text_random_tokens = torch.randint(0, self.text_vocab_size - 1, size=x.shape, device=x.device)
                img_random_tokens = torch.randint(self.text_vocab_size, self.vocab_size, size=x.shape, device=x.device)                
                random_tokens = torch.where(batch["modality_mask"][..., 0], text_random_tokens, img_random_tokens)
                assert not torch.any(random_tokens == self.mask_index)
            else:
                random_tokens = torch.randint(0, vocab_size, size=x.shape, device=x.device)
                random_tokens = torch.where(random_tokens == self.mask_index, random_tokens + 1, random_tokens) # avoid mask index
            xt = torch.where(move_indices, random_tokens, x)
        else:
            xt = torch.where(move_indices, self.mask_index, x)

        if self.parameterization == "ar":
            xt = x.clone()

        if return_ignore_batch_mask_for_metrics:
            return xt, ignore_batch_mask_for_metrics, joint_ar_nar_mask, should_mask_txt, should_mask_img, move_indices
        else:
            return xt

    def _sample_t(self, n, device):
        if self.config.backbone == "maskdit" and getattr(self.config.trainer, "force_single_timestep_per_batch", False):
            _eps_t = torch.rand(1, device=device).repeat(n)
        else:
            _eps_t = torch.rand(n, device=device)
            if self.config.trainer.joint_ar_nar_timestep_warmup_steps is not None:
                max_t = linear_warmup(
                    current_step=self.global_step,
                    warmup_steps=self.config.trainer.joint_ar_nar_timestep_warmup_steps,
                    final_value=1,
                    initial_value=0,
                    start_step=0
                )
                _eps_t = _eps_t * max_t
                if max_t == 1:
                    offset = torch.arange(n, device=device) / n
                    _eps_t = (_eps_t / n + offset) % 1

            elif self.antithetic_sampling:
                offset = torch.arange(n, device=device) / n
                _eps_t = (_eps_t / n + offset) % 1

        if getattr(self.config.trainer, "force_timestep", None) is not None:
            _eps_t[:] = self.config.trainer.force_timestep
        elif getattr(self.config.eval, "ar_inpainting_force_val", None) is not None:
            _eps_t[:] = self.config.eval.ar_inpainting_force_val

        t = (1 - self.sampling_eps) * _eps_t + self.sampling_eps
        if self.importance_sampling:
            return self.noise.importance_sampling_transformation(t)
        return t.to(torch.float32)

    def _subs_parameterization(self, logits, xt, batch=None, modality=None, **kwargs):
        # log prob at the mask index = - infinity
        if not self.allow_slicing:
            logits = logits.clone()

        logits[..., self.mask_index] += self.neg_infinity
        if getattr(self.config.model, "force_argmax_valid_indices", False):
            if self.config.trainer.multimodal_batches:
                _txt_sl = batch["txt_sl"] if modality is None else modality == 0
                _img_sl = batch["img_sl"] if modality is None else modality == 1
                logits[..., self.text_vocab_size:] = torch.where(_txt_sl[..., None], self.neg_infinity, logits[..., self.text_vocab_size:])
                logits[..., :self.text_vocab_size] = torch.where(_img_sl[..., None], self.neg_infinity, logits[..., :self.text_vocab_size])
            else:
                logits[..., self.static_txt_sl, self.text_vocab_size:] = self.neg_infinity
                logits[..., self.static_img_sl, :self.text_vocab_size] = self.neg_infinity

        # Normalize the logits such that x.exp() is
        # a probability distribution over vocab_size.
        logits = logits - torch.logsumexp(logits, dim=-1, keepdim=True)

        if self.parameterization != "ar" and xt is not None:
            # Apply updates directly in the logits matrix.
            # For the logits of the unmasked tokens, set all values
            # to -infinity except for the indices corresponding to
            # the unmasked tokens.
            unmasked_indices = xt != self.mask_index
            if not self.allow_slicing:
                logits = torch.where(unmasked_indices.unsqueeze(-1), torch.full_like(logits, self.neg_infinity),  logits)
                logits = torch.where(
                    unmasked_indices.unsqueeze(-1) & (torch.arange(logits.size(-1)).to(logits.device) == xt.unsqueeze(-1)),  
                    torch.zeros_like(logits),
                    logits
                )
            else:
                logits[unmasked_indices] = self.neg_infinity
                logits[unmasked_indices, xt[unmasked_indices]] = 0

        return logits

    def _process_sigma(self, sigma):
        if sigma is None:
            assert (self.parameterization == "ar" or self.config.trainer.ar_llm_loss) or self.config.trainer.allow_null_sigma
            return sigma

        if sigma.ndim > 1 and not self.config.trainer.image_mode == "continuous":
            sigma = sigma.squeeze(-1)
            assert sigma.ndim == 1, sigma.shape

        if not self.time_conditioning and getattr(self.config.model, "force_time_conditioning", False):
            sigma = torch.zeros_like(sigma)

        return sigma

    def forward(
        self,
        x,
        sigma,
        batch=None,
        forward_attention_mask=None,
        return_additional_loss=False,
        x_img_emb=None,
        disable_ar_shift=False,
        continuous_mode=False,
        joint_ar_nar_mask=None,
        return_logits=False,
        block_mask=None,
        update_cache_slice=None,
        **kwargs,
    ):
        """Returns log score."""
        sigma = self._process_sigma(sigma)
        if self.config.trainer.image_mode == "continuous": assert "modality" in kwargs
        should_autocast = (((self.config.trainer.disable_forward_autocast_during_eval and self.backbone.training) is False) and (self.dtype != torch.float32))
        with ExitStack() as stack:
            if should_autocast:
                stack.enter_context(torch.autocast(device_type=self.device.type, dtype=self.dtype))

            orig_modality = None
            if self.config.backbone == "elm":
                if getattr(self.config.trainer, "print_llm_ppl", False):
                    _labels = x.clone()
                    _labels[~forward_attention_mask] = -100
                    kwargs['labels'] = _labels

                if "modality" in kwargs:
                    if self.config.mode == "eval": orig_modality = kwargs.pop("modality")
                    else: kwargs.pop("modality")

                if "modality_mask" in kwargs: kwargs.pop("modality_mask")
                if "x0" in kwargs: kwargs.pop("x0")
                if "start_pos" in kwargs: kwargs.pop("start_pos")
                if "sample_ids" in kwargs: kwargs.pop("sample_ids")

                output = self.backbone(input_ids=x, **kwargs)

                if self.config.mode == "eval": kwargs["modality"] = orig_modality

                if isinstance(output, Tensor):
                    logits = output
                else:
                    logits = output.logits

                if getattr(self.config.trainer, "print_llm_ppl", False):
                    rprint(f"AR PPL: {torch.exp(output.loss)}")
            else:
                if self.config.trainer.compile == 'max-autotune' and not is_xla_available:
                    torch.compiler.cudagraph_mark_step_begin()

                logits = self.backbone(x, sigma, continuous_mode=continuous_mode, x_img_emb=x_img_emb, block_mask=block_mask, update_cache_slice=update_cache_slice, **kwargs)
        if self.config.trainer.force_bf16_eval:
            logits = logits.to(torch.bfloat16)

        if continuous_mode:
            assert self.parameterization == "ar"
            logits, logits_img = logits

        if self.config.trainer.ar_shift and not disable_ar_shift:
            # config trainer ar shift is for training
            # disable ar shift is for sampling at inference
            logits = logits[:, :-1]
            xt = x[:, 1:]
            if orig_modality is not None and self.config.mode == 'eval':
                orig_modality = orig_modality[:, 1:]
        else:
            xt = x

        if self.config.trainer.low_precision_loss:
            logits = logits.to(self.dtype)
            if continuous_mode:
                logits_img = logits_img.to(self.dtype)

        if self.parameterization == "planner":
            return logits
        elif self.config.trainer.ar_llm_loss:
            assert not self.parameterization == "ar"
            model_output = self._subs_parameterization(logits, xt=xt, modality=orig_modality), logits
            if is_xla_available: shard_output(model_output[0], self.xla_mesh)
            if is_xla_available: shard_output(model_output[1], self.xla_mesh)
            return model_output if return_additional_loss else model_output[0]
        elif self.parameterization == "ar":
            if not getattr(self.config.trainer, "use_orig_unidisc_dit", False):
                logits = torch.where(
                    torch.arange(logits.shape[-1], device=logits.device)[None, None, :] == self.mask_index, self.neg_infinity, logits
                )
                
                _modality = kwargs.get("modality") if batch is None else batch.get("modality")

                # During eval, we let the sampler handle this part.
                if getattr(self.config.model, "force_argmax_valid_indices", False) and _modality.shape[1] == (logits.shape[1] + 1):
                    if not self.allow_slicing:
                        logits = logits.clone()
                        
                    logits[..., self.text_vocab_size:] = torch.where(
                        (kwargs.get("modality") == 0)[..., 1:, None], torch.finfo(logits.dtype).min, logits[..., self.text_vocab_size:]
                    )
                    logits[..., :self.text_vocab_size] = torch.where(
                        (kwargs.get("modality") == 1)[..., 1:, None], torch.finfo(logits.dtype).min, logits[..., :self.text_vocab_size]
                    )

                logits = logits.log_softmax(-1)

            if continuous_mode:
                return (logits, logits_img)
        elif self.parameterization == "subs":
            if return_logits:
                return logits
            model_output = self._subs_parameterization(logits, xt=xt, batch=batch, **kwargs)
            if is_xla_available: shard_output(model_output, self.xla_mesh)
            return model_output
        elif self.parameterization == "sedd":
            return self._sedd_parameterization(logits=logits, xt=x, sigma=sigma)
        elif self.parameterization == "d3pm":
            return self._d3pm_parameterization(logits=logits)

        return logits

    def compute_loss(self, batch, prefix, batch_idx=-1):
        if not is_xla_available and ((self.current_run_fwd_bwd_pass == 0 and self.config.mode == 'train') or batch_idx == 0):
            self.visualize_samples(batch, batch_idx, split=prefix)
        if getattr(self.config.trainer, 'overfit_on_first_batch', False):
            if batch_idx <= 0:
                # store it
                self.overfit_batch = batch.copy()
            else:
                batch = self.overfit_batch
        
        kwargs = self.get_cond_dict(batch)
        modality_mask = batch.get("modality_mask", None)
        (input_tokens, output_tokens, attention_mask) = self._maybe_sub_sample(batch["input_ids"], batch.get("attention_mask", None))

        continuous_mode = self.config.trainer.image_mode == "continuous"
        joint_ar_nar_mask, modality = None, None
        if continuous_mode:
            assert 'modality' in batch
            x0, img_emb, attention_mask, modality = (
                batch["input_ids"],
                batch["img_emb"],
                batch["attention_mask"],
                batch["modality"],
            )  # img_emb has [0.] * txt_len + img_emb
            xt = x0
            B, N_tot, C = img_emb.shape

            noise_scheduler = self.get_vae().scheduler
            noise = torch.randn_like(img_emb)
            timesteps = torch.randint(0, noise_scheduler.config.num_train_timesteps, (B,), device=img_emb.device).long()
            img_timesteps = timesteps.unsqueeze(-1).expand(-1, N_tot).to(self.dtype)
            zero_timesteps = torch.zeros_like(img_timesteps)
            unet_conditioning = torch.where(modality == 1, img_timesteps, zero_timesteps)
            # unet_conditioning = timesteps.to(self.dtype)
            # unet_conditioning = torch.where(modality_mask==1, timesteps.to(self.dtype), torch.zeros_like(timesteps.to(self.dtype)))
            x_img_emb = noise_scheduler.add_noise(img_emb, noise, timesteps).to(self.dtype)

            if noise_scheduler.config.prediction_type == "epsilon":
                target = noise
            elif noise_scheduler.config.prediction_type == "v_prediction":
                target = noise_scheduler.get_velocity(img_emb, noise, timesteps) # todo, might break
            elif noise_scheduler.config.prediction_type:
                raise ValueError(f"Unknown prediction type {noise_scheduler.config.prediction_type}")
            target = target.to(self.dtype)
        else:
            unet_conditioning, xt, x0, x_img_emb, modality_mask = None, None, input_tokens, None, batch.get("modality_mask", None)
            if self.parameterization != "ar":
                t = self._sample_t(x0.shape[0], x0.device)
                if self.T > 0:
                    t = (t * self.T).to(torch.int)
                    t = t / self.T
                    t += 1 / self.T # t \in {1/T, 2/T, ..., 1}

                if self.change_of_variables:
                    unet_conditioning = t[:, None]
                    f_T = torch.log1p(-torch.exp(-self.noise.sigma_max))
                    f_0 = torch.log1p(-torch.exp(-self.noise.sigma_min))
                    move_chance = torch.exp(f_0 + t * (f_T - f_0))
                    move_chance = move_chance[:, None]
                else:
                    # total, rate
                    sigma, dsigma = self.noise(t)
                    unet_conditioning = sigma[:, None]
                    move_chance = 1 - torch.exp(-sigma[:, None])

                xt, ignore_batch_mask_for_metrics, joint_ar_nar_mask, should_mask_txt, should_mask_img, move_indices = self.q_xt(x0, move_chance, return_ignore_batch_mask_for_metrics=True, batch=batch)
                if (self.config.model.flex_attention_img_masking_prob is not None or self.config.model.flex_attention_txt_masking_prob is not None) and self.backbone.training:
                    assert xt.shape[1] == (self.config.model.img_length + self.config.model.txt_length)
                    txt_batch_attn_dropout = torch.rand(xt.shape[0], device=xt.device) < self.config.model.flex_attention_txt_masking_prob
                    img_batch_attn_dropout = torch.rand(xt.shape[0], device=xt.device) < self.config.model.flex_attention_img_masking_prob

                    # If we mask out a modality, we cannot let it only see itself
                    txt_batch_attn_dropout = txt_batch_attn_dropout & ~should_mask_txt.squeeze(-1)
                    img_batch_attn_dropout = img_batch_attn_dropout & ~should_mask_img.squeeze(-1)
                    kwargs['block_mask'] = get_block_mask(txt_batch_attn_dropout, img_batch_attn_dropout, self.config.model.txt_length, xt.shape[0], xt.shape[1], xt.device)

                    # TODO: Somehow report these metrics so we know what's going on
                    ignore_batch_mask_for_metrics = ignore_batch_mask_for_metrics | (txt_batch_attn_dropout | img_batch_attn_dropout).unsqueeze(-1)
                    
                if getattr(self.config.trainer, "interleaved_training_flex_attention", False):
                    kwargs['block_mask'] = get_interleaved_block_mask(batch["sample_ids"], batch_size=xt.shape[0], seq_len=xt.shape[1], device=xt.device)
                    kwargs['sample_ids'] = batch["sample_ids"]

            elif self.config.trainer.ar_inpainting:
                x0 = torch.cat([x0, x0], dim=1)
                kwargs['modality'] = torch.cat([kwargs['modality'], kwargs['modality']], dim=1)
                attention_mask = torch.cat([torch.zeros_like(attention_mask, dtype=attention_mask.dtype), torch.ones_like(attention_mask, dtype=attention_mask.dtype)], dim=1)
                modality_mask = torch.cat([modality_mask, modality_mask], dim=1)
                min_val, max_val = 0.0, 1.0
                n = x0.shape[0]
                _eps_t = torch.rand(n, device=self.device)
                offset = torch.arange(n, device=self.device) / n
                _eps_t = (_eps_t / n + offset) % 1
                t = (max_val - min_val) * _eps_t + min_val
                if getattr(self.config.eval, "ar_inpainting_force_val", None) is not None:
                    t = torch.full_like(t, getattr(self.config.eval, "ar_inpainting_force_val"), dtype=t.dtype, device=t.device)
                move_indices = torch.rand(*x0.shape, device=x0.device) < t[:, None]
                move_indices[:, x0.shape[1] // 2:] = False
                x0 = torch.where(move_indices, self.mask_index, x0)
                xt = x0
            else:
                xt = x0
                if (self.training or getattr(self.config.trainer, "force_flip_ar_val", False)) and self.config.trainer.rand_ar_modality_dropout is not None:
                    assert not is_xla_available
                    xt = xt.clone()
                    batch_modality_dropout = torch.rand(xt.shape[0], device=xt.device) < self.config.trainer.rand_ar_modality_dropout
                    first_modality = batch["modality"][:, 0]
                    first_modality_mask = batch["modality"] == first_modality[:, None]
                    xt = torch.where(first_modality_mask & batch_modality_dropout[:, None], self.mask_index, xt)
                    attention_mask = torch.where(first_modality_mask & batch_modality_dropout[:, None], False, attention_mask)
        true_logits = None
        model_output = self.forward(
            xt, unet_conditioning, return_additional_loss=True, batch=batch, x_img_emb=x_img_emb, joint_ar_nar_mask=joint_ar_nar_mask, **kwargs
        )
        if isinstance(model_output, tuple):
            if continuous_mode:
                model_output, img_output = model_output # model_output is for text, img_output is for image although both will have N_total length (zeroed out according to modality mask)
                B, _, C = img_output.shape
                # use modality mask to get the correct logits
                x0 = x0[modality==0].reshape(B, -1)
                xt = xt[modality==0].reshape(B, -1)
                attention_mask = torch.ones_like(x0, dtype=torch.bool) # since we separate text, we don't need to mask it out
                img_output = img_output[modality==1].reshape(B, -1, C)
                target = target[modality==1].reshape(B, -1, C)
            else:
                model_output, true_logits = model_output

        to_dtype = self.dtype if self.config.trainer.low_precision_loss else torch.float32
        model_output = model_output.to(to_dtype)
        if true_logits is not None:
            true_logits = true_logits.to(self.dtype)

        if continuous_mode:
            img_output = img_output.to(to_dtype)
            target = target.to(to_dtype)

        # if prefix != 'train':
        #     breakpoint()

        if self.config.trainer.ar_shift:
            x0 = x0[:, 1:]
            xt = xt[:, 1:]
            attention_mask = attention_mask[:, 1:]
            if modality_mask is not None: modality_mask = modality_mask[:, 1:]
            if modality is not None: modality = modality[:, 1:]

        if not self.is_compiled:
            utils.print_nans(model_output, "model_output")

        if self.parameterization == "sedd":
            return dsigma[:, None] * self._score_entropy(model_output, sigma[:, None], xt, x0)
        elif self.parameterization == "planner":
            return F.binary_cross_entropy_with_logits(model_output.squeeze(-1), move_indices.float()).mean()

        diffusion_loss = None
        if self.T > 0:
            diffusion_loss = self._d3pm_loss(model_output=model_output, xt=xt, x0=x0, t=t)
            if self.parameterization == "d3pm":
                reconstruction_loss = self._reconstruction_loss(x0)
            elif self.parameterization == "subs" or self.parameterization == "ar":
                reconstruction_loss = 0
            # return reconstruction_loss + diffusion_loss

        if self.parameterization == "ar":
            if getattr(self.config.trainer, "use_orig_unidisc_dit", False):
                return self.shortcut_return(model_output, x0, attention_mask, prefix)
            else:
                log_p_theta = model_output.gather(-1, x0[:, :, None])[:, :, 0]
        else:
            # SUBS parameterization, continuous time
            log_p_theta = torch.gather(input=model_output, dim=-1, index=x0[:, :, None]).squeeze(-1)

        if self.change_of_variables or self.importance_sampling:
            return log_p_theta * torch.log1p(-torch.exp(-self.noise.sigma_min))

        if self.parameterization == "ar" or getattr(self.config.trainer, "no_ce_weighting", False):
            std_weighting = 1
        else:
            std_weighting = (dsigma / torch.expm1(sigma))[:, None]
        
        # ddprint(f"self.current_run_fwd_bwd_pass: {self.current_run_fwd_bwd_pass}, log_p_theta: {torch.isnan(log_p_theta).any()}")
        # if torch.isnan(log_p_theta).any() or self.current_run_fwd_bwd_pass > 15473:
        #     import pickle
        #     import time
        #     rank = get_rank()
        #     timestamp = int(time.time() * 1e9)  # nanosecond timestep
        #     filename = f'batch_datastep_{self.current_run_fwd_bwd_pass}_rank{rank}_{timestamp}.pkl'
        #     with open(filename, 'wb') as f:
        #         pickle.dump(log_p_theta, f)
        #     ddprint(f"Saved batch to {filename}")

        loss = -log_p_theta * std_weighting
        if not (self.parameterization == "ar" or (self.config.trainer.ar_llm_loss and joint_ar_nar_mask is None) or getattr(self.config.trainer, "no_ce_weighting", False)):
            gamma = getattr(self.config.trainer, "softmin_snr", None)
            if gamma is not None:
                softmin_weighting = (dsigma / (torch.expm1(sigma) + (1 / gamma)))[:, None]
                loss = -log_p_theta * softmin_weighting

        if diffusion_loss is not None:
            assert self.T > 0
            loss = diffusion_loss

        std_loss = -log_p_theta * std_weighting
        loss_dict = dict(std_loss=std_loss.detach(), extra_losses=dict())

        if self.config.trainer.log_seperate_modal_losses:
            assert not continuous_mode
            loss_dict.update(
                dict(
                    std_txt_loss=(std_loss.detach() * modality_mask[..., 0] * attention_mask), 
                    std_img_loss=(std_loss.detach() * modality_mask[..., 1] * attention_mask)
                )
            )

        if getattr(self.config.trainer, "mask_entire_modality", None) is not None and self.backbone.training and not self.config.parameterization == "ar":
            loss_dict['batch_ignore_loss'] = ignore_batch_mask_for_metrics.squeeze(-1)

        if joint_ar_nar_mask is not None:
            if "batch_ignore_loss" in loss_dict:
                loss_dict["batch_ignore_loss"] = loss_dict["batch_ignore_loss"] | joint_ar_nar_mask
            else:
                loss_dict["batch_ignore_loss"] = joint_ar_nar_mask

        if (self.config.trainer.multimodal_batches or (self.config.trainer.text_loss_weight is not None and self.config.trainer.img_loss_weight is not None)) and not continuous_mode:
            txt_mask = modality_mask[..., 0] & attention_mask
            img_mask = modality_mask[..., 1] & attention_mask
            txt_count = txt_mask.sum()
            img_count = img_mask.sum()
            total_count = txt_count + img_count
            txt_frac = txt_count / total_count
            img_frac = img_count / total_count
            loss_dict["extra_losses"]["trainer/img_frac"] = img_frac
            loss_dict["extra_losses"]["trainer/txt_frac"] = txt_frac
            loss_dict["extra_losses"]["trainer/attention_mask_valid_frac"] = attention_mask.sum() / attention_mask.numel()
            if "batch_ignore_loss" in loss_dict:
                loss_dict["extra_losses"]["trainer/ignore_batch_metrics_frac"] = loss_dict["batch_ignore_loss"].sum() / loss_dict["batch_ignore_loss"].numel()

        if joint_ar_nar_mask is not None:
            pass # Defer loss mean until after ar_loss is calculated
        elif self.config.trainer.text_loss_weight is not None and self.config.trainer.img_loss_weight is not None:
            assert not continuous_mode
            loss = loss * attention_mask
            txt_loss = (
                loss[txt_mask].sum() / txt_count
            ) * txt_frac * self.config.trainer.text_loss_weight
            img_loss = (
                loss[img_mask].sum() / img_count
            ) * img_frac * self.config.trainer.img_loss_weight

            if getattr(self.config.trainer, "set_max_txt_loss_ratio", None) is not None and not (torch.isnan(img_loss).any() or torch.isnan(txt_loss).any()):
                max_txt_loss = getattr(self.config.trainer, "set_max_txt_loss_ratio", 1.5) * img_loss.detach()
                scale = torch.minimum(torch.tensor(1.0, device=txt_loss.device), max_txt_loss / (txt_loss.detach() + 1e-8))
                txt_loss = txt_loss * scale

            txt_loss = torch.nan_to_num(txt_loss, nan=0.0)
            img_loss = torch.nan_to_num(img_loss, nan=0.0)

            if getattr(self.config.trainer, "force_remove_img_tokens", False):
                img_loss = torch.tensor(0, device=loss.device, dtype=loss.dtype)

            loss = txt_loss + img_loss
            loss_dict.update(dict(txt_loss=txt_loss.clone().detach(), img_loss=img_loss.clone().detach()))

        elif continuous_mode:
            img_loss = F.mse_loss(img_output, target)
            
            if attention_mask[:, self.static_txt_sl].numel() == 0:
                # Let grads pass even though this is zeros...
                txt_loss = (loss[:, self.static_txt_sl] * attention_mask[:, self.static_txt_sl]).sum()
            else:
                txt_loss = (loss[:, self.static_txt_sl] * attention_mask[:, self.static_txt_sl]).sum() / attention_mask[:, self.static_txt_sl].sum()
            loss = txt_loss + img_loss * self.config.trainer.image_loss_weight
            loss_dict.update(dict(img_loss=img_loss.clone().detach(), txt_loss=txt_loss.clone().detach()))
        else:
            _attention_mask = torch.ones_like(attention_mask) if getattr(self.config.trainer, "force_full_attention_mask_loss_only", False) else attention_mask
            loss = (loss * _attention_mask).sum() / _attention_mask.sum()
            loss = torch.nan_to_num(loss, nan=0.0)

        ar_loss = None
        if self.config.trainer.ar_llm_loss:
            assert not continuous_mode
            valid_loss = xt == self.mask_index
            _labels = x0.clone()
            _labels = torch.where(valid_loss, _labels, -1)
            _labels = torch.where(~attention_mask.to(torch.bool), -1, _labels)

            _logits = true_logits
            _logits[:, :, self.mask_index] += self.neg_infinity

            if getattr(self.config.model, "force_argmax_valid_indices", False):
                assert not self.config.trainer.multimodal_batches
                _logits[:, self.static_txt_sl, self.text_vocab_size:] = torch.finfo(_logits.dtype).min
                _logits[:, self.static_img_sl, : self.text_vocab_size] = torch.finfo(_logits.dtype).min

            _logits = _logits.contiguous().view(-1, _logits.shape[-1])
            _labels = _labels.contiguous().view(-1)

            if self.config.trainer.ar_print_loss:
                _labels = _labels.to(_logits.device)
                ce_loss = loss_fct(_logits, _labels)
                loss_fct = nn.CrossEntropyLoss(reduction='none')
                ce_loss = ce_loss.mean(dim=-1)
                if hasattr(self, 'histogram') is False:
                    self.histogram = {}

                update_histogram(self.histogram, t, ce_loss)
                rprint(f"ELM loss: move: {move_chance}, t:{t}, {ce_loss}")

            loss_fct = nn.CrossEntropyLoss(ignore_index=-1, reduction='none' if joint_ar_nar_mask is not None else 'mean')
            ce_loss = loss_fct(_logits, _labels)
            loss_dict["extra_losses"]["trainer/ce_loss"] = ce_loss
            ar_loss = ce_loss

        if joint_ar_nar_mask is not None:
            __true_logits = true_logits.clone()
            __true_logits = torch.where(torch.arange(true_logits.shape[-1], device=true_logits.device)[None, None, :] == self.mask_index, self.neg_infinity, __true_logits)
            log_softmax = __true_logits.log_softmax(-1)
            ar_loss = -log_softmax.gather(-1, x0[:, :, None])[:, :, 0]

            assert ar_loss is not None
            assert ar_loss.ndim == 2
            assert loss.ndim == 2
            ar_loss_weight = joint_ar_nar_mask.sum(dim=0) / joint_ar_nar_mask.shape[0]
            nar_loss_weight = 1 - ar_loss_weight
            loss_dict["extra_losses"]["trainer/ar_loss_weight"] = ar_loss_weight.detach().float()
            loss_dict["extra_losses"]["trainer/nar_loss_weight"] = nar_loss_weight.detach().float()
            loss_dict["extra_losses"]["trainer/ce_loss"] = ar_loss.mean().detach().float()
            ar_loss = (ar_loss * ar_loss_weight) * attention_mask
            nar_loss = (loss * nar_loss_weight) * attention_mask
            valid_count = attention_mask.sum()
            if not is_xla_available:
                ar_valid_count = attention_mask[joint_ar_nar_mask].sum()
                nar_valid_count = attention_mask[~joint_ar_nar_mask].sum()
                loss_dict["extra_losses"]["trainer/ar_loss"] = (ar_loss[joint_ar_nar_mask].sum() / ar_valid_count).detach().float()
                loss_dict["extra_losses"]["trainer/nar_loss"] = (loss[~joint_ar_nar_mask].sum() / nar_valid_count).detach().float()
                loss_dict["extra_losses"]["trainer/ar_ppl"] = torch.exp(loss_dict["extra_losses"]["trainer/ar_loss"]).detach().float()
                loss_dict["extra_losses"]["trainer/nar_ppl"] = torch.exp(loss_dict["extra_losses"]["trainer/nar_loss"]).detach().float()
            loss = (torch.where(joint_ar_nar_mask[:, None], ar_loss, nar_loss).sum() / valid_count) + weighted_z_loss
        elif ar_loss is not None:
            loss = ar_loss

        loss_dict = dict(loss=loss, **loss_dict)
        std_loss = loss_dict.get("std_loss", 0)
        std_nlls = std_loss * attention_mask

        if "batch_ignore_loss" in loss_dict:
            attention_mask = torch.where(loss_dict['batch_ignore_loss'][:, None].repeat(1, attention_mask.shape[-1]), torch.full_like(attention_mask, False), attention_mask)
            
        losses = Loss(
            loss=loss_dict["loss"],
            img_loss=loss_dict.get("img_loss", 0),
            txt_loss=loss_dict.get("txt_loss", 0),
            nlls=std_nlls,
            txt_nlls=loss_dict.get("std_txt_loss", 0),
            img_nlls=loss_dict.get("std_img_loss", 0),
            token_mask=attention_mask,
            modality_mask=modality_mask,
            extra_losses=loss_dict.get("extra_losses", None),
        )

        if getattr(self.config.trainer, "disable_torchmetrics", False):
            raise NotImplementedError("Torchmetrics disabled")
        
        elif prefix == "train":
            return losses
        elif prefix == "val":
            self.valid_metrics.update(losses.nlls, losses.token_mask)
            if hasattr(self, "valid_txt_metrics"):
                self.valid_txt_metrics.update(losses.txt_nlls, losses.modality_mask[..., 0] & losses.token_mask)
                self.valid_img_metrics.update(losses.img_nlls, losses.modality_mask[..., 1] & losses.token_mask)

        elif prefix == "test":
            self.test_metrics.update(losses.nlls, losses.token_mask)
            metrics = self.test_metrics
            self.log_dict(metrics, on_step=False, on_epoch=True, sync_dist=True)
        else:
            raise ValueError(f"Invalid prefix: {prefix}")
        
    @torch.no_grad()
    def zero_shot_eval(self):
        dataloader = self.validation_dataloader
        total_batches = len(dataloader)
        rprint(f"Zero shot eval with {total_batches} batches with limit_val_batches: {self.config.trainer.limit_val_batches}")
        for idx, batch in tqdm(enumerate(dataloader), total=total_batches, desc="Zero shot eval validation steps", disable=not is_main_process()):
            if self.config.trainer.limit_val_batches is not None and idx >= self.config.trainer.limit_val_batches:
                break
            self.zero_shot_eval_step(batch, idx)
        
        self.zero_shot_eval_epoch_end()

    def validate(self, state: TrainingState):
        self.on_validation_epoch_start()

        if getattr(self.config.eval, "compute_val_metrics_standalone", False) and getattr(self.config.eval, "bypass_normal_validation", False):
            batch = next(iter(self.validation_dataloader))
            self.on_validation_epoch_end(example_batch=batch)
            self.on_validation_epoch_cleanup()
            return

        total_len = 10 if self.config.data.iterable or self.config.data.webdataset_indexed else len(self.validation_dataloader)
        dprint(f"Validation batches: {total_len}")

        total_batches = (
            self.config.trainer.limit_val_batches
            if (self.config.trainer.limit_val_batches is not None and self.fid_eval is False)
            else total_len
        )
        if getattr(self.config.eval, 'pplx_full_dataset', False):
            rprint("[INFO] PPLX full dataset eval, setting total_batches to total_len")
            total_batches = total_len
        elif self.config.eval.max_num_fid_batches_per_device is not None and self.fid_eval:
            total_batches = min(total_len, self.config.eval.max_num_fid_batches_per_device)

        _dataloader = self.train_dataloader if self.config.eval.val_with_train_data else self.validation_dataloader
        rprint(f"Validating with {total_batches} batches on {self.world_size} GPUs with batch size {self.config.loader.eval_batch_size}")
        for idx, batch in tqdm(enumerate(_dataloader), total=total_batches, desc="Validation steps", disable=not is_main_process()):
            if self.config.trainer.limit_val_batches is not None and idx >= total_batches:
                break
            self.validation_step(batch, idx)

        if getattr(self.config.eval, "eval_large_batch", None) is not None:
            assert isinstance(batch, TensorDict)
            dataloader_iter = iter(_dataloader)
            large_batch = [next(dataloader_iter, None) for _ in range(getattr(self.config.eval, "eval_large_batch", None))]
            large_batch = [b for b in large_batch if b is not None]
            large_batch = torch.stack(large_batch, dim=0)
            batch = large_batch
            gprint(f"Large batch shape: {batch.shape}")
        else:
            batch = next(iter(_dataloader))

        if self.config.eval.visualize_data_only:
            return

        if self.config.eval.compute_standalone_mauve and not getattr(self.config.eval, "global_disable_mauve", False):
            self.mauve_store_references(_dataloader)

        if self.config.mode == "eval":
            gprint(f"Batch shape: {batch['input_ids'].shape}")
        
        self.on_validation_epoch_end(example_batch=batch)
        self.on_validation_epoch_cleanup()

    @cached_property
    def global_batch_size(self):
        """Batch size for a single step over all GPUs"""
        # SPMD treats all ranks [regardless of node] as a single device
        return self.step_batch_size * (1 if (self.config.trainer.xla_spmd and is_xla_available) else self.world_size)

    @cached_property
    def step_batch_size(self):
        """Batch size for a single step for a single GPU"""
        return self.config.loader.batch_size * self.config.trainer.accumulate_grad_batches

    @cached_property
    def world_size(self):
        """Number of GPUs over all nodes"""
        return get_world_size()

    @cached_property
    def num_tokens_per_sample(self):
        """Number of tokens per sample"""
        return self.config.model.length

    @cached_property
    def gradient_accumulation_steps(self):
        """Number of gradient accumulation steps"""
        return self.config.trainer.accumulate_grad_batches

    @cached_property
    def static_txt_sl(self):
        return slice(None, self.config.model.txt_length)

    @cached_property
    def static_img_sl(self):
        return slice(-self.config.model.img_length, None)

    def img_txt_pair_batch_mask(self, batch=None):
        return batch["modality_mask"][..., 1].sum(dim=-1) > 0

    def txt_sl(self, batch=None):
        return batch["modality_mask"][..., 0]

    def img_sl(self, batch=None):
        return batch["modality_mask"][..., 1]

    @cached_property
    def is_compiled(self):
        return is_xla_available or self.config.trainer.compile
    
    @property
    def allow_slicing(self):
        return not is_xla_available and not self.backbone.training

    @property
    def training(self):
        return self.backbone.training

    def get_step_metrics(self):
        return {
            "trainer/global_step": self.global_step,
            "global_samples": self.global_step * self.global_batch_size,
            "train_metrics/global_tokens": self.global_step * self.global_batch_size * self.config.model.length,
            "effective_global_tokens": self.global_step * self.global_batch_size * self.config.model.length * (0.5 if self.config.parameterization == "subs" else 1.0),
            "effective_global_step": int(self.global_step * (0.5 if self.config.parameterization == "subs" else 1.0)),
        }

    def train(self):
        tr = self.config.trainer
        total_batch_size = self.global_batch_size
        initial_global_step = self.global_step
        true_step = 0
        first_epoch = 0
        self.current_run_global_step = 0
        self.current_run_fwd_bwd_pass = 0
        rprint(f"Started at step {self.accelerator.step}")
        if self.non_embedding_params < 1e9:
            with try_except(write_error_to_file=True, clear_cuda_cache=True):
                self.print_hashes()

        # There is an unknown bug with accelerator where non-master ranks don't load the step count from a checkpoint.
        # We workaround by broadcasting the step count if necessary
        if is_torch_cuda_available():
            dprint(f"Gathering step from {self.world_size} ranks")
            starting_steps = gather_object([self.accelerator.step])
            rprint(f"Starting steps: {starting_steps}")
            if not all([x > 0 for x in starting_steps]):
                rprint(f"Not all ranks have >0 step, setting to: {starting_steps[0]}")
                self.accelerator.step = starting_steps[0]

        if is_xla_available:
            import torch_xla.core.xla_model as xm
            import torch_xla.debug.profiler as xp
            assert (self.config.trainer.accumulate_grad_batches == 1) or getattr(self.config.trainer, "allow_accum_grad_batches_xla", False), "Accumulate grad batches must be 1 for XLA"

        rprint(f"***** Starting training at global step: {self.global_step} *****")
        rprint(f"  Instantaneous batch size per device = {self.config.loader.batch_size}")
        rprint(f"  Gradient Accumulation steps = {tr.accumulate_grad_batches}")
        rprint(f"  Num GPUs = {tr.devices}")
        rprint(f"  Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}")
        rprint(f"  Total optimization steps = {tr.max_steps}")
        rprint(f"  Reported Global Batch Size: {self.global_batch_size}, Reported Step Batch Size: {self.step_batch_size}, Reported World Size: {self.world_size}")

        if not self.config.data.iterable and not self.config.data.webdataset_indexed and is_torch_cuda_available():
            num_epoch_steps = len(self.train_dataloader)
            rprint(f"  Num examples = {len(self.train_dataloader.dataset)}")
            rprint(f"  Num batches each epoch = {len(self.train_dataloader)}")
            rprint(f"Train Dataloader Size on single GPU: {num_epoch_steps}")
            if len(self.train_dataloader.dataset) < total_batch_size:
                rprint("The training dataloader is smaller than the total batch size. This may lead to unexpected behaviour.")
        else:
            num_epoch_steps = 10000

        if self.config.trainer.pytorch_profile:
            profiler = Profiler(
                output_dir=self.config.output_dir, warmup_steps=tr.profiler_warmup_steps, active_steps=tr.profiler_active_steps, record_memory=True
            )

        if self.config.trainer.viz_images_only:
            return self.viz_images_from_dataloader()

        progress_bar = tqdm(range(0, tr.max_steps), initial=initial_global_step, desc="Steps", disable=not is_local_main_process(), leave=False, smoothing=0.15)

        global_step_metrics = defaultdict(float)
        global_extra_wandb_metrics = dict()
        accumulate_steps = 0
        first_start_time = time.time()
        self.on_train_start()

        rprint(f"Training for {tr.num_epochs} epochs...")
        last_end_step_time = start_timing(f"Dataloading accum:{accumulate_steps}, #{true_step}, global_step:{self.global_step}")
        for epoch in range(first_epoch, tr.num_epochs):
            rprint(f"Starting epoch {epoch}...")
            for step, batch in enumerate(self.train_dataloader):
                ddprint(f"Data Step: {step}")
                if self.config.trainer.iterate_dataloader_only:
                    rprint(f"Iterating dataloader only: {step}")
                    # rprint((batch["modality"] == 0).sum(), (batch["modality"] == 1).sum())
                    if (batch["attention_mask"] == 0).all(dim=-1).any():
                        breakpoint()
                    batch = self.update_batch(batch)
                    if (batch["sample_ids"] == -1).all(dim=-1).any():
                        breakpoint()
                    continue

                elif getattr(self.config.trainer, "iterate_dataloader_n_dataloader_batches", None) is not None and step <= self.config.trainer.iterate_dataloader_n_dataloader_batches:
                    self.current_run_fwd_bwd_pass += 1
                    if self.current_run_fwd_bwd_pass % self.config.trainer.accumulate_grad_batches == 0:
                        self.global_step += 1
                        self.current_run_global_step += 1
                    ddprint(f"Iterating dataloader only for {self.config.trainer.iterate_dataloader_n_dataloader_batches} dataloader batches. At step {self.global_step=}, {self.current_run_global_step=}, {self.current_run_fwd_bwd_pass=}")
                    continue

                if self.config.trainer.tpu_force_mark_step: xm.mark_step()
                if self.config.trainer.sync_dataloader_timing: synchronize_device()
                global_step_metrics[f"dataloading_time"] += end_timing(last_end_step_time)

                if self.config.trainer.nvtx_profile and self.is_compiled and step == 4:
                    torch.cuda.cudart().cudaProfilerStart()

                if self.current_run_global_step == 1 and is_xla_available:
                    gprint(f"First start time: {time.time() - first_start_time}")

                if getattr(self.config.data, "force_dummy_tensordict", False):
                    gprint(self.global_step, self.current_run_global_step, true_step, batch["idx"].tolist(), batch["dataset_idx"].tolist())

                if getattr(self.config.trainer, "assert_at_n_steps", None) is not None and self.global_step == self.config.trainer.assert_at_n_steps:
                    gprint(batch["img_input_ids"].min(), batch["img_input_ids"].max(), batch["txt_input_ids"].min(), batch["txt_input_ids"].max())

                if batch is None:
                    rprint(f"Batch is None at step {step}")
                    continue

                if self.config.trainer.tpu_force_mark_step: xm.mark_step()
                ddprint(f"After Data Step 2: {step}")
                with nullcontext() if is_xla_available else self.accelerator.accumulate(self.backbone):
                    ddprint(f"Before forward pass for global_step: {self.global_step}")
                    start_forward_time = start_timing(f"Forward Pass accum:{accumulate_steps}, #{true_step}, global_step:{self.global_step}")
                    global_step_metrics["examples_seen_per_gpu"] += len(next(iter(batch.values())))
                    state: TrainingState = TrainingState(
                        epoch_step=step,
                        num_epoch_steps=num_epoch_steps,
                        global_step=self.global_step,
                        epoch=epoch,
                        true_step=true_step,
                        current_run_global_step=self.current_run_global_step,
                    )

                    if self.accelerator.sync_gradients and is_xla_available is False:
                        self.cb_handler.on_train_step_start(state=state, unit=None)

                    if self.config.trainer.tpu_force_mark_step: xm.mark_step()

                    ddprint(f"Before Fwd: {step}")
                    with xp.StepTrace('Forward', step_num=step) if self.config.trainer.tpu_profile else nullcontext():
                        losses = self.training_step(batch, step)

                    ddprint(f"After Fwd: {step}")
                    global_step_metrics["forward_pass_time"] += end_timing(start_forward_time)
                    true_step += 1
                    evaluate_extra_log_data = lambda: dict()

                    if self.config.trainer.tpu_force_mark_step: xm.mark_step()

                    if isinstance(losses, dict):
                        for k, v in losses.items():
                            if isinstance(v, torch.Tensor):
                                global_step_metrics[k.removeprefix("metric_")] += v.detach().cpu().item()
                            else:
                                global_extra_wandb_metrics[k.removeprefix("metric_")] = v
                        losses = dict(
                            filter(lambda item: not item[0].startswith("metric_"), losses.items())
                        )  # Allow for custom metrics that are not losses
                        loss = sum(losses.values())
                    elif isinstance(losses, Loss):
                        loss = losses.loss
                        metrics = self.train_metrics(losses.nlls, losses.token_mask)
                        if hasattr(self, "txt_metrics") and losses.modality_mask is not None:
                            txt_metrics = self.txt_metrics(losses.txt_nlls, losses.modality_mask[..., 0] & losses.token_mask)
                        if hasattr(self, "img_metrics") and losses.modality_mask is not None:
                            img_metrics = self.img_metrics(losses.img_nlls, losses.modality_mask[..., 1] & losses.token_mask)

                        extra_losses_dict = losses.extra_losses
                        extra_losses_dict = extra_losses_dict if extra_losses_dict is not None else dict()
                        if self.config.trainer.tpu_force_mark_step: xm.mark_step()

                        def evaluate_extra_log_data():
                            if hasattr(self, "txt_metrics"):
                                return {
                                    **{f"train/txt_{k.split('/')[-1]}": v for k, v in replace_nan_dict(txt_metrics).items()},
                                    **{f"train/img_{k.split('/')[-1]}": v for k, v in replace_nan_dict(img_metrics).items()},
                                }
                            else:
                                return {}

                        ddprint(f"Before loss: {step}")
                        incremental_dict_update(global_extra_wandb_metrics, {
                            "trainer/loss": loss,
                            "trainer/img_loss": losses.img_loss,
                            "trainer/txt_loss": losses.txt_loss,
                            **{
                                "global_samples": self.global_step * self.global_batch_size,
                                "train_metrics/global_tokens": self.global_step * self.global_batch_size * self.config.model.length,
                                "effective_global_tokens": self.global_step * self.global_batch_size * self.config.model.length * (0.5 if self.config.parameterization == "subs" else 1.0),
                                "effective_global_step": int(self.global_step * (0.5 if self.config.parameterization == "subs" else 1.0)),
                            },
                            **metrics,
                            **extra_losses_dict,
                        })
                        if self.config.trainer.tpu_force_mark_step: xm.mark_step()
                    else:
                        loss = losses

                    if is_torch_cuda_available():
                        global_step_metrics["loss"] = loss.detach().cpu().item()  # Only on the main process to avoid syncing

                    ddprint(f"Before backward pass for global_step: {self.global_step}")

                    # Short-circuit to avoid XLA eval
                    if tr.backward_pass and (is_xla_available or torch.isfinite(loss).all()):
                        start_backward_time = start_timing(f"Backward Pass accum:{accumulate_steps}, #{true_step}, global_step:{self.global_step}")
                        if self.accelerator.sync_gradients:
                            start_sync_time = start_timing(f"Gradient Sync global_step:{self.global_step}")
                            if getattr(self.config.trainer, "sync_timing", False):
                                sync_times(self.device)

                        if self.config.trainer.tpu_force_mark_step: xm.mark_step()

                        # After each fwd, we perform a bwd. However, if we are accumulating there is an internal no_sync so the gradients remain on the GPU until
                        # the final bwd before a step. This can be controlled by sync_each_batch. Note that for the last bwd, the sync happens inside the bwd call below, so any timing for stragglers needs to happen before this call.
                        with xp.StepTrace('Backward', step_num=step) if self.config.trainer.tpu_profile else nullcontext():
                            ddprint(f"Before accelerator.backward for global_step: {self.global_step}")
                            self.accelerator.backward(loss)
                            ddprint(f"After accelerator.backward for global_step: {self.global_step}")

                        with xp.StepTrace('After Backward + Clip', step_num=step) if self.config.trainer.tpu_profile else nullcontext():
                            if self.accelerator.sync_gradients:
                                ddprint(f"Before after.backward for global_step: {self.global_step}")
                                self.after_backward(state)
                                if tr.gradient_clip_val is not None:
                                    ddprint(f"Before self.accelerator.clip_grad_norm_ for global_step: {self.global_step}")
                                    total_grad_norm = self.accelerator.clip_grad_norm_(self.backbone.parameters(), tr.gradient_clip_val)
                                    ddprint(f"After self.accelerator.clip_grad_norm_ for global_step: {self.global_step}")

                        with xp.StepTrace('Optimizer + Scheduler Step', step_num=step) if self.config.trainer.tpu_profile else nullcontext():
                            ddprint(f"Before optimizer step for global_step: {self.global_step}, {step}")
                            if is_xla_available and False:
                                # TODO: xm.optimizer_step(self.optimizer) does not appear to be needed for XLA
                                xm.optimizer_step(self.optimizer)
                            else:
                                self.optimizer.step()
                            ddprint(f"After optimizer step for global_step: {self.global_step}, {step}")
                            self.lr_scheduler.step()
                            ddprint(f"After lr_scheduler step for global_step: {self.global_step}, {step}")

                        zero_grad_kwargs = dict()
                        if "apex" not in self.config.trainer.optimizer_cls:
                            zero_grad_kwargs["set_to_none"] = tr.set_grads_to_none

                        ddprint(f"Before zero_grad for global_step: {self.global_step}, {step}")
                        self.optimizer.zero_grad(**zero_grad_kwargs)
                        ddprint(f"Zeroed gradients for global_step: {self.global_step}, {step}")

                        if self.accelerator.sync_gradients:
                            if self.ema is not None: 
                                if self.config.trainer.use_custom_ema:
                                    ema_update(self.unwrap_model(self.ema), self.unwrap_model(self.backbone), self.config.trainer.ema)
                                else:
                                    self.ema.step(self.get_params())
                            global_step_metrics["gradient_sync_time"] += end_timing(start_sync_time)

                        global_step_metrics["backward_pass_time"] += end_timing(start_backward_time)
                    else:
                        if not torch.isfinite(loss).all(): gprint(f"Loss is not finite: {loss}")
                        gprint("Skipping backward pass!")

                    accumulate_steps += 1
                    self.current_run_fwd_bwd_pass += 1

                # Important: A single "global_step" is a single optimizer step. The accumulate decorator silently skips backward + optimizer to allow for gradient accumulation.
                # A "true_step" counts the number of forward passes (on a per-GPU basis). The condition below should only happen immediately after a backward + optimizer step.
                ddprint(f"Syncing gradients for global_step: {self.global_step}. Should sync: {self.accelerator.sync_gradients}, {step}, {self.accelerator.step}, {self.accelerator.gradient_accumulation_steps}")
                if self.accelerator.sync_gradients:
                    start_gradient_sync_time = start_timing(f"On Sync Gradients global_step:{self.global_step}, {step}")

                    ddprint(f"Before on_train_step_end for global_step: {self.global_step}, {step}, {self.accelerator.step}, {self.accelerator.gradient_accumulation_steps}")
                    state.batch = batch
                    del loss, losses, batch
                    gradient_sync_time_after_train_step_end_time = start_timing(f"On Sync Gradients global_step:{self.global_step}, {step}")
                    self.on_train_step_end(state)
                    ddprint(f"After on_train_step_end for global_step: {self.global_step}, {step}, {self.accelerator.step}, {self.accelerator.gradient_accumulation_steps}")
                    global_step_metrics["gradient_sync_time_after_train_step_end"] += end_timing(gradient_sync_time_after_train_step_end_time)

                    if is_xla_available and self.config.trainer.tpu_force_mark_step: xm.mark_step()

                    if self.config.trainer.profile_memory and self.global_step + 1 >= tr.max_steps:
                        rprint("Finished profiling memory...")
                        break

                    if self.config.trainer.pytorch_profile and profiler.step(self.global_step):
                        rprint(f"Profiling finished at step: {self.global_step}")
                        break

                    if getattr(self.config.trainer, "throw_failure_for_testing", False) and self.current_run_global_step == 5:
                        raise RuntimeError("Test failure")

                    if is_xla_available and self.config.trainer.tpu_force_mark_step: xm.mark_step()

                    progress_bar.update(1)
                    self.global_step += 1
                    self.current_run_global_step += 1
                    global_step_metrics["gradient_sync_time"] += end_timing(start_gradient_sync_time)

                    logs = {
                        "examples_seen": self.global_step * total_batch_size,
                        "trainer/global_step": self.global_step,
                        **{k:v for k, v in global_step_metrics.items()},
                        **{f"lr_{i}": lr for i, lr in enumerate(self.lr_scheduler.get_last_lr())},
                        **global_extra_wandb_metrics,
                    }

                    if is_torch_cuda_available():
                        logs["gpu_max_mem_reserved_gb"] = torch.cuda.max_memory_reserved() / (1024**3)
                        logs["gpu_cur_mem_reserved_gb"] = torch.cuda.memory_reserved() / (1024**3)
                        logs["gpu_max_mem_allocated_gb"] = torch.cuda.max_memory_allocated() / (1024**3)
                        logs["gpu_cur_mem_allocated_gb"] = torch.cuda.memory_allocated() / (1024**3)

                    if is_xla_available:
                        if self.global_step % getattr(self.config.trainer, "log_every_n_steps", 1) == 0:
                            xm.add_step_closure(update_logs, args=(logs, evaluate_extra_log_data), run_async=False)
                            del logs
                            global_extra_wandb_metrics = dict()
                            if self.config.trainer.tpu_force_mark_step: xm.mark_step()
                    else:
                        logs.update(evaluate_extra_log_data())
                        progress_bar.set_postfix(**logs)
                        log(logs)
                        global_extra_wandb_metrics = dict()


                    if getattr(self.config.trainer, "sync_timing", False):
                        global_step_metrics = {f"rank_{get_rank()}/{k}": v for k, v in global_step_metrics.items()}
                        all_step_metrics = self.accelerator.gather_for_metrics([global_step_metrics], use_gather_object=True)
                        merged_metrics = {k: v for d in all_step_metrics for k, v in d.items()}
                        log(merged_metrics)

                    if is_xla_available and self.config.trainer.tpu_force_mark_step: xm.mark_step()

                    global_step_metrics = defaultdict(float)
                    accumulate_steps = 0

                    if self.global_step >= tr.max_steps:
                        break

                    ddprint(f"After logging for step v3: {self.global_step}, {step}")

                    if getattr(self.config.trainer, "assert_at_n_steps", None) is not None and self.current_run_global_step >= getattr(self.config.trainer, "assert_at_n_steps", None):
                        raise RuntimeError(f"Assertion failed at step {self.current_run_global_step}")

                    ddprint(f"After logging for step v4: {self.global_step}, {step}")

                    if is_xla_available and self.config.trainer.tpu_profile and (self.global_step == 0 or self.global_step % 50 == 0) and is_main_process():
                        import torch_xla.debug.metrics as met
                        rprint(met.metrics_report())
                        met.clear_all()

                    if is_xla_available and self.config.trainer.tpu_force_mark_step: xm.mark_step()
                    ddprint(f"Finished sync_gradients: {self.global_step}, {self.accelerator.step}, {self.accelerator.gradient_accumulation_steps}")

                ddprint(f"Finished step: {self.global_step},{step},{self.accelerator.step},{self.accelerator.gradient_accumulation_steps},{self.accelerator.gradient_state.__repr__()}")
                if self.config.trainer.sync_dataloader_timing: synchronize_device()
                last_end_step_time = start_timing(f"Dataloading #{true_step + 1}")

            if self.global_step >= tr.max_steps:
                break

            dprint(f"Finished epoch: {epoch}")

        # Create the pipeline using using the trained modules and save it.
        rprint("Training finished.")
        barrier()

        if tr.profile_memory:
            print_memory(verbose=True)
            save_memory_profile(self.config.output_dir / "profile")

        if tr.pytorch_profile:
            profiler.finish()
        elif tr.nvtx_profile:
            torch.cuda.cudart().cudaProfilerStop()
        elif self.global_step > 100 or tr.skip_early_checkpointing is False:
            self.checkpoint(state)

        barrier()