File size: 50,995 Bytes
131da64
 
 
 
 
 
 
 
 
 
 
 
 
 
3a60a49
131da64
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3a60a49
 
 
 
 
 
131da64
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3a60a49
131da64
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
import functools
import itertools
import os
import signal
import subprocess
import sys
import time
import typing
from functools import partial
from pathlib import Path
from types import FrameType
from contextlib import nullcontext

import transformers
from constants import HF_TOKEN, HF_CACHE_DIR, UNIDISC_DIR
import hydra
import hydra.utils
import torch
import torch.utils.checkpoint
from accelerate.utils import gather, gather_object
from omegaconf import open_dict, read_write
from safetensors.torch import load_file

import models.noise_schedule as noise_schedule
import utils
import wandb
from decoupled_utils import (barrier, dprint, get_slurm_job_id, get_world_size, gprint,
                             is_local_main_process, is_main_process,
                             is_torch_cuda_available, is_torch_xla_available,
                             module_hash, parameter_hash, print_memory,
                             rank_zero_fn, rprint, save_memory_profile,
                             show_memory_usage, try_except, use_dist)
from unidisc.tokenizers.image_tokenizers import get_vae as tokenizer_get_vae
from unidisc.utils.xla_utils import (tpu_spmd_dataloader, wrap_xla_fsdp)
from model_utils import BPD, NLL, Perplexity, empty_device_cache, log, CIDErScore, Accuracy
from unidisc.utils.trainer_utils import (TrainingState, check_every_n_epochs,
                           check_every_n_steps, handle_checkpointing_dirs, count_parameters)
from utils import compile_model, grad_norm

is_xla_available = is_torch_xla_available()
if is_xla_available:
    rprint("Using standalone torchmetrics on XLA")
    from unidisc.utils.standalone_metrics import MetricCollection
else:
    from torchmetrics import MetricCollection

def init(self, config, tokenizer, device):
    import models
    import models.elm_custom as elm_custom

    self.global_step = 0
    self.current_run_global_step = 0
    self.current_run_fwd_bwd_pass = 0
    self.num_evals = 0

    self.config = config
    self.device = device
    self.image_model = False
    self.unified_model = False

    self.dtype = (
        torch.float32
        if ("fp32" in self.config.trainer.precision or "no" in self.config.trainer.precision)
        else (torch.bfloat16 if "bf16" in self.config.trainer.precision else torch.float16)
    )
    rprint(f"Set compute dtype in model: {self.dtype}")

    if getattr(self.config.model, "image_model", False):
        self.image_model = True
        if "tokens" not in self.config.data.train:
            self.vae = self.get_vae()
            if self.config.data.cond_resolution is not None:
                self.cond_vae = self.get_cond_vae()
        else:
            self.vae = None
            self.cond_vae = None

    if getattr(self.config.model, "unified_model", False):
        self.unified_model = True

    self.tokenizer = tokenizer
    self.sampler = self.config.sampling.predictor
    self.gen_ppl_eval_model_name_or_path = self.config.eval.gen_ppl_eval_model_name_or_path
    self.antithetic_sampling = self.config.trainer.antithetic_sampling
    self.importance_sampling = self.config.trainer.importance_sampling
    self.change_of_variables = self.config.trainer.change_of_variables
    if getattr(self.config.trainer, "add_label", False):
        assert self.image_model and self.unified_model
        
    if self.image_model is False or self.unified_model:
        self.vocab_size = len(self.tokenizer)
        if getattr(self.config.model, "force_text_vocab_size", None) is not None:
            self.vocab_size = self.config.model.force_text_vocab_size
        if not hasattr(self.tokenizer, "mask_token") or self.tokenizer.mask_token is None:
            self.mask_index = self.vocab_size
            self.vocab_size += 1
        else:
            self.mask_index = self.tokenizer.mask_token_id
    if self.image_model:
        if self.unified_model:
            self.text_vocab_size = self.vocab_size
            self.vocab_size += self.config.model.image_vocab_size
            self.image_vocab_size = self.config.model.image_vocab_size
            if getattr(self.config.model, "add_labels", None) is not None:
                rprint(f"Adding labels: {self.config.model.add_labels}")
                self.vocab_size += self.config.model.add_labels
            rprint(f"Text vocab size: {self.text_vocab_size}, Image vocab size: {self.image_vocab_size}")
        else:
            self.vocab_size = self.config.model.image_vocab_size + 1
            self.mask_index = self.vocab_size - 1
            self.text_vocab_size = 0
    else:
        self.text_vocab_size = self.vocab_size

    rprint(f"Vocab size: {self.vocab_size}, Mask index: {self.mask_index}")
    rprint(f"Image Model: {self.image_model}, Unified Model: {self.unified_model}")
    self.parameterization = self.config.parameterization

    tf_kwargs = dict(device_map=self.device, use_auth_token=HF_TOKEN, torch_dtype=self.dtype if (self.config.model.use_lora or self.config.trainer.low_precision_params) else torch.float32, trust_remote_code=True, cache_dir=HF_CACHE_DIR)
    tf_kwargs['attn_implementation'] = 'sdpa' if is_xla_available else 'flash_attention_2'
    force_sdpa_attention = os.environ.get("UNIDISC_FORCE_CHAMELEON_SDPA_ATTENTION", "0") == "1"
    force_eager_attention = os.environ.get("UNIDISC_FORCE_EAGER_ATTENTION", "0") == "1"
    if force_sdpa_attention:
        tf_kwargs['attn_implementation'] = 'sdpa'
        rprint("WARNING!!!! Forcing SDPA Attention")
    if force_eager_attention:
        tf_kwargs['attn_implementation'] = 'eager'
        rprint("WARNING!!!! Forcing Eager Attention")

    if is_xla_available:
        del tf_kwargs['cache_dir']
        rprint(f"Using cache dir: {HF_CACHE_DIR}")
    
    if self.config.backbone == "dit":
        dit_kwargs = dict(mask_index=self.mask_index)
        if getattr(self.config.trainer, "use_orig_unidisc_dit", False):
            from accelerate.utils import set_seed; set_seed(42)
            if self.config.model.full_attention:
                import models.dit_orig
                _backbone_cls = models.dit_orig.DIT
                rprint("WARNING!!!! Using original DIT")
                dit_kwargs.pop('mask_index')
            else:
                import models.autoregressive_orig
                _backbone_cls = models.autoregressive_orig.AR
                dit_kwargs['causal'] = not self.config.model.full_attention
                rprint(f"WARNING!!!! Using original AR DIT, {dit_kwargs}")
        else:
            import models.dit
            _backbone_cls = models.dit.DIT
            dit_kwargs['text_vocab_size'] = self.text_vocab_size
            dit_kwargs['autocast_dtype'] = self.dtype
            dit_kwargs['device'] = self.device
            dit_kwargs['static_img_sl'] = self.static_img_sl
            dit_kwargs['static_txt_sl'] = self.static_txt_sl
            
        self.backbone = _backbone_cls(
            config=self.config,
            vocab_size=self.vocab_size,
            **dit_kwargs
        )
        utils.print_trainable_parameters(self.backbone)
        if self.config.model.mup:
            self.get_base_shapes_for_mup(self.backbone)
    elif self.config.backbone == "elm":
        del tf_kwargs['attn_implementation']
        config = transformers.AutoConfig.from_pretrained(self.config.model.model_id, **tf_kwargs)
        config.extra_tokens = self.vocab_size - config.vocab_size
        config.full_attention = self.config.model.full_attention
        config.is_compiled = self.is_compiled
        _cls = elm_custom.OpenELMForCausalLM if self.config.trainer.scratch else partial(elm_custom.OpenELMForCausalLM.from_pretrained, pretrained_model_name_or_path=self.config.model.model_id)
        self.backbone = _cls(
            config=config,
        )
        if self.config.model.use_lora:
            from peft import LoraConfig, get_peft_model
            lora_config = LoraConfig(
                r=16,
                lora_alpha=32,
                target_modules=["qkv_proj"],
                lora_dropout=0.05,
                bias="none",
                task_type="CAUSAL_LM",
            )            
            self.backbone = get_peft_model(self.backbone, lora_config)
            self.backbone.model.transformer.token_embeddings_extra.requires_grad_(True)
            if hasattr(self.backbone.model, "lm_extra"):
                self.backbone.model.lm_extra.requires_grad_(True)
        else:
            self.backbone.requires_grad_(True)
            self.backbone.train()
            rprint("Using Full ELM")

        if getattr(self.config.trainer, "scratch", False):
            rprint("Training from scratch")
            self.backbone.apply(self.backbone._init_weights)
        
        if getattr(self.config.trainer, "use_gradient_checkpointing", False):
            self.backbone.gradient_checkpointing_enable()
        utils.print_trainable_parameters(self.backbone)
    elif self.config.backbone == "ar":
        self.backbone = models.autoregressive.AR(self.config, vocab_size=self.vocab_size, mask_index=self.mask_index)
    else:
        raise ValueError(f"Unknown backbone: {self.config.backbone}")

    self.T = self.config.T
    self.subs_masking = self.config.subs_masking
    self.softplus = torch.nn.Softplus()
    if getattr(self.config.trainer, "disable_torchmetrics", False) is False:
        # metrics are automatically reset at end of epoch
        metrics = MetricCollection(
            {
                "nll": NLL(sync_on_compute=False),
                "bpd": BPD(sync_on_compute=False),
                "ppl": Perplexity(sync_on_compute=False),
            },
            compute_groups=(not is_torch_xla_available() and not getattr(self.config.trainer, "disable_distributed_torchmetrics", False))
        )
        metrics.set_dtype(torch.float64)
        self.train_metrics = metrics.clone(prefix="train/")
        self.valid_metrics = metrics.clone(prefix="val/")
        self.test_metrics = metrics.clone(prefix="test/")

    if getattr(self.config.trainer, "log_seperate_modal_losses", False):
        self.txt_metrics = metrics.clone(prefix="train/")
        self.img_metrics = metrics.clone(prefix="train/")
    
    if getattr(self.config.eval, "compute_chameleon_perplexity", False) or getattr(self.config.eval, "wino_chameleon", False):
        rprint("[INFO] Loading Big Chameleon Model")
        # pip install 'git+ssh://[email protected]/alexanderswerdlow/image_utils.git@wip_v1' --force-reinstall
        from image_utils import Im
        from transformers import (ChameleonForConditionalGeneration, ChameleonProcessor)
        self.chameleon_model = ChameleonForConditionalGeneration.from_pretrained("leloy/Anole-7b-v0.1-hf", torch_dtype=torch.bfloat16).to("cuda")
        self.chameleon_processor = ChameleonProcessor.from_pretrained("leloy/Anole-7b-v0.1-hf")
    
    if self.config.mode == "zero-shot-eval":
        # flickr cider
        self.cider_score = CIDErScore(sync_on_compute=False)
        
        # winoground
        self.win_text_accuracy = Accuracy(sync_on_compute=False)
        self.win_image_accuracy = Accuracy(sync_on_compute=False)
        self.win_group_accuracy = Accuracy(sync_on_compute=False)
        
        
        self.datacomp_img_acc = Accuracy(sync_on_compute=False)
        self.datacomp_txt_acc = Accuracy(sync_on_compute=False)
    
    self.eval_model_tokenizer = transformers.AutoTokenizer.from_pretrained(self.gen_ppl_eval_model_name_or_path)
    if self.eval_model_tokenizer.pad_token is None:
        self.eval_model_tokenizer.pad_token = self.eval_model_tokenizer.eos_token
        self.eval_model_tokenizer.pad_token_id = self.eval_model_tokenizer.eos_token_id

    self.noise = noise_schedule.get_noise(self.config, dtype=self.dtype)
    if self.config.trainer.ema > 0:
        if self.config.trainer.use_custom_ema:
            from copy import deepcopy
            self.ema = deepcopy(self.backbone).eval()
            self.ema.to(self.device)
        else:
            self.ema = models.ema.EMAModel(self.get_params(), decay=self.config.trainer.ema)
        rprint(f"Using EMA with decay {self.config.trainer.ema}")
    else:
        self.ema = None

    self.lr = self.config.optim.lr
    self.sampling_eps = self.config.trainer.sampling_eps
    self.time_conditioning = self.config.time_conditioning
    self.neg_infinity = -1000000.0
    self.fast_forward_epochs = None
    self.fast_forward_batches = None
    self._validate_configuration()

    self.fid_eval = False

    if ((self.config.slurm or self.config.trainer.restart_on_failure) and not self.config.trainer.force_disable_signal_handler) and self.config.mode == 'train':
        self.register_signal_handler()

    if getattr(self.config.model, "image_model_fid_eval", False) or getattr(self.config.trainer, "disable_strict_load", False):
        self.strict_loading = False

    if self.config.backbone != 'dit' and self.config.backbone != 'chameleon':
        assert self.config.model.force_argmax_valid_indices is False

    if self.config.parameterization == "ar":
        assert self.config.trainer.ar_shift

    self.trainable_params = sum(p.numel() for p in self.backbone.parameters() if p.requires_grad)
    self.frozen_params = sum(p.numel() for p in self.backbone.parameters() if not p.requires_grad)
    self.non_embedding_params = count_parameters(self.backbone)
    rprint(f"Total trainable parameters (excluding embeddings): {self.non_embedding_params:,}, Total trainable parameters: {self.trainable_params:,}, Total frozen parameters: {self.frozen_params:,}")
    self._validate_configuration()

    if not self.config.trainer.low_precision_params:
        for name, param in self.backbone.named_parameters():
            if param.requires_grad and param.dtype != torch.float32:
                    raise ValueError(f"Parameter {name} is not in fp32. It is in {param.dtype}")
                
    if self.config.eval.test_eval_speed:
        rprint("WARNING!!!! Running eval speed test")
        
    self.use_kv_cache = getattr(self.config.model, "use_kv_cache", False)
    if not getattr(self.config.eval, 'enable_gen_pplx_cleanup', True):
        assert self.config.mode == 'eval' # shouldn't really be on in train mode
        rprint(f"WARNING!!!! Disabling gen pplx cleanup, having eval model {self.gen_ppl_eval_model_name_or_path} in memory always!!!!") 
        self.gen_pplx_eval_model = transformers.AutoModelForCausalLM.from_pretrained(self.gen_ppl_eval_model_name_or_path).eval()
        
    if self.config.eval.compute_standalone_mauve and not getattr(self.config.eval, "global_disable_mauve", False):
        self.mauve_predictions = []
        self.mauve_references = []
        
    if self.config.mode == "zero-shot-eval":
        self.cider_score_metric = CiderScorer()

    if self.config.mode == "eval":
        self.backbone.eval()
        self.backbone.requires_grad_(False)

    if self.config.trainer.awr:
        breakpoint()
        config = transformers.AutoConfig.from_pretrained("HuggingFaceTB/SmolLM-135M", **tf_kwargs)
        config.vocab_size = self.vocab_size
        config.full_attention = True
        self.awr_policy = llama_custom.LlamaForCausalLM(
            config=config,
        )
        

def to(self, device):
    self.device = device
    self.backbone.to(device)
    self.train_metrics.to(device)
    self.test_metrics.to(device)
    if hasattr(self, "txt_metrics"):
        self.txt_metrics.to(device)
    if hasattr(self, "img_metrics"):
        self.img_metrics.to(device)

    if self.ema is not None:
        self.ema.to(device)

def reset_validation_metrics(self):
    metrics = MetricCollection(
        {
            "nll": NLL(sync_on_compute=False),
            "bpd": BPD(sync_on_compute=False),
            "ppl": Perplexity(sync_on_compute=False),
        },
        compute_groups=(not is_torch_xla_available() and not getattr(self.config.trainer, "disable_distributed_torchmetrics", False))
    )
    metrics.set_dtype(torch.float64)
    
    if getattr(self.config.trainer, "disable_torchmetrics", False) is False or hasattr(self, "valid_metrics"):
        self.valid_metrics = metrics.clone(prefix="val/").to(self.device)

    if getattr(self.config.trainer, "log_seperate_modal_losses", False):
        self.valid_txt_metrics = metrics.clone(prefix="val/").to(self.device)
        self.valid_img_metrics = metrics.clone(prefix="val/").to(self.device)

    self.gen_ppl_metric = Perplexity(sync_on_compute=False).to(self.device)
    self.gt_gen_ppl_metric = Perplexity(sync_on_compute=False).to(self.device)

def get_params(self):
    return itertools.chain(self.backbone.parameters())

def get_vae(self):
    if getattr(self, "vae", None) is not None:
        return self.vae

    empty_device_cache()
    
    self.vae = tokenizer_get_vae(self.config, self.device)

    return self.vae

def get_cond_vae(self):
    if getattr(self, "cond_vae", None) is not None:
        return self.cond_vae

    torch.cuda.empty_cache()
    self.cond_vae = get_vae(self.config, self.device, use_cond=True)
    return self.cond_vae


def configure_optimizers(self):
    # TODO(yair): Lightning currently giving this warning when using `fp16`:
    #  "Detected call of `lr_scheduler.step()` before `optimizer.step()`. "
    #  Not clear if this is a problem or not.
    #  See: https://github.com/Lightning-AI/pytorch-lightning/issues/5558
    kwargs = dict(
        betas=(self.config.optim.beta1, self.config.optim.beta2),
        eps=self.config.optim.eps,
        weight_decay=self.config.optim.weight_decay,
    )
    if getattr(self.config.trainer, "adafactor", False):
        optim_cls = Adafactor
        kwargs = dict()
        kwargs.update({"scale_parameter": False, "relative_step": False})
        rprint("Using Adafactor")
    if getattr(self.config.trainer, "ademamix", False):
        from unidisc.utils.ademamix import AdEMAMix
        optim_cls = AdEMAMix
        rprint("Using AdEMAMix")
    elif is_xla_available:
        from torch_xla.amp.syncfree import AdamW
        optim_cls = AdamW
        rprint("Using XLA AdamW")
    elif getattr(self.config.trainer, "is_deepspeed", False):
        import deepspeed
        optim_cls = deepspeed.ops.adam.FusedAdam
        kwargs["set_grad_none"] = True
    else:
        optim_cls = torch.optim.AdamW
        kwargs["fused"] = self.config.optim.fused

    if self.config.model.mup:
        from mup import MuAdam
        optim_cls = partial(MuAdam, impl=optim_cls)
        
    optimizer = optim_cls(
        self.get_params(),
        lr=self.config.optim.lr,
        **kwargs,
    )

    scheduler = hydra.utils.instantiate(self.config.lr_scheduler, optimizer=optimizer)
    scheduler_dict = {
        "scheduler": scheduler,
        "interval": "step",
        "monitor": "val/loss",
        "name": "trainer/lr",
    }
    return [optimizer], [scheduler_dict]

def _validate_configuration(self):
    assert not (self.change_of_variables and self.importance_sampling)
    if self.parameterization == "sedd":
        assert not self.importance_sampling
        assert not self.change_of_variables
    if self.parameterization == "d3pm":
        assert self.T > 0
    if self.T > 0:
        assert self.parameterization in {"d3pm", "subs"}
    if self.subs_masking:
        assert self.parameterization == "d3pm"

    if hasattr(self.config.model, "text_vocab_size"):
        assert self.config.model.text_vocab_size == self.text_vocab_size, f"text_vocab_size {self.config.model.text_vocab_size} != {self.text_vocab_size}"

    if getattr(self.config.trainer, "first_token_dropout", None) is not None:
        assert self.config.data.allow_label is True
        assert self.config.trainer.add_label is True
        assert self.config.model.add_labels > 0
        assert self.config.trainer.joint_ar_nar_prob is None
        assert self.config.trainer.mask_entire_modality is None

    if getattr(self.config.eval, "class_conditional_fid", False):
        assert self.config.eval.fid_mode == "inline"

    assert getattr(self.config.model, "mask_entire_modality", None) is None

    if self.config.trainer.interleaved and not getattr(self.config.eval, "auto_enhance", False) and not getattr(self.config.trainer, "bypass_interleaved_check", False):
        assert self.config.data.use_packing_collate or self.config.mode == 'eval'
        assert self.config.data.dynamic_packing_lengths
        assert self.config.data.require_sample_ids
        assert self.config.trainer.interleaved_training_flex_attention
        assert self.config.data.use_slow_tokenizer and self.config.data.add_image_token
        assert not getattr(self.config.trainer, "force_full_attention_mask_loss_only", False)

    assert self.config.sampling.steps == self.config.sampling.max_sampling_steps

def register_signal_handler(self):
    def _handler(sig, frame: FrameType | None, prior_handler=None):
        rprint(f"Called sig handler with {sig=} {self.global_step=}")
        if sig == signal.SIGUSR1:
            signal.signal(sig, signal.SIG_IGN)

        checkpoint_path = Path(self.config.output_dir) / "checkpoints"
        timeout_minutes = self.config.trainer.ckpt_recent_timeout_minutes

        # Don't re-save checkpoint within this interval to avoid unecessary re-writing.
        # If we checkpoint on SIGUSR2, we don't need to do it on SIGTERM
        recent_ckpt_exists = checkpoint_path.exists() and any(
            (time.time() - p.stat().st_mtime) < (timeout_minutes * 60) for p in checkpoint_path.iterdir() if p.is_dir()
        )
        if (self.current_run_global_step > 100 and recent_ckpt_exists is False) or self.config.trainer.skip_early_checkpointing is False:
            rprint(f"Saving checkpoint due to {sig}")
            self.checkpoint()
            rprint(f"Finished saving checkpoint due to {sig}")
        else:
            rprint(f"Checkpoint already saved within {timeout_minutes} minutes, called by {sig}. Current run global step: {self.current_run_global_step}")

        job_str = get_slurm_job_id()
        if is_main_process():
            if sig == signal.SIGTERM:
                if self.current_run_global_step > 100 and self.config.devices >= 4:
                    wandb.alert(title="Terminated", text=f"Terminated by SIGTERM at {self.global_step}")
                rprint("Marking experiment as preempting")
                wandb.mark_preempting()

            rprint(f"Prior handler on rank: {prior_handler}")
            is_custom_sbatch_launcher = os.environ.get("CUSTOM_SBATCH_LAUNCHER", "0") == "1"
            if is_custom_sbatch_launcher:
                rprint("Using custom sbatch launcher, requeueing job manually")
                subprocess.check_call(["scontrol", "requeue", job_str])
                rprint("Finished requeueing job")
            elif prior_handler is not None and callable(prior_handler):
                rprint("Calling prior signal handler")
                prior_handler(sig, frame, exit_on_requeue=False)
                rprint(f"Returned from prior signal handler")
        else:
            # TODO: For some unknown reason, sometimes the main process [and a few others] hangs doesn't properly receive the signal.
            # Generally, we want to let the main process checkpoint/exit but if it fails, we let any rank re-queue.
            if self.config.slurm:
                time.sleep(180)
                rprint(f"WARNING: Not on rank zero!  Timed out waiting for main process to exit...Requeuing job...")
                rprint(f"WARNING: Not on rank zero! Using prior signal handler: {prior_handler}. ")
            else:
                time.sleep(5)

            try:
                if prior_handler is not None and callable(prior_handler):
                    rprint("WARNING: Not on rank zero!  Returning to prior handler")
                    prior_handler(sig, frame, exit_on_requeue=False)
                    rprint(f"WARNING: Not on rank zero!  Returned from prior handler")
            except:
                rprint(f"WARNING: Not on rank zero!  Failed to return to prior handler")

            if self.config.slurm:
                time.sleep(5)  # Should be enough time for SLURM to send a SIGTERM to all ranks. If not, we resort to manual requeueing.
                rprint(f"WARNING: Not on rank zero!  Failed to requeue using prior handler, requeuing job ourselves...  {job_str}")
                subprocess.check_call(["scontrol", "requeue", job_str])
                rprint(f"WARNING: Not on rank zero! Requeued job: {job_str}")

        if self.config.slurm:
            if torch.distributed.is_initialized():
                rprint(f"Destroying process group...")
                torch.distributed.destroy_process_group()
            return sys.exit(0)
        else:
            rprint(f"Not on SLURM, not exiting")

    prior_sigterm_handler = signal.getsignal(signal.SIGTERM)
    prior_sigusr1_handler = signal.getsignal(signal.SIGUSR1)
    prior_sigusr2_handler = signal.getsignal(signal.SIGUSR2)

    rprint(f"Found Prior SIGTERM handler: {prior_sigterm_handler}, type: {type(prior_sigterm_handler)}")
    rprint(f"Found Prior SIGUSR1 handler: {prior_sigusr1_handler}, type: {type(prior_sigusr1_handler)}")
    rprint(f"Found Prior SIGUSR2 handler: {prior_sigusr2_handler}, type: {type(prior_sigusr2_handler)}")

    signal.signal(signal.SIGTERM, functools.partial(_handler, prior_handler=prior_sigterm_handler))
    signal.signal(signal.SIGUSR2, functools.partial(_handler, prior_handler=prior_sigusr2_handler))
    signal.signal(signal.SIGUSR1, functools.partial(_handler, prior_handler=prior_sigusr1_handler))

def on_train_start(self):
    gprint(f"Starting train at step: {self.global_step}")

    if is_main_process() and getattr(self.config.trainer, "compile", None) is None and getattr(self.config.trainer, "watch_gradients", True):
        wandb.watch(
            self.backbone,
            log=("all" if getattr(self.config.trainer, "watch_all", False) else "gradients"),
            log_freq=getattr(self.config.trainer, "watch_gradients_freq", 500),
        )

    if getattr(self.config.trainer, "attach_oom_observer_train", False):
        from torchtnt.utils.oom import attach_oom_observer
        attach_oom_observer(output_dir=str(self.config.output_dir), trace_max_entries=500000)
        gprint(f"Attached OOM observer to {self.config.output_dir}")

    if self.config.trainer.nvtx_profile and self.is_compiled is False:
        torch.cuda.cudart().cudaProfilerStart()

    # TODO: Make sure we don't need the code below with the new accelerate code.
    return

def optimizer_step(self, *args, **kwargs):
    super().optimizer_step(*args, **kwargs)
    if self.ema is not None:
        self.ema.update(self.get_params())

def init_dataloader(self, train_dataloader, val_dataloader):
    rprint("Creating train_dataset + self.train_dataloader")
    self.train_dataloader = train_dataloader
    self.validation_dataloader = val_dataloader
    if not self.config.data.iterable and not self.config.data.webdataset_indexed: assert len(self.validation_dataloader) > 0

def init_optimizer_lr_scheduler(self):
    [optimizer], [scheduler_dict] = self.configure_optimizers()
    self.optimizer = optimizer
    self.lr_scheduler = scheduler_dict["scheduler"]

def set_accelerator(self, accelerator, ckpt_path=None):
    if ckpt_path is not None:
        rprint(f"Set accelerator with ckpt path {ckpt_path}")

    self.accelerator = accelerator
    self.device = accelerator.device
    self.dtype = getattr(torch, self.config.trainer.dtype.split(".")[-1])

    def _load(obj, path, update_fn=None, key="model"):
        _ckpt_path = Path(path)

        if not _ckpt_path.is_absolute() and not _ckpt_path.exists():
            potential_path = UNIDISC_DIR / _ckpt_path
            rprint(f"Relative path '{_ckpt_path}' not found. Trying path relative to script directory: '{potential_path}'")
            _ckpt_path = potential_path

        if _ckpt_path.is_dir() and (_ckpt_path / "model.safetensors").exists():
            _ckpt_path = _ckpt_path / "model.safetensors"
            path = str(_ckpt_path)
            
        print(f"Loading from {_ckpt_path}, {_ckpt_path.suffix}, {_ckpt_path.is_dir()}")
        if _ckpt_path.suffix == ".safetensors":
            state_dict = load_file(path)
        elif _ckpt_path.is_dir():
            if getattr(self.config.trainer, 'dynamic_convert_to_normal_state_dict', False):
                gprint(f"Converting distributed checkpoint to normal state dict")
                from torch.distributed.checkpoint.format_utils import dcp_to_torch_save
                import hashlib
                ckpt_hash = hashlib.md5(str(path).encode()).hexdigest()[:8] + "_" + Path(path).stem
                new_path = str(Path("/dev/shm") / os.getenv("USER", "aswerdlo") / f"tmp_ckpt_{ckpt_hash}.pth")
                dcp_to_torch_save(path, new_path)
                gprint(f"Converted distributed checkpoint to normal state dict at {new_path}")
                state_dict = torch.load(new_path)
                gprint(f"Loaded state dict from {path}")
            else:
                gprint(f"Loading from distributed checkpoint directory {path}")
                import torch.distributed.checkpoint as dcp
                state_dict = {
                    key: obj.state_dict(),
                }
                if getattr(self.config.trainer, 'ignore_chameleon_embed', False):
                    for k in list(state_dict[key].keys()):
                        if "embed_tokens" in k:
                            state_dict[key].pop(k)
                            gprint(f"Ignoring {k}")
                dcp.load(
                    state_dict=state_dict,
                    checkpoint_id=path,
                )
                gprint(f"Loaded state dict from {path}")
                # obj.load_state_dict(state_dict[key])
        else:
            state_dict = torch.load(_ckpt_path)
        
        if 'model' in state_dict and len(state_dict) < 10:
            state_dict = state_dict['model']

        state_dict = {k.replace("_orig_module.", ""): v for k, v in state_dict.items()}
        state_dict = {k.replace("_orig_mod.", ""): v for k, v in state_dict.items()}
        state_dict = {k.replace("module.", ""): v for k, v in state_dict.items()}
        if self.config.backbone == 'llama' and "lm_head.weight" in state_dict and "model.embed_tokens.weight" not in state_dict:
            # LLaMa ties weights
            state_dict["model.embed_tokens.weight"] = state_dict["lm_head.weight"].clone()

        if update_fn is not None:
            state_dict = update_fn(state_dict)
        elif getattr(self.config.trainer, 'use_orig_unidisc_dit', False):
            # loading from the original .ckpt files from unidisc repo
            state_dict = state_dict['state_dict']
            state_dict = {k.replace("backbone.", ""): v for k, v in state_dict.items()}
            
        try:
            kwargs = {}
            kwargs['strict'] = self.config.trainer.disable_strict_load
            if '.bin' in str(path):
                kwargs = {}
            obj.load_state_dict(state_dict, **kwargs)
        except Exception as e:
            rprint(f"Failed to load state dict: {e}")
            rprint(f"State dict keys: {state_dict.keys()}")
            rprint(f"Model state dict keys: {obj.state_dict().keys()}")
            raise e
        
    if self.config.mode != 'eval':
        self.init_optimizer_lr_scheduler()

    if getattr(self.config.trainer, "bypass_load_from_state_dicts_if_resuming", False) and ckpt_path is not None:
        rprint(f"Skipping load from state dicts since we are resuming from: {ckpt_path}")
    else:
        if self.config.trainer.load_from_state_dict is not None:
            rprint(f"Loading model state dict from {self.config.trainer.load_from_state_dict}")
            _load(self.backbone, self.config.trainer.load_from_state_dict)
            rprint(f"Loaded model state dict from {self.config.trainer.load_from_state_dict}")

        if getattr(self.config.trainer, "load_from_optimizer_state_dict", None) is not None:
            # TODO: Optimizer.bin from accelerate is the wrong format here. Look into this. The keys/are different and need to be mapped.
            def update_param_group(state_dict):
                rprint(f"len(self.optimizer.param_groups): {len(self.optimizer.param_groups[0]['params'])}, len(state_dict['param_groups']): {len(state_dict['param_groups'][0]['params'])}")
                rprint(f"self.optimizer.param_groups: {self.optimizer.param_groups[0]['params']}")
                rprint(f"state_dict['param_groups']: {state_dict['param_groups'][0]['params']}")
                state_dict["param_groups"] = self.optimizer.param_groups
                return state_dict

            _load(self.optimizer, self.config.trainer.load_from_optimizer_state_dict, update_fn=update_param_group, key="optim")
            rprint(f"Loaded optimizer state dict from {self.config.trainer.load_from_optimizer_state_dict}")

    if self.config.mode == 'eval':
        rprint(f"Moving model to {self.device}")

    self.backbone.to(self.device)
    if getattr(self.config.trainer, 'force_bf16_eval', False) and self.config.mode == 'eval':
        self.backbone.to(torch.bfloat16)

    # Model needs to be wrapped before optimizer is created for fsdp
    if self.config.trainer.xla_spmd and is_xla_available:
        self.backbone = wrap_xla_fsdp(self.config, self.backbone)

    self.backbone, self.ema = self.accelerator.prepare(self.backbone, self.ema)

    if self.config.trainer.compile and not is_xla_available:
        rprint("Compiling entire model...")
        self.backbone = compile_model(self.config, self.backbone)

    if getattr(self.config.trainer, 'mup_coord_plot', False):
        self.get_coord_plot()

    if self.config.mode == 'eval':
        return

    if not self.config.data.iterable and not self.config.data.webdataset_indexed and self.train_dataloader is not None and self.config.data.wrap_dataloaders:
        rprint(f"Before prepare: Train len: {len(self.train_dataloader)}, Validation len: {len(self.validation_dataloader)}")

    if getattr(self.config.eval, 'test_eval_speed', False):
        self.optimizer, self.lr_scheduler = None, None
    else:
        if getattr(self.config.trainer, 'force_disable_wrap_optimizer', False) is False and self.config.mode != 'eval':
            self.optimizer, self.lr_scheduler = self.accelerator.prepare(
                self.optimizer, self.lr_scheduler
            )
        elif self.config.mode != 'eval':
            rprint("WARNING: Not wrapping optimizer with accelerator.prepare()")

    if self.config.data.webdataset_iterable is False and self.config.data.wrap_dataloaders:
        self.train_dataloader, self.validation_dataloader = self.accelerator.prepare(self.train_dataloader, self.validation_dataloader)
    else:
        rprint("WARNING: Not wrapping dataloaders with accelerator.prepare()")

    if is_xla_available and self.config.trainer.fsdp:
        self.train_dataloader = tpu_spmd_dataloader(self.train_dataloader, self.device)
        self.validation_dataloader = tpu_spmd_dataloader(self.validation_dataloader, self.device)

    if not self.config.data.iterable and not self.config.data.webdataset_indexed and self.train_dataloader is not None:
        rprint(f"After prepare: Train len: {len(self.train_dataloader)}, Validation len: {len(self.validation_dataloader)}")

    if (self.config.trainer.use_spmd_distributed_checkpointing or self.config.trainer.use_simple_spmd_distributed_checkpointing) and is_xla_available:
        gprint("Initializing distributed process group")
        import torch.distributed as dist
        import torch_xla.distributed.xla_backend
        import torch_xla.runtime as xr
        dist.init_process_group('gloo', init_method='xla://')
        gprint("Distributed process group initialized, before creating checkpoint manager")

    if (self.config.trainer.use_spmd_distributed_checkpointing and self.config.trainer.disable_all_checkpointing is False) and is_xla_available:
        gprint("Initializing checkpoint manager")
        from torch_xla.experimental.distributed_checkpoint import CheckpointManager, prime_optimizer
        self.chkpt_mgr = CheckpointManager(self.config.checkpointing.save_dir, self.config.trainer.ckpt_steps)
        gprint(f"Checkpoint manager created")

    if getattr(self.config.trainer, "force_from_ckpt", None) is not None:
        ckpt_path = getattr(self.config.trainer, "force_from_ckpt")
        if ckpt_path == "":
            ckpt_path = None

    if ckpt_path is not None and Path(ckpt_path).exists():
        rprint(f"Loading checkpoint {ckpt_path}")
        if self.config.trainer.use_spmd_distributed_checkpointing and self.config.trainer.disable_all_checkpointing is False:
            gprint("Loading checkpoint for XLA")
            from torch_xla.experimental.distributed_checkpoint import CheckpointManager, prime_optimizer
            tracked_steps = self.chkpt_mgr.all_steps()
            if tracked_steps:
                rprint(f"Found tracked steps: {tracked_steps}")
                best_step = max(tracked_steps) # Choose the highest step
                prime_optimizer(self.optimizer) # Before restoring the checkpoint, the optimizer state must be primed to allow state to be loaded into it.
                state_dict = {'model': self.accelerator.unwrap_model(self.backbone).state_dict(), 'optim': self.optimizer.state_dict()}
                self.chkpt_mgr.restore(best_step, state_dict)
                self.backbone.load_state_dict(state_dict['model'])
                self.optimizer.load_state_dict(state_dict['optim'])
        else:
            import os
            folder_contents = os.listdir(ckpt_path)
            gprint(f"Contents of the folder {ckpt_path}: {folder_contents}")
            self.accelerator.load_state(ckpt_path, strict=self.config.trainer.disable_strict_load is False)

    elif ckpt_path is not None:
        rprint(f"WARNING: Checkpoint {ckpt_path} does not exist")

    if getattr(self.config.trainer, "reset_lr_scheduler_step", False):
        with open_dict(self.config):
            with read_write(self.config):
                rprint(f"Resetting lr scheduler")
                if getattr(self.config.trainer, "global_num_warmup_steps", None) is not None:
                    self.config.lr_scheduler.num_warmup_steps = self.config.trainer.global_num_warmup_steps
                    rprint(f"Set num_warmup_steps to {self.config.lr_scheduler.num_warmup_steps}")

                if getattr(self.config.trainer, "global_num_training_steps", None) is not None:
                    self.config.lr_scheduler.num_training_steps = self.config.trainer.global_num_training_steps
                    rprint(f"Set num_training_steps to {self.config.lr_scheduler.num_training_steps}")
                if not self.config.trainer.disable_adjust_num_warmup_steps:
                    _world_size = 1 if (is_xla_available and self.config.trainer.xla_spmd) else self.world_size
                    rprint(f"Warmup steps was {self.config.lr_scheduler.num_warmup_steps}")
                    self.config.lr_scheduler.num_warmup_steps = self.config.lr_scheduler.num_warmup_steps * _world_size
                    rprint(f"Warmup steps is now {self.config.lr_scheduler.num_warmup_steps}, world size is {_world_size}")

                    if hasattr(self.config.lr_scheduler, "num_training_steps"):
                        rprint(f"num_training_steps was: {self.config.lr_scheduler.num_training_steps}. Applying to num_training_steps")
                        self.config.lr_scheduler.num_training_steps = self.config.trainer.global_num_training_steps * _world_size

        rprint(f"Set num_warmup_steps to {self.config.lr_scheduler.num_warmup_steps}")
        if getattr(self.config.trainer, "global_num_training_steps", None) is not None:
            rprint(f"Set num_training_steps to {self.config.lr_scheduler.num_training_steps}")
        self.lr_scheduler.scheduler = hydra.utils.instantiate(self.config.lr_scheduler, optimizer=self.lr_scheduler.scheduler.optimizer)
        rprint(self.lr_scheduler.scheduler.__dict__)
        rprint(self.lr_scheduler.scheduler.state_dict())
        rprint("WARNING!!! Resetting lr scheduler")
    elif getattr(self.config.trainer, "force_reset_optimizer_lr_scheduler", False):
        self.init_optimizer_lr_scheduler()
        self.lr_scheduler, self.optimizer = self.accelerator.prepare(self.lr_scheduler, self.optimizer)

def set_callbacks(self):
    from torchtnt.framework._callback_handler import CallbackHandler

    from unidisc.utils.throughput_monitor import ThroughputMonitor

    precomputed_flops_per_sample = {}
    _flops_per_sample = precomputed_flops_per_sample.get(self.config.model.name, 0)
    if _flops_per_sample == 0 or self.config.backbone != 'dit':
        # Assume approx 6ND for decoder transformer model
        _flops_per_sample = 6 * self.config.model.length * self.non_embedding_params

    if self.config.trainer.xla_spmd and is_xla_available:
        _flops_per_sample /= self.world_size

    callbacks = []
    callbacks.append(
        ThroughputMonitor(
            batch_size_fn=None,
            length_fn=None,
            log_every_n_steps=50,
            window_size=2,
            separator="_",
            world_size=1 if self.config.trainer.xla_spmd else self.world_size,
            device=self.device,
            dtype=self.dtype,
            flops_per_sample=_flops_per_sample
        )
    )

    self.cb_handler = CallbackHandler(callbacks)

@try_except(write_error_to_file=True)
def checkpoint(self, state: TrainingState = None):
    if is_torch_xla_available():
        gprint("Saving checkpoint on XLA...")

    self.on_train_resume() # In case we start checkpointing in the middle of validation

    checkpoint_all_ranks = self.config.trainer.checkpoint_all_ranks
    if (not is_main_process()) and checkpoint_all_ranks is False:
        return
    
    if self.current_run_global_step < 200 and self.config.trainer.skip_early_checkpointing:
        rprint("Skipping checkpointing for the first 200 steps...")
        return
    
    if self.config.trainer.disable_all_checkpointing:
        rprint("Disabled all checkpointing...")
        return

    start_time = time.time()
    if self.config.trainer.use_simple_spmd_distributed_checkpointing and is_xla_available:
        import torch.distributed.checkpoint as dist_cp
        import torch_xla.experimental.distributed_checkpoint as xc
        gprint("Saving checkpoint...0")
        import torch_xla.core.xla_model as xm
        xm.mark_step()
        gprint("Saving checkpoint...1")
        xm.wait_device_ops()
        gprint("Saving checkpoint...2")
        CHECKPOINT_DIR = Path(self.config.checkpointing.save_dir) / f"checkpoint_{self.global_step}"
        gprint("Saving checkpoint...4")

        if is_main_process():
            gprint(f"Clearing old checkpoints")
            handle_checkpointing_dirs(self.config, prefix="checkpoint")
            gprint(f"Finished clearing old checkpoints")

        state_dict = {
            "model": self.backbone.state_dict(),
        }
        if not self.config.trainer.ckpt_model_only:
            gprint("Saving optimizer state dict")
            state_dict["optim"] = self.optimizer.state_dict()

        gprint(f"Saving checkpoint...5 to {CHECKPOINT_DIR}")
        dist_cp.save(
            state_dict=state_dict,
            storage_writer=dist_cp.FileSystemWriter(CHECKPOINT_DIR),
            planner=xc.SPMDSavePlanner(),
        )
        if is_main_process():
            from main import save_config_to_ckpt
            save_config_to_ckpt(self.config, CHECKPOINT_DIR, self)
        gprint("Saving checkpoint...6")
    elif self.config.checkpointing.use_automatic_naming:
        rprint("Saving checkpoint...")
        self.accelerator.save_state()
        rprint("Saved checkpoint...")
    else:
        rprint(f"Saving checkpoint...")
        prefix = "checkpoint"
        Path(self.config.checkpointing.save_dir).mkdir(exist_ok=True, parents=True)

        if is_main_process():
            handle_checkpointing_dirs(self.config, prefix="checkpoint")

        save_path = Path(self.config.checkpointing.save_dir) / f"{prefix}_{self.global_step}"
        save_path.mkdir(exist_ok=True, parents=True)

        if checkpoint_all_ranks:
            barrier()

        if self.config.trainer.ckpt_model_only:
            from safetensors.torch import save_file, save_model
            try:
                self.accelerator.save_model(self.backbone, save_path)
            except Exception as e:
                rprint(f"Failed to save model with 'save_file': {e}")
                if getattr(self.config.trainer, 'finetuning_mode', False):
                    rprint("Fallback to 'save_model' instead")
                    if is_main_process():
                        save_model(self.backbone, save_path / "model.safetensors")
        else:
            try:
                self.accelerator.save_state(save_path)
            except Exception as e:
                from traceback import print_exc
                print_exc()
                gprint(f"Failed to save state: {e}, saving model instead")
                self.accelerator.save_model(self.backbone, save_path)
                gprint("Saved model instead")

        if checkpoint_all_ranks:
            barrier()

        rprint(f"Saved checkpoint to: {save_path}")
        with try_except(write_error_to_file=True, clear_cuda_cache=True):
            self.print_hashes()
        
    rprint(f"Checkpointing took: {time.time() - start_time} seconds")

def print_hashes(self):
    if self.config.trainer.fsdp:
        rprint('Skipping module hash for FSDP')
        return
    
    rprint(f"Module hash: {module_hash(self.backbone)}")
    if self.ema is not None:
        if self.config.trainer.use_custom_ema:
            rprint(f"EMA hash: {module_hash(self.ema)}")
        else:
            rprint(f"EMA hash: {parameter_hash(self.ema.state_dict()['shadow_params'])}")

@try_except(write_error_to_file=True)
def on_train_step_end(self, state: TrainingState):
    self.cb_handler.on_train_step_end(state=state, unit=self)
    del state.batch
    tr = self.config.trainer
    if check_every_n_steps(
        state, tr.val_check_interval, run_first=tr.eval_on_start, all_processes=True, decay_steps=tr.eval_decay_steps
    ) or check_every_n_epochs(state, tr.eval_epochs, all_processes=True):
        rprint(f"Starting validation at {state.global_step}...")
        with show_memory_usage():
            with try_except(write_error_to_file=True, clear_cuda_cache=True):
                with nullcontext() if is_xla_available else (torch.no_grad() if getattr(self.config.trainer, "force_disable_inference_mode", False) else torch.inference_mode()):
                    self.validate(state)
                    self.on_validation_epoch_cleanup()
                    self.num_evals += 1
                    self.on_train_resume()
        dprint("All processes finished validation")

    xla_spmd = self.config.trainer.use_spmd_distributed_checkpointing
    if xla_spmd and self.config.trainer.disable_all_checkpointing is False and self.global_step > 10:
        # Call every step, but only runs after n steps internally
        gprint("Might save async checkpoint...")
        if getattr(self.config.checkpointing, "save_optimizer_state", True):
            state_dict = {'model': self.backbone.state_dict(), 'optim': self.optimizer.state_dict()}
        else:
            gprint("[WARNING] Not saving optimizer state")
            state_dict = {'model': self.backbone.state_dict()}
        if self.chkpt_mgr.save_async(self.global_step, state_dict):
            gprint(f'Checkpoint taken at step {self.global_step}')

    current_time = time.time()
    if not hasattr(self, "last_checkpoint_time"):
        self.last_checkpoint_time = current_time

    checkpoint_due_to_time = (current_time - self.last_checkpoint_time) >= (tr.ckpt_every_n_minutes * 60)
    checkpoint_due_to_step = check_every_n_steps(state, tr.ckpt_steps, run_first=False, all_processes=True)
    
    if is_torch_cuda_available() and tr.ckpt_every_n_minutes > 0:
        should_ckpt_all_ranks = gather_object([checkpoint_due_to_time or checkpoint_due_to_step])
    else:
        should_ckpt_all_ranks = [checkpoint_due_to_step]

    if should_ckpt_all_ranks[0] and not xla_spmd: # To avoid timing inconsistencies, we take the value from the main process
        rprint(f"Saving checkpoint at {self.global_step}...due to {'time' if checkpoint_due_to_time else 'step'}. Ranks thought: {should_ckpt_all_ranks}")
        self.last_checkpoint_time = current_time
        self.checkpoint(state)
        rprint(f"Checkpoint saved at {self.global_step}...")

def after_backward(self, state):
    freq = getattr(self.config.trainer, "log_grad_norm_every_n_steps", 200 if self.is_compiled else 50)
    if not is_xla_available and self.config.trainer.log_grad_norm and check_every_n_steps(state, freq, run_first=True, all_processes=False):
        norms, total_norm = grad_norm(self.backbone, norm_type=2, group_separator="")
        grad_norm_dict = {f"grad_norms/{k}": v for k, v in norms.items()}
        if 'text-diffusion' in self.config.wandb.project:
            grad_norm_dict = {k.replace("module.", ""): v for k, v in grad_norm_dict.items()}
        log({**grad_norm_dict, "trainer/total_grad_norm": total_norm, "trainer/global_step": self.global_step})

from model_utils import Loss
def shortcut_return(self, logprobs, output_tokens, attention_mask, prefix): # For comparing to unidisc only
    loss = -logprobs.gather( -1, output_tokens[:, :, None])[:, :, 0]
    nlls = loss * attention_mask
    count = attention_mask.sum()

    batch_nll = nlls.sum()
    token_nll = batch_nll / count

    losses = Loss(
        loss=token_nll,
        img_loss=0,
        txt_loss=0,
        nlls=nlls,
        txt_nlls=0,
        img_nlls=0,
        token_mask=attention_mask,
        modality_mask=None,
        extra_losses=None,
    )

    if getattr(self.config.trainer, "disable_torchmetrics", False):
        raise NotImplementedError("Torchmetrics disabled")

    elif prefix == "train":
        return losses
    elif prefix == "val":
        self.valid_metrics.update(losses.nlls, losses.token_mask)
    elif prefix == "test":
        self.test_metrics.update(losses.nlls, losses.token_mask)
        metrics = self.test_metrics
        self.log_dict(metrics, on_step=False, on_epoch=True, sync_dist=True)
    else:
        raise ValueError(f"Invalid prefix: {prefix}")

def unwrap_model(self, model):
    from diffusers.utils.torch_utils import is_compiled_module
    model = self.accelerator.unwrap_model(model)
    model = model._orig_mod if is_compiled_module(model) else model
    return model