File size: 32,090 Bytes
131da64
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
import math
import os
import random
import typing
from contextlib import nullcontext
from dataclasses import dataclass
from pathlib import Path
from types import FrameType
from typing import Dict, List, Optional, Tuple, Union

import einops
import hydra
import hydra.utils
import numpy as np
import pandas as pd
import torch
import torch.distributed as dist
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.checkpoint
import torchmetrics
import transformers
from image_utils import Im
from torch import Tensor, nn
from torch.utils.data import DataLoader, Dataset
from tqdm import tqdm
from tqdm.auto import tqdm

import models
import wandb
from decoupled_utils import (Profiler, barrier, dprint, get_rank,
                             get_slurm_job_id, get_world_size, gprint,
                             is_local_main_process, is_main_process,
                             is_torch_cuda_available, is_torch_xla_available,
                             module_hash, mprint, parameter_hash, print_memory,
                             rank_zero_fn, rprint, save_memory_profile,
                             show_memory_usage, try_except, use_dist)

is_xla_available = is_torch_xla_available()
if is_xla_available:
    from unidisc.utils.standalone_metrics import MeanMetric, MetricCollection
else:
    from torchmetrics import MetricCollection
    from torchmetrics.aggregation import MeanMetric

LOG2 = math.log(2)

@try_except(write_error_to_file=True)
def log(*arg, **kwargs):
    for key, value in arg[0].items():
        if isinstance(value, torch.Tensor):
            arg[0][key] = value.detach().cpu().float()
    
    if is_main_process():
        wandb.log(*arg, **kwargs)

def replace_nan_dict(x):
    return {k: v.nan_to_num(0) for k, v in x.items()}

def ddprint(*args, **kwargs):
    mprint(*args, **kwargs)

def empty_device_cache():
    if is_torch_cuda_available():
        torch.cuda.empty_cache()
    else:
        dprint("Not using cuda, skipping cache clear")

def update_logs(_logs, _extra_logs):
    _logs.update(_extra_logs())
    for k, v in _logs.items():
        if isinstance(v, torch.Tensor):
            _logs[k] = v.detach().cpu().item()
            gprint(f"Converting {k} to item: {v}")

    log(_logs)

def ema_update(model_dest: nn.Module, model_src: nn.Module, rate):
    param_dict_src = dict(model_src.named_parameters())
    for p_name, p_dest in model_dest.named_parameters():
        if p_name not in param_dict_src:
            print(f"Parameter {p_name} not found in src: {param_dict_src}")
        p_src = param_dict_src[p_name]
        assert p_src is not p_dest
        p_dest.data.mul_(rate).add_((1 - rate) * p_src.data)

def identity(x):
    return x

def remap_image_torch(image):
    image_torch = image * 255
    image_torch = torch.clip(image_torch, 0, 255).to(torch.uint8)
    return image_torch

def _sample_categorical(categorical_probs):
    gumbel_norm = 1e-10 - (torch.rand_like(categorical_probs) + 1e-10).log()
    return (categorical_probs / gumbel_norm).argmax(dim=-1)

def wrapped_batch_decode(tokenizer, tokens, disable_mask_after_eos=False, **kwargs):
    tokens = tokens.clone()
    if (tokenizer.bos_token_id != tokenizer.eos_token_id) and not disable_mask_after_eos:
        after_first_five = torch.cumsum(tokens == tokenizer.eos_token_id, dim=1).bool()
        tokens[after_first_five.cumsum(dim=1) > 1] = tokenizer.pad_token_id
    return tokenizer.batch_decode(tokens, **kwargs)

def _unsqueeze(x, reference):
    return x.view(*x.shape, *((1,) * (len(reference.shape) - len(x.shape))))


@dataclass
class Loss:
    loss: torch.FloatTensor
    img_loss: torch.FloatTensor = None
    txt_loss: torch.FloatTensor = None
    nlls: torch.FloatTensor = None
    token_mask: torch.FloatTensor = None
    txt_nlls: torch.FloatTensor = None
    img_nlls: torch.FloatTensor = None
    extra_losses: dict = None
    modality_mask: torch.FloatTensor = None


class NLL(MeanMetric):
    pass


class BPD(NLL):
    def compute(self) -> Tensor:
        """Computes the bits per dimension.

        Returns:
          bpd
        """
        return self.mean_value / self.weight / LOG2


class Perplexity(NLL):
    def compute(self) -> Tensor:
        """Computes the Perplexity.

        Returns:
         Perplexity
        """
        return torch.exp(self.mean_value / self.weight)
    
class Entropy(NLL):
    def compute(self) -> Tensor:
        """Computes the Entropy.

        Returns:
         Entropy
        """
        return self.mean_value / self.weight
    
class MauveScore(NLL):
    def compute(self) -> Tensor:
        """Computes the Mauve Score.

        Returns:
         Mauve Score
        """
        return self.mean_value / self.weight
    
class CIDErScore(NLL):
    def compute(self) -> Tensor:
        """Computes the CIDEr Score.

        Returns:
         CIDEr Score
        """
        return self.mean_value / self.weight

class Accuracy(NLL):
    def compute(self) -> Tensor:
        """Computes the Accuracy.

        Returns:
         Accuracy
        """
        return self.mean_value / self.weight

def get_coord_plot(self):
    from mup.coord_check import get_coord_data, plot_coord_data
    def gen(w):
        def f():
            from copy import deepcopy

            from omegaconf import read_write

            import models as _models
            _conf = deepcopy(self.config)
            with read_write(_conf):
                _conf.model.hidden_size = _conf.model.n_heads * w
            
            _backbone = _models.dit.DIT(
                _conf, vocab_size=self.vocab_size, mask_index=self.mask_index, text_vocab_size=self.text_vocab_size, dtype=self.dtype
            )
            self.get_base_shapes_for_mup(_backbone)
            return _backbone
        return f

    optimizer = 'adamw'
    widths = np.array([2**i for i in range(2, 6)])
    models = {int(w) * self.config.model.n_heads: gen(int(w)) for w in widths}

    fake_dataloader = []
    self.validation_dataloader.num_workers = 0
    nsteps = 30
    for i, dataloader_batch in enumerate(self.validation_dataloader):
        fake_batch = self.update_batch(dataloader_batch)
        fake_batch['x0'] = fake_batch["input_ids"]
        t = self._sample_t(fake_batch['x0'].shape[0], fake_batch['x0'].device)
        sigma, dsigma = self.noise(t)
        move_chance = 1 - torch.exp(-sigma[:, None])
        xt = self.q_xt(fake_batch['x0'], move_chance)
        fake_batch['xt'] = xt

        fake_dataloader.append(fake_batch)
        if i >= nsteps:
            break

    def loss_fn(_batch, _logits):
        attention_mask = _batch['attention_mask']
        model_output = self._subs_parameterization(logits=_logits, xt=_batch['xt'])
        log_p_theta = torch.gather(input=model_output, dim=-1, index=_batch['x0'][:, :, None]).squeeze(-1)
        std_weighting = (dsigma / torch.expm1(sigma))[:, None]
        loss = -log_p_theta * std_weighting
        loss = (loss * attention_mask).sum() / attention_mask.sum()
        return loss

    mup = True
    lr = 1e-2
    prm = 'μP' if mup else 'SP'
    nseeds = 2
    with torch.autocast(device_type=self.device.type, dtype=self.dtype):
        df = get_coord_data(
            models,
            fake_dataloader,
            lr=lr,
            optimizer=optimizer,
            nsteps=nsteps,
            nseeds=nseeds,
            dict_in_out=True,
            lossfn=loss_fn,
            mup=mup,
        )

    output_path = Path(__file__).parent / 'output' / f'{prm.lower()}_trsfmr_{optimizer}_coord.png'
    output_path.parent.mkdir(parents=True, exist_ok=True)
    plot_coord_data(
        df,
        legend='brief',
        save_to=str(output_path.resolve()),
        suptitle=f'{prm} Transformer {optimizer} lr={lr} nseeds={nseeds}',
        face_color='xkcd:light grey' if not mup else None,
        loglog=True
    )
    rprint(f"Saved coord plot to {output_path.resolve()}")

    csv_path = output_path.with_suffix('.csv')
    df.to_csv(csv_path, index=False)
    rprint(f"DataFrame saved as CSV to {csv_path.resolve()}")
    
    result = df[df['t'] == 1].nsmallest(100, 'l1').sort_values('l1', ascending=True)
    with pd.option_context('display.max_rows', None, 'display.max_columns', None):
        print(result[['module', 'width', 'l1']])
    exit()

def _score_entropy(self, log_score, sigma, xt, x0):
    """Computes the SEDD loss.

    Args:
        log_score: float torch.Tensor with shape (batch_size,
            diffusion_model_input_length, vocab_size),
            log score, output of the denoising network.
        xt: int torch.Tensor with shape (batch_size,
            diffusion_model_input_length), input.
        x0: int torch.Tensor with shape (batch_size,
            diffusion_model_input_length), input.
        sigma: float torch.Tensor with shape (batch_size, 1).

    Returns:
        loss with shape (batch_size, diffusion_model_input_length)
    """
    masked_indices = xt == self.mask_index

    expsig_minus_1 = torch.expm1(sigma).expand_as(xt)
    q_ratio = 1 / expsig_minus_1[masked_indices]

    words_that_were_masked = x0[masked_indices]

    neg_term = q_ratio * torch.gather(log_score[masked_indices], -1, words_that_were_masked[..., None]).squeeze(-1)
    score = log_score[masked_indices].exp()
    if self.mask_index == self.vocab_size - 1:
        pos_term = score[:, :-1].sum(dim=-1)
    else:
        pos_term = score[:, : self.mask_index].sum(dim=-1) + score[:, self.mask_index + 1 :].sum(dim=-1)
    const = q_ratio * (q_ratio.log() - 1)

    entropy = torch.zeros(*xt.shape, device=xt.device)
    entropy[masked_indices] += pos_term - neg_term + const
    return entropy

@torch.no_grad
def sample_subs_guidance(self, n_samples, stride_length, num_strides, dt=0.001):
    ones = torch.ones(n_samples, dtype=self.dtype, device=self.device)

    num_steps = int(1 / dt)
    sampling_steps = 0
    intermediate_tokens = []
    target = None
    for _ in range(num_strides + 1):
        p_x0_cache = None
        x = self._sample_prior(n_samples, self.config.model.length).to(self.device)
        if target is not None:
            x[:, :-stride_length] = target
        for i in range(num_steps + 1):
            p_x0_cache, x_next, nfe_cnt = self._ddpm_caching_update(x=x, t=(1 - i * dt) * ones, dt=dt, p_x0=p_x0_cache)
            if not torch.allclose(x_next, x) or self.time_conditioning:
                p_x0_cache = None
                sampling_steps += 1
            x = x_next
        x = self.forward(x, 0 * ones).argmax(dim=-1)
        intermediate_tokens.append(x[:, :stride_length].cpu().numpy())
        target = x[:, stride_length:]

    intermediate_tokens.append(target.cpu().numpy())
    intermediate_text_samples = []
    sequence_lengths = ((np.concatenate(intermediate_tokens, axis=1)[:, 1:] == self.tokenizer.eos_token_id).cumsum(-1) == 0).sum(-1)
    for i in range(2, len(intermediate_tokens) + 1):
        intermediate_text_samples.append(self.tokenizer.batch_decode(np.concatenate(intermediate_tokens[:i], axis=1)))
    return (sampling_steps, intermediate_text_samples, sequence_lengths)

def restore_model_and_semi_ar_sample(self, stride_length, num_strides, dt=0.001):
    """Generate samples from the model."""
    # Lightning auto-casting is not working in this method for some reason
    if self.ema:
        self.ema.store(self.get_params())
        self.ema.copy_to(self.get_params())
    self.backbone.eval()
    (sampling_steps, samples, sequence_lengths) = self.sample_subs_guidance(
        n_samples=self.config.loader.eval_batch_size, stride_length=stride_length, num_strides=num_strides, dt=dt
    )
    if self.ema:
        self.ema.restore(self.get_params())
    self.backbone.train()
    self.noise.train()
    return sampling_steps, samples, sequence_lengths

def _reconstruction_loss(self, x0):
    t0 = torch.zeros(x0.shape[0], dtype=self.dtype, device=self.device)
    assert self.config.noise.type == "loglinear"
    # The above assert is for d3pm parameterization
    unet_conditioning = self.noise(t0)[0][:, None]
    model_output_t0 = self.forward(x0, unet_conditioning)
    return -torch.gather(input=model_output_t0, dim=-1, index=x0[:, :, None]).squeeze(-1)

def restore_model_and_sample(self, num_steps, eps=1e-5):
    """Generate samples from the model."""
    # Lightning auto-casting is not working in this method for some reason
    if self.ema is not None:
        self.ema.store(self.get_params())
        self.ema.copy_to(self.get_params())
    self.backbone.eval()
    samples = self._sample(num_steps=num_steps, eps=eps)
    if self.ema is not None:
        self.ema.restore(self.get_params())
    self.backbone.train()
    return samples

def get_score(self, x, sigma, **kwargs):
    model_output = self.forward(x, sigma, **kwargs)
    if self.parameterization == "subs":
        # score(x, t) = p_t(y) / p_t(x)
        # => log score(x, t) = log p_t(y) - log p_t(x)

        # case 1: x = masked
        #   (i) y = unmasked
        #     log score(x, t) = log p_\theta(x)|_y + log k
        #     where k = exp(- sigma) / (1 - exp(- sigma))
        #   (ii) y = masked
        #     log score(x, t) = 0

        # case 2: x = unmasked
        #   (i) y != masked, y != x
        #     log score(x_i, t) = - inf
        #   (ii) y = x
        #     log score(x_i, t) = 0
        #   (iii) y = masked token
        #     log score(x_i, t) = - log k
        #     where k = exp(- sigma) / (1 - exp(- sigma))

        log_k = -torch.log(torch.expm1(sigma)).squeeze(-1)
        assert log_k.ndim == 1

        masked_score = model_output + log_k[:, None, None]
        masked_score[:, :, self.mask_index] = 0

        unmasked_score = self.neg_infinity * torch.ones_like(model_output)
        unmasked_score = torch.scatter(unmasked_score, -1, x[..., None], torch.zeros_like(unmasked_score[..., :1]))
        unmasked_score[:, :, self.mask_index] = -(log_k[:, None] * torch.ones_like(x))

        masked_indices = (x == self.mask_index).to(model_output.dtype)[:, :, None]
        model_output = masked_score * masked_indices + unmasked_score * (1 - masked_indices)
    return model_output.exp()

def _staggered_score(self, score, dsigma):
    score = score.clone()
    extra_const = (1 - dsigma.exp()) * score.sum(dim=-1)
    score *= dsigma.exp()[:, None]
    score[..., self.mask_index] += extra_const
    return score

def _analytic_update(self, x, t, step_size):
    curr_sigma, _ = self.noise(t)
    next_sigma, _ = self.noise(t - step_size)
    dsigma = curr_sigma - next_sigma
    nfe_cnt = 0
    score = self.get_score(x, curr_sigma)
    nfe_cnt += 1
    stag_score = self._staggered_score(score, dsigma)
    probs = stag_score * self._transp_transition(x, dsigma)
    return _sample_categorical(probs), nfe_cnt

def _denoiser_update(self, x, t):
    sigma, _ = self.noise(t)
    score = self.get_score(x, sigma)
    stag_score = self._staggered_score(score, sigma)
    probs = stag_score * self._transp_transition(x, sigma)
    probs[..., self.mask_index] = 0
    samples = _sample_categorical(probs)
    return samples

def _transp_transition(self, i, sigma):
    sigma = _unsqueeze(sigma, reference=i[..., None])
    edge = torch.exp(-sigma) * F.one_hot(i, num_classes=self.vocab_size)
    edge += torch.where(i == self.mask_index, 1 - torch.exp(-sigma).squeeze(-1), 0)[..., None]
    return edge

@torch.no_grad()
def eval_retokenize(self, text_samples, max_length):
    """Retokenizes samples for the eval model.

    Args:
        text_samples: List of sentences generated by the model.
    Returns:
        samples: Samples re-tokenized for the eval model
        attn_mask: Attention mask for the eval model
        eval_context_size: Size of the context for the eval model
    """
    if "llama2" in self.gen_ppl_eval_model_name_or_path:
        tokenizer_kwargs = {
            "text_samples": text_samples,
            "return_tensors": "pt",
            "return_token_type_ids": False,
            "return_attention_mask": True,
            "truncation": True,
            "padding": True,
            "max_length": max_length,
        }
        eval_context_size = 4096
    else:
        tokenizer_kwargs = {
            "return_tensors": "pt",
            "return_token_type_ids": False,
            "return_attention_mask": True,
            "truncation": True,
            "padding": True,
            "max_length": max_length,
        }
        eval_context_size = 1024

    if getattr(self.config.eval, "force_eval_context_size_match_model", False):
        eval_context_size = self.config.model.txt_length

    samples = self.eval_model_tokenizer(text_samples, **tokenizer_kwargs)
    attn_mask = samples["attention_mask"]
    samples = samples["input_ids"]
    if "llama2" not in self.gen_ppl_eval_model_name_or_path:
        attn_mask = attn_mask.to(self.device)
        samples = samples.to(self.device)
    return samples, attn_mask, eval_context_size

    
@try_except(write_error_to_file=True)
@torch.no_grad()
def compute_cider(self, text_samples, gt_text_samples):
    """Compute the CIDEr score for the generated text.
    Args:
        text_samples: List of sentences generated by the model.
        gt_text_samples: List of ground truth sentences.
    Returns:
        CIDEr score for the generated text.
    """
    for text_sample, gt_text_sample in zip(text_samples, gt_text_samples):
        self.cider_score_metric += (text_sample, gt_text_sample)
    score = self.cider_score_metric.compute_cider() # list of np.float64
    avg_score = sum(score) / len(score)
    self.cider_score.update(avg_score.item()) # weight=len(text_samples))
    

def get_anole_data(model, processor, prompt, image, device):
    inputs = processor(prompt, [image], padding=True, return_tensors="pt").to(device=device, dtype=dtype)
    image_tokens = model.model.get_image_tokens(inputs["pixel_values"])
    special_image_mask = inputs["input_ids"] == model.model.vocabulary_mapping.image_token_id
    image_tokens = image_tokens.to(inputs["input_ids"].device, inputs["input_ids"].dtype)
    inputs["input_ids"] = inputs["input_ids"].masked_scatter(special_image_mask, image_tokens)
    inputs.pop("pixel_values")
    inputs['input_ids'] = torch.load('save.pth').to(device)
    return inputs

@try_except(write_error_to_file=True)
@torch.inference_mode()
def compute_generative_perplexity(self, text_samples: typing.List[str], retokenize: bool = True, max_length: typing.Optional[int] = None, gt: bool = False, return_raw_score: bool = False) -> None:
    """Compute the generative perplexity of the model.

    Args:
        text_samples: List of sentences generated by the model.
        retokenize: Whether to retokenize using eval model's tokenizer
        max_length: Maximum sequence length for tokenization
        gt: Whether these are ground truth samples
        return_raw_score: Whether to return raw NLL scores instead of updating metrics

    Returns:
        If return_raw_score is True, returns tensor of NLL scores.
        Otherwise updates internal perplexity metrics.
    """
    os.environ["TOKENIZERS_PARALLELISM"] = "false"
    if not getattr(self.config.eval, 'enable_gen_pplx_cleanup', True):
        eval_model = self.gen_pplx_eval_model
    elif getattr(self.config.eval, 'gen_ppl_use_chameleon', False):
        from transformers import (ChameleonForConditionalGeneration,
                                  ChameleonProcessor)
        model = ChameleonForConditionalGeneration.from_pretrained("leloy/Anole-7b-v0.1-hf", torch_dtype=torch.bfloat16).to("cuda")
        processor = ChameleonProcessor.from_pretrained("leloy/Anole-7b-v0.1-hf")
        image = Im(Im("https://cdn.outsideonline.com/wp-content/uploads/2023/03/Funny_Dog_H.jpg").np[50:-150, 550:-900, :]).resize(256, 256).pil
        prompt = "A picture of a cat.<image>"
        device = "cuda:0"
        inputs = get_anole_data(model, processor, prompt, image, self.dtype, device)
        output = model(input_ids=inputs['input_ids'].to(device))
        attention_mask = torch.ones_like(inputs["input_ids"])
        logits = output.logits
        logits = logits.transpose(-1, -2)
        sample_chunk = inputs["input_ids"]
        nlls = F.cross_entropy(logits[..., :-1].to(device), sample_chunk[..., 1:].to(device), reduction="none")
        nlls = nlls * attention_mask[..., 1:].to(nlls.dtype)
        nlls = nlls.sum(-1) / attention_mask[..., 1:].sum(-1)
        print(torch.exp(nlls))
    else:
        eval_model = transformers.AutoModelForCausalLM.from_pretrained(self.gen_ppl_eval_model_name_or_path).eval()
    if max_length is None:
        max_length = self.config.model.txt_length

    if "llama2" not in self.gen_ppl_eval_model_name_or_path:
        eval_model = eval_model.to(self.device)
    
    # Re-tokenize using eval model's tokenizer
    if retokenize:
        (samples, attn_mask, eval_context_size) = self.eval_retokenize(text_samples, max_length=max_length)
    else:
        samples = text_samples
        attn_mask = torch.ones(samples.shape).to(self.device)
        eval_context_size = samples.shape[-1]

    batch_size = min(self.config.eval.perplexity_batch_size, samples.shape[0])
    num_batches = (samples.shape[0] + batch_size - 1) // batch_size
    all_nlls = []
    all_valid_mask = []
    for i in range(num_batches):
        batch_samples = samples[i * batch_size : (i + 1) * batch_size]
        batch_attn_mask = attn_mask[i * batch_size : (i + 1) * batch_size]

        with torch.nn.attention.sdpa_kernel([torch.nn.attention.SDPBackend.FLASH_ATTENTION, torch.nn.attention.SDPBackend.EFFICIENT_ATTENTION]):
            logits = eval_model(batch_samples, attention_mask=batch_attn_mask)[0]
            
        logits = logits.transpose(-1, -2)
        nlls = F.cross_entropy(logits[..., :-1], batch_samples[..., 1:], reduction="none")
        
        # Only consider tokens up to first EOS or padding
        first_eos = (batch_samples == self.eval_model_tokenizer.eos_token_id).cumsum(-1) <= 1
        token_mask = batch_attn_mask[..., 1:] > 0
        valid_mask = first_eos[..., 1:] * token_mask

        if not return_raw_score:
            if gt:
                self.gt_gen_ppl_metric.update(nlls, valid_mask)
            else:
                self.gen_ppl_metric.update(nlls, valid_mask)
        else:
            all_nlls.append(nlls)
            all_valid_mask.append(valid_mask)

    if getattr(self.config.eval, 'enable_gen_pplx_cleanup', True):
        eval_model.to(torch.device('cpu'))
        del eval_model

    if return_raw_score:
        all_nlls = torch.cat(all_nlls)
        all_valid_mask = torch.cat(all_valid_mask)
        # Compute mean NLL per sequence, ignoring padding/post-EOS tokens
        nll = (all_nlls * all_valid_mask).sum(-1) / all_valid_mask.sum(-1)
        return nll

def _d3pm_loss(self, model_output, xt, x0, t):
    dt = 1 / self.T

    if torch.is_tensor(t):
        t = t[:, None]
        assert t.ndim == 2
        t = t.clamp(0.0, 1.0 - 1e-4)
    alpha_t = 1 - t + torch.zeros_like(xt)
    alpha_s = 1 - (t - dt) + torch.zeros_like(xt)

    log_x_theta_at_x0 = torch.gather(model_output, -1, x0[:, :, None]).squeeze(-1)
    log_x_theta_at_m = model_output[:, :, self.mask_index]
    x_theta_at_m = log_x_theta_at_m.exp()

    term_1_coef = dt / t
    term_1_log_nr = torch.log(alpha_t * x_theta_at_m / t + 1)
    term_1_log_dr = log_x_theta_at_x0

    term_2_coef = 1 - dt / t
    term_2_log_nr = term_1_log_nr
    term_2_log_dr = torch.log(alpha_s * x_theta_at_m / (t - dt) + 1)

    L_vb_masked = term_1_coef * (term_1_log_nr - term_1_log_dr) + term_2_coef * (term_2_log_nr - term_2_log_dr)

    L_vb = L_vb_masked * (xt == self.mask_index)

    return self.T * L_vb

def _d3pm_parameterization(self, logits):
    if self.subs_masking:
        logits[:, :, self.mask_index] += self.neg_infinity
    logits = logits - torch.logsumexp(logits, dim=-1, keepdim=True)
    return logits

def _sedd_parameterization(self, logits, xt, sigma):
    esigm1_log = torch.where(sigma < 0.5, torch.expm1(sigma), sigma.exp() - 1).log().to(logits.dtype)
    # logits shape
    # (batch_size, diffusion_model_input_length, vocab_size)
    logits = logits - esigm1_log[:, None, None] - np.log(logits.shape[-1] - 1)
    # The below scatter operation sets the log score
    # for the input word to 0.
    logits = torch.scatter(logits, -1, xt[..., None], torch.zeros_like(logits[..., :1]))
    return logits

def get_base_shapes_for_mup(self, _model):
    from copy import deepcopy

    from mup import set_base_shapes
    from omegaconf import read_write

    base_config = deepcopy(self.config)
    with read_write(base_config):
        base_config.model.hidden_size = base_config.model.n_heads # We need at least n_heads dim

    delta_config = deepcopy(base_config)
    with read_write(delta_config):
        delta_config.model.hidden_size = base_config.model.n_heads * 2

    base_model = models.dit.DIT(
        base_config, vocab_size=self.vocab_size, mask_index=self.mask_index, text_vocab_size=self.text_vocab_size, dtype=self.dtype
    )

    delta_model = models.dit.DIT(
        delta_config, vocab_size=self.vocab_size, mask_index=self.mask_index, text_vocab_size=self.text_vocab_size, dtype=self.dtype
    )

    set_base_shapes(_model, base_model, delta=delta_model)


def update_histogram(histogram, timesteps: torch.Tensor, losses: torch.Tensor):
    for t, l in zip(timesteps, losses):
        if t.item() in histogram:
            histogram[t.item()].append(l.item())
        else:
            histogram[t.item()] = [l.item()]

def _maybe_sub_sample(self, x0, attention_mask):
    seqlen = x0.shape[1]
    if seqlen > self.config.model.length:
        if not getattr(self.config.eval, 'big_seq_len_eval', False):
            assert seqlen == 2 * self.config.model.length
            # cropping is needed for text8-crop dataset
        # try the same starting point for now
        start = np.random.choice(self.config.model.length)
        end = start + self.config.model.length
        input_tokens = x0[:, start:end]
        output_tokens = x0[:, start + 1 : end + 1]
        new_attention_mask = attention_mask[:, start:end]

        # Helps with validation PPL, since the val
        # examples will all start and end with BOS/EOS
        input_tokens[:, 0] = self.tokenizer.bos_token_id
        output_tokens[:, -1] = self.tokenizer.eos_token_id
    else:
        input_tokens = x0
        output_tokens = None
        new_attention_mask = attention_mask
    return input_tokens, output_tokens, new_attention_mask

from unidisc.tokenizers.image_tokenizers import decode_latents


def viz_images_from_dataloader(self):
    _iter = iter(self.train_dataloader)
    random_elements = [next(_iter) for _ in range(10)]
    # random_elements[0]['input_ids'] - self.text_vocab_size
    out = decode_latents(self.config, self.get_vae(), torch.cat([torch.zeros_like(random_elements[0]['input_ids'][:, :1]), (random_elements[0]['input_ids'] - self.text_vocab_size)], dim=-1))
    from image_utils import Im
    print(Im(out[:16]).save())
    breakpoint()
    return random_elements

try:
    from torch.nn.attention.flex_attention import create_block_mask
except:
    pass

def _attn_mask(txt_batch_dropout, img_batch_dropout, txt_length):
    def mask_mod(b, h, q_idx, kv_idx):
        txt_sees_txt = (q_idx < txt_length) & (kv_idx < txt_length)
        img_sees_img_and_txt = (q_idx >= txt_length)
        txt_dropout_case = ~txt_batch_dropout[b] | (txt_sees_txt | img_sees_img_and_txt)

        img_sees_img = ((q_idx >= txt_length) & (kv_idx >= txt_length))
        txt_sees_txt_and_img = (q_idx < txt_length)
        img_dropout_case = ~img_batch_dropout[b] | (img_sees_img | txt_sees_txt_and_img)
        return txt_dropout_case & img_dropout_case
    return mask_mod


def get_block_mask(txt_batch_attn_dropout, img_batch_attn_dropout, txt_length, batch_size, seq_len, device):
    return create_block_mask(
        _attn_mask(txt_batch_attn_dropout, img_batch_attn_dropout, txt_length), 
        B = batch_size, H = None, Q_LEN = seq_len, KV_LEN = seq_len, device = device
    )

def _interleaved_attn_mask(interleaved_sample_ids):
    def mask_mod(b, h, q_idx, kv_idx):
        return (interleaved_sample_ids[b, q_idx] == interleaved_sample_ids[b, kv_idx]) & (interleaved_sample_ids[b, q_idx] != -1)
    return mask_mod

def visualize_flex_attention(mask_mod, B, SEQ_LEN, H=16, HEAD_DIM=64, device="cuda"):
    from models.archived.utils import visualize_attention_scores
    def make_tensor():
        return torch.ones(B, H, SEQ_LEN, HEAD_DIM, device=device)

    query, key = make_tensor(), make_tensor()
    visualize_attention_scores(
        query,
        key,
        mask_mod=mask_mod,
        device=device,
        name="interleaved_attn_mask",
    )
    
def get_interleaved_block_mask(interleaved_sample_ids, batch_size, seq_len, device, visualize=False):
    # Uncomment this to visualize the mask
    if visualize:
        visualize_flex_attention(_interleaved_attn_mask(interleaved_sample_ids), batch_size, seq_len, device=device)
    if (interleaved_sample_ids == -1).all(dim=-1).any():
        gprint(f"WARNING: Found all -1s in interleaved_sample_ids, setting one to 0")
        interleaved_sample_ids = interleaved_sample_ids.clone()
        interleaved_sample_ids[(interleaved_sample_ids == -1).all(dim=-1), 0] = 0

    return create_block_mask(
        _interleaved_attn_mask(interleaved_sample_ids),
        B = batch_size, H = None, Q_LEN = seq_len, KV_LEN = seq_len, device = device
    )

def calculate_clip_score(
    image_paths: List[str],
    captions_mapping: Dict[str, str],
    device: torch.device = "cuda",
    seed: Optional[int] = 42,
    batch_size: int = 128,
    dataloader_workers: int = 16,
    verbose: bool = True,
):
    import clip
    from T2IBenchmark.feature_extractors import (BaseFeatureExtractor,
                                                 InceptionV3FE)
    from T2IBenchmark.loaders import CaptionImageDataset
    from T2IBenchmark.model_wrapper import (ModelWrapperDataloader,
                                            T2IModelWrapper)
    from T2IBenchmark.utils import dprint, set_all_seeds

    if seed:
        set_all_seeds(seed)

    model, preprocess = clip.load("ViT-B/32", device=device)
    dataset = CaptionImageDataset(
        images_paths=image_paths,
        captions=list(map(lambda x: captions_mapping[x], image_paths)),
        preprocess_fn=preprocess,
    )
    dataloader = DataLoader(
        dataset,
        batch_size=batch_size,
        shuffle=False,
        drop_last=False,
        num_workers=dataloader_workers,
    )

    score_acc = 0.0
    num_samples = 0.0

    for image, caption in tqdm(dataloader):
        image_embedding = model.encode_image(image.to(device))
        caption_embedding = model.encode_text(clip.tokenize(caption, truncate=True).to(device))

        image_features = image_embedding / image_embedding.norm(dim=1, keepdim=True).to(
            torch.float32
        )
        caption_features = caption_embedding / caption_embedding.norm(
            dim=1, keepdim=True
        ).to(torch.float32)

        score = (image_features * caption_features).sum()
        score_acc += score
        num_samples += image.shape[0]

    clip_score = score_acc / num_samples
    dprint(verbose, f"CLIP score is {clip_score}")

    return clip_score

def get_chameleon_txt_indices(vae, include_special_tokens=True):
    image_indices = set(vae.chameleon_ori_translation.bpe2img.keys())
    if include_special_tokens:
        h_grids, w_grids = 32, 32
        image_start_token = vae.token2id(vae.image_start_token)
        n_grids_token = vae.token2id(vae.get_n_grids_token(h_grids))
        image_end_token = vae.token2id(vae.image_end_token)
        image_indices.add(image_start_token)
        image_indices.add(n_grids_token)
        image_indices.add(image_end_token)
        image_indices.add(-100)
        image_indices.add(1)
        image_indices.update(range(8192, 8820 + 1))

    return image_indices