File size: 69,568 Bytes
131da64 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 |
import math
import typing
from contextlib import nullcontext
import os
# Torch must be imported before flash-attn
from unidisc.utils.tensor_utils import get_contiguous_blocks, get_interleaved_indices
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.checkpoint import checkpoint
from diffusers.models.embeddings import get_2d_rotary_pos_embed_lumina
from decoupled_utils import gprint, is_torch_xla_available, rprint
from models.standalone_rotary import flash_torch_apply_rotary_emb_torch
import huggingface_hub
import omegaconf
from einops import rearrange
is_xla_available = is_torch_xla_available()
force_cudnn_spda_context = os.environ.get("UNIDISC_FORCE_CUDNN_SPDA_CONTEXT", "0") == "1"
allow_any_spda = os.environ.get("UNIDISC_ALLOW_ANY_SPDA", "0") == "1"
force_xla_flash_attention = os.environ.get("UNIDISC_FORCE_XLA_FLASH_ATTENTION", "0") == "1"
use_non_packed_fa2 = os.getenv("UNIDISC_USE_NON_PACKED_FA2", "0") == "1"
disable_flash_attention_3 = os.getenv("UNIDISC_FORCE_DISABLE_FA3", "0") == "1"
is_xla_linear_patched = os.getenv("UNIDISC_IS_XLA_LINEAR_PATCHED", "0") == "1"
use_causal_attn = os.getenv("UNIDISC_USE_CAUSAL_ATTN", "0") == "1"
if force_cudnn_spda_context: rprint("Forcing cudnn spda context")
if allow_any_spda: rprint("Allowing any spda")
if force_xla_flash_attention: rprint("Forcing xla flash attention")
if use_non_packed_fa2: rprint("Using non-packed Flash Attention 2!")
if disable_flash_attention_3: rprint("Disabling Flash Attention 3!")
try:
failed_to_import_fa3 = True
if disable_flash_attention_3 is False:
from flash_attn_interface import flash_attn_func as flash_attn_func_v3, flash_attn_varlen_func as flash_attn_varlen_func_v3
failed_to_import_fa3 = False
rprint("Imported Flash Attention 3!")
except:
rprint("Not using Flash Attention 3!")
try:
import flash_attn.layers.rotary
from flash_attn.layers.rotary import apply_rotary_emb
if failed_to_import_fa3:
from flash_attn.flash_attn_interface import (flash_attn_func,
flash_attn_qkvpacked_func,
flash_attn_varlen_func,
flash_attn_varlen_qkvpacked_func)
rprint("Imported Flash Attention 2!")
except:
rprint("Failed to import Flash Attention 2!")
try:
from torch.nn.functional import scaled_dot_product_attention as sdpa
from torch.nn.attention import SDPBackend, sdpa_kernel
except:
pass
try:
from torch.nn.attention.flex_attention import flex_attention, create_block_mask
compiled_flex_attention = torch.compile(flex_attention)
except:
pass
# Flags required to enable jit fusion kernels
torch._C._jit_set_profiling_mode(False)
torch._C._jit_set_profiling_executor(False)
torch._C._jit_override_can_fuse_on_cpu(True)
torch._C._jit_override_can_fuse_on_gpu(True)
class RMSNorm(torch.nn.Module):
def __init__(self, dim: int, eps: float = 1e-6):
"""
Initialize the RMSNorm normalization layer.
Args:
dim (int): The dimension of the input tensor.
eps (float, optional): A small value added to the denominator for numerical stability. Default is 1e-6.
Attributes:
eps (float): A small value added to the denominator for numerical stability.
weight (nn.Parameter): Learnable scaling parameter.
"""
super().__init__()
self.eps = eps
self.weight = nn.Parameter(torch.ones(dim))
def _norm(self, x):
return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)
def forward(self, x):
output = self._norm(x.float()).type_as(x)
return output * self.weight
@torch.no_grad()
def get_transfusion_mask(B, N_tot, img_start_idx, img_length, modality):
# todo - this is temporary and only works for [text+image] mode. does NOT handle interleaved (need to use modality_mask for this)
# (B, N_tot) -> (B, N_tot, N_tot)
rows, cols = torch.meshgrid(torch.arange(N_tot), torch.arange(N_tot), indexing="ij")
idxs = torch.stack([rows, cols], dim=-1).to(modality.device)
idxs = idxs.expand(B, -1, -1, -1)
q_idx, kv_idx = idxs.unbind(dim=-1)
offset = torch.full((B,), img_start_idx, device=modality.device).unsqueeze(-1).unsqueeze(-1)
limit = torch.full((B,), img_length, device=modality.device).unsqueeze(-1).unsqueeze(-1)
ar = q_idx >= kv_idx
nar = (q_idx >= offset) & (kv_idx >= limit)
mask = ar | nar
# Assume that batches with all text are autoregressive only
mask = torch.where(((modality == 0).all(dim=-1))[:, None, None], ar, mask)
return mask
@torch.compiler.disable()
def add_img_data_to_blocks(input_emb, rotary_emb, modality_mask, sample_ids, add_data, img_count_embedding):
"""
Dynamically adds 2D RoPE embeddings to image blocks. Handles variable resolutions by matching to hardcoded block sizes.
"""
assert sample_ids is not None
B, N = modality_mask.shape
batch_indices, start_positions, end_positions = get_interleaved_indices(modality_mask)
block_sizes = end_positions - start_positions
unique_block_sizes = [size for size in torch.unique(block_sizes).tolist() if size in add_data.keys()]
# For each block, count number of blocks before it within same sample_id group
block_counts = torch.zeros_like(batch_indices)
for i in range(len(batch_indices)):
curr_sample_id = sample_ids[batch_indices[i], start_positions[i]]
# Find blocks before this one with same batch index and sample_id
prev_blocks_mask = (batch_indices[:i] == batch_indices[i]) & \
(sample_ids[batch_indices[:i], start_positions[:i]] == curr_sample_id)
block_counts[i] = prev_blocks_mask.sum()
for block_size in unique_block_sizes:
block_mask = (block_sizes == block_size)
block_indices = block_mask.nonzero(as_tuple=False).squeeze()
if block_indices.ndim == 0:
block_indices = block_indices.unsqueeze(0)
if block_indices.numel() == 0:
continue
# Get the batch indices and start positions for these blocks
batch_idx = batch_indices[block_indices]
start_pos = start_positions[block_indices]
img_idx = block_counts[block_indices] # Get the block count for each selected block
# Calculate the maximum valid length for each block (in case they exceed N)
max_lengths = torch.clamp(N - start_pos, max=block_size)
max_block_length = max_lengths.max().item()
positions = start_pos.unsqueeze(1) + torch.arange(max_block_length, device=rotary_emb.device).unsqueeze(0) # [num_blocks, max_block_length]
# Create a mask to handle blocks that may be shorter than block_size
valid_mask = torch.arange(max_block_length, device=rotary_emb.device).unsqueeze(0) < max_lengths.unsqueeze(1)
positions = positions * valid_mask # Positions beyond valid lengths are set to zero
batch_idx_expanded = batch_idx.unsqueeze(1).expand(-1, max_block_length)
if input_emb is not None:
input_emb_to_add_full = img_count_embedding[img_idx][:, None, :] # Shape: [block_size]
input_emb_to_add = input_emb_to_add_full.expand(-1, valid_mask.shape[-1], -1)
input_emb_to_add = input_emb_to_add * valid_mask.unsqueeze(-1) # Mask data beyond valid lengths
input_emb[batch_idx_expanded[valid_mask], positions[valid_mask], :] = input_emb[batch_idx_expanded[valid_mask], positions[valid_mask], :] + input_emb_to_add[valid_mask]
rotary_emb_to_add_full = add_data[block_size] # Shape: [block_size]
rotary_emb_to_add = rotary_emb_to_add_full[:max_block_length].unsqueeze(0).expand(batch_idx.size(0), -1, -1)
rotary_emb_to_add = rotary_emb_to_add * valid_mask.unsqueeze(-1) # Mask data beyond valid lengths
rotary_emb[batch_idx_expanded[valid_mask], positions[valid_mask], :] = rotary_emb_to_add[valid_mask]
@torch.compiler.disable()
def add_txt_data_to_blocks(rotary_emb, modality_mask, sample_ids, add_data):
assert sample_ids is not None
batch_indices, start_positions, end_positions = get_contiguous_blocks(sample_ids)
block_sizes = end_positions - start_positions
for i in range(len(batch_indices)):
batch_idx = batch_indices[i]
start_pos = start_positions[i]
block_size = block_sizes[i]
sample_slice = slice(start_pos, start_pos+block_size)
rotary_emb[batch_idx, sample_slice, :] = torch.where(modality_mask[batch_idx, sample_slice, None], rotary_emb[batch_idx, sample_slice, :], add_data[:block_size])
def apply_xla_flash_attention_with_spmd(query_states, key_states, value_states, causal=False):
from torch_xla.experimental.custom_kernel import flash_attention
# q, k, v should all have the shape [B, n_head, S, head_dim]
head_dim = query_states.size()[-1]
query_states = query_states / math.sqrt(head_dim)
# Our simplified version of decoder only model does not use any mask.
# flash_attention will use the global_mesh set in the TrainDecoderOnlyFSDPv2.
attn_output = flash_attention(query_states, key_states, value_states, causal=causal, partition_spec=("fsdp", None, None, None))
return attn_output
def ckpt_wrapper(module):
def ckpt_forward(*inputs):
outputs = module(*inputs)
return outputs
return ckpt_forward
# To avoid XLA issues
if is_xla_available:
def _dropout(x: torch.Tensor, p: float, training: bool) -> torch.Tensor:
if p > 0.0:
return F.dropout(input=x, p=p, training=training).to(torch.bfloat16)
else:
return x
else:
def _dropout(x: torch.Tensor, p: float, training: bool) -> torch.Tensor:
if p > 0.0:
return F.dropout(input=x, p=p, training=training)
else:
return x
def bias_dropout_add_scale(
x: torch.Tensor,
bias: typing.Optional[torch.Tensor],
scale: typing.Optional[torch.Tensor],
residual: typing.Optional[torch.Tensor],
prob: float,
training: bool,
modality: typing.Optional[torch.Tensor] = None,
) -> torch.Tensor:
out = _dropout(x=(x + bias) if bias is not None else x, p=prob, training=training)
if scale is not None:
out = scale * out
if modality is not None:
out = torch.where((modality == 1).unsqueeze(-1), out, _dropout(x, p=prob, training=training))
if modality is not None:
out = torch.where((modality == 1).unsqueeze(-1), out, x)
if residual is not None:
out = residual + out
return out
def get_bias_dropout_add_scale(training):
def _bias_dropout_add(x, bias, scale, residual, prob):
return bias_dropout_add_scale(x, bias, scale, residual, prob, training)
return _bias_dropout_add
# function overload
def modulate(x: torch.Tensor, shift: torch.Tensor, scale: torch.Tensor) -> torch.Tensor:
return x * (1 + scale) + shift
def modulate_with_mask(x: torch.Tensor, shift: torch.Tensor, scale: torch.Tensor, modality: torch.Tensor) -> torch.Tensor:
# Only images need time conditioning
return torch.where(modality.unsqueeze(-1) == 1, x * (1 + scale) + shift, x)
if is_xla_available:
def bias_dropout_add_scale_fused_train(
x: torch.Tensor, bias: typing.Optional[torch.Tensor], scale: typing.Optional[torch.Tensor], residual: typing.Optional[torch.Tensor], prob: float, modality: typing.Optional[torch.Tensor] = None
) -> torch.Tensor:
return bias_dropout_add_scale(x, bias, scale, residual, prob, True, modality)
def bias_dropout_add_scale_fused_inference(
x: torch.Tensor, bias: typing.Optional[torch.Tensor], scale: typing.Optional[torch.Tensor], residual: typing.Optional[torch.Tensor], prob: float, modality: typing.Optional[torch.Tensor] = None
) -> torch.Tensor:
return bias_dropout_add_scale(x, bias, scale, residual, prob, False, modality)
def modulate_fused(x: torch.Tensor, shift: torch.Tensor, scale: torch.Tensor, modality: torch.Tensor=None) -> torch.Tensor:
if modality is not None and modality.any():
return modulate_with_mask(x, shift, scale, modality)
return modulate(x, shift, scale)
else:
@torch.jit.script
def bias_dropout_add_scale_fused_train(
x: torch.Tensor, bias: typing.Optional[torch.Tensor], scale: typing.Optional[torch.Tensor], residual: typing.Optional[torch.Tensor], prob: float, modality: typing.Optional[torch.Tensor] = None
) -> torch.Tensor:
return bias_dropout_add_scale(x, bias, scale, residual, prob, True, modality)
@torch.jit.script
def bias_dropout_add_scale_fused_inference(
x: torch.Tensor, bias: typing.Optional[torch.Tensor], scale: typing.Optional[torch.Tensor], residual: typing.Optional[torch.Tensor], prob: float, modality: typing.Optional[torch.Tensor] = None
) -> torch.Tensor:
return bias_dropout_add_scale(x, bias, scale, residual, prob, False, modality)
@torch.jit.script
def modulate_fused(x: torch.Tensor, shift: torch.Tensor, scale: torch.Tensor, modality: typing.Optional[torch.Tensor] = None) -> torch.Tensor:
if modality is not None and modality.any():
return modulate_with_mask(x, shift, scale, modality)
return modulate(x, shift, scale)
class Rotary(torch.nn.Module):
def __init__(self, dim, base=10_000):
super().__init__()
inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2).float() / dim))
self.register_buffer("inv_freq", inv_freq)
self.seq_len_cached = None
self.cos_cached = None
self.sin_cached = None
def forward(self, seq_len, device=None):
# seq_len = x.shape[seq_dim]
if seq_len != self.seq_len_cached:
self.seq_len_cached = seq_len
t = torch.arange(seq_len, device=device).type_as(self.inv_freq)
freqs = torch.einsum("i,j->ij", t, self.inv_freq.clone())
emb = torch.cat((freqs, freqs), dim=-1).to(device)
# dims are: batch, seq_len, qkv, head, dim
self.cos_cached = emb.cos()[None, :, None, None, :].repeat(1, 1, 3, 1, 1)
self.sin_cached = emb.sin()[None, :, None, None, :].repeat(1, 1, 3, 1, 1)
# This makes the transformation on v an identity.
self.cos_cached[:, :, 2, :, :].fill_(1.0)
self.sin_cached[:, :, 2, :, :].fill_(0.0)
return self.cos_cached, self.sin_cached
@staticmethod
def precompute_freqs_cis(dim: int, seq_len: int, theta: float = 10000.0, rope_scaling_factor: float = 1.0, ntk_factor: float = 1.0):
"""
Precompute the frequency tensor for complex exponentials (cis) with
given dimensions.
This function calculates a frequency tensor with complex exponentials
using the given dimension 'dim' and the end index 'end'. The 'theta'
parameter scales the frequencies. The returned tensor contains complex
values in complex64 data type.
Args:
dim (int): Dimension of the frequency tensor.
end (int): End index for precomputing frequencies.
theta (float, optional): Scaling factor for frequency computation.
Defaults to 10000.0.
Returns:
torch.Tensor: Precomputed frequency tensor with complex
exponentials.
"""
theta = theta * ntk_factor
rprint(f"theta {theta} rope scaling {rope_scaling_factor} ntk {ntk_factor}")
freqs = 1.0 / (theta ** (torch.arange(0, dim, 2)[: (dim // 2)].float().cuda() / dim))
t = torch.arange(seq_len, device=freqs.device, dtype=torch.float) # type: ignore
t = t / rope_scaling_factor
freqs = torch.outer(t, freqs).float() # type: ignore
emb = torch.cat((freqs, freqs), dim=-1)
cos = emb.cos()
sin = emb.sin()
cos = cos[:, : cos.shape[-1] // 2]
sin = sin[:, : sin.shape[-1] // 2]
return cos, sin
def rotate_half(x):
x1, x2 = x[..., : x.shape[-1] // 2], x[..., x.shape[-1] // 2 :]
return torch.cat((-x2, x1), dim=-1)
def apply_rotary_pos_emb(qkv, cos, sin):
# cos = cos[0, :, 0, 0, : cos.shape[-1] // 2]
# sin = sin[0, :, 0, 0, : sin.shape[-1] // 2]
return flash_attn.layers.rotary.apply_rotary_emb_qkv_(qkv, cos, sin)
#################################################################################
# Layers #
#################################################################################
class LayerNorm(nn.Module):
def __init__(self, dim):
super().__init__()
self.weight = nn.Parameter(torch.ones([dim]))
self.dim = dim
def forward(self, x):
with torch.amp.autocast(x.device.type, enabled=False):
x = F.layer_norm(x.float(), [self.dim])
if is_xla_available:
x = x.to(torch.bfloat16)
if x.ndim == 3:
return (x * self.weight[None, None, :]).to(torch.bfloat16)
elif x.ndim == 2:
return (x * self.weight[None]).to(torch.bfloat16)
else:
if x.ndim == 3:
return x * self.weight[None, None, :]
elif x.ndim == 2:
return x * self.weight[None]
def residual_linear(x, W, x_skip, residual_scale):
"""x_skip + residual_scale * W @ x"""
dim_out, dim_in = W.shape[0], W.shape[1]
return torch.addmm(x_skip.view(-1, dim_out), x.view(-1, dim_in), W.T, alpha=residual_scale).view(*x.shape[:-1], dim_out)
#################################################################################
# Embedding Layers for Timesteps and Class Labels #
#################################################################################
class TimestepEmbedder(nn.Module):
"""
Embeds scalar timesteps into vector representations.
"""
def __init__(self, hidden_size, frequency_embedding_size=256):
super().__init__()
self.mlp = nn.Sequential(
nn.Linear(frequency_embedding_size, hidden_size, bias=True), nn.SiLU(), nn.Linear(hidden_size, hidden_size, bias=True)
)
self.frequency_embedding_size = frequency_embedding_size
@staticmethod
def timestep_embedding(t, dim, max_period=10000):
"""
Create sinusoidal timestep embeddings.
:param t: a 1-D Tensor of N indices, one per batch element.
These may be fractional.
:param dim: the dimension of the output.
:param max_period: controls the minimum frequency of the embeddings.
:return: an (N, D) Tensor of positional embeddings.
"""
# https://github.com/openai/glide-text2im/blob/main/glide_text2im/nn.py
half = dim // 2
freqs = torch.exp(-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half).to(device=t.device)
args = (t[:, None].float() * freqs[None] if t.ndim == 1 else t[..., None].float() * freqs[None, None]) # TODO @sid I think this is right but remind me if things aren't working
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
if dim % 2:
embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
return embedding
def forward(self, t):
t_freq = self.timestep_embedding(t, self.frequency_embedding_size)
t_emb = self.mlp(t_freq)
return t_emb
class LabelEmbedderCFG(nn.Module):
"""
Embeds class labels into vector representations. Also handles label dropout for classifier-free guidance.
"""
def __init__(self, num_classes, hidden_size, dropout_prob):
super().__init__()
use_cfg_embedding = dropout_prob > 0
self.embedding_table = nn.Embedding(num_classes + use_cfg_embedding, hidden_size)
self.num_classes = num_classes
self.dropout_prob = dropout_prob
def token_drop(self, labels, force_drop_ids=None):
"""
Drops labels to enable classifier-free guidance.
"""
if force_drop_ids is None:
drop_ids = torch.rand(labels.shape[0], device=labels.device) < self.dropout_prob
else:
drop_ids = force_drop_ids == 1
labels = torch.where(drop_ids, self.num_classes, labels)
return labels
def forward(self, labels, train, force_drop_ids=None):
use_dropout = self.dropout_prob > 0
if (train and use_dropout) or (force_drop_ids is not None):
labels = self.token_drop(labels, force_drop_ids)
embeddings = self.embedding_table(labels)
return embeddings
class LabelEmbedder(nn.Module):
"""Embeds class labels into vector representations.
Also handles label dropout for classifier-free guidance.
"""
def __init__(self, num_classes, cond_size):
super().__init__()
self.embedding_table = nn.Embedding(num_classes + 1, cond_size)
self.num_classes = num_classes
# TODO think of initializing with 0.02 std deviation like in original DiT paper
def forward(self, labels):
embeddings = self.embedding_table(labels)
return embeddings
def get_norm(*args, norm_type="layernorm", elementwise_affine=False, **kwargs):
if norm_type == "layernorm":
return LayerNorm(*args, **kwargs)
elif norm_type == "rms":
return RMSNorm(*args, **kwargs)
else:
raise ValueError(f"Unknown norm type: {norm_type}")
def get_linear(*args, **kwargs):
return nn.Linear(*args, **kwargs)
def causal_mask(b, h, q_idx, kv_idx):
return q_idx >= kv_idx
class Attention(nn.Module):
def __init__(
self,
dim,
n_heads,
dropout=0.1,
cross_attn=False,
attn_type="flash",
is_compiled=False,
force_varlen_attn=False,
force_cast_bf16=False,
qk_norm=False,
use_flash_attn_3=False,
use_spda_attn=False,
compile_flag_pos_emb=False,
causal=False,
use_kv_cache=False,
time_conditioning=False,
use_flex_attention=False,
idx=None,
attn_dropout=None
):
super().__init__()
self.cross_attn = cross_attn
self.attn_type = attn_type
self.force_varlen_attn = force_varlen_attn
self.is_compiled = is_compiled
self.compile_flag_pos_emb = compile_flag_pos_emb
self.n_heads = n_heads
self.force_cast_bf16 = force_cast_bf16
self.qk_norm = qk_norm
self.head_dim = dim // n_heads
self.dropout = dropout
self.use_flash_attn_3 = use_flash_attn_3
self.use_spda_attn = use_spda_attn
self.causal = causal
self.use_kv_cache = use_kv_cache
self.time_conditioning = time_conditioning
self.use_flex_attention = use_flex_attention
self.idx = idx
self.attn_dropout = attn_dropout
if self.attn_dropout is None:
self.attn_dropout = 0
self.old_start_pos = None
self.attn_qkv = get_linear(dim, 3 * dim, bias=False)
if self.cross_attn:
self.attn_qkv_cond = get_linear(dim, 3 * dim, bias=False)
self.attn_out = get_linear(dim, dim, bias=False)
if self.qk_norm:
self.q_norm = nn.LayerNorm(self.n_heads * self.head_dim)
self.k_norm = nn.LayerNorm(self.n_heads * self.head_dim)
assert self.cross_attn is False
self.softmax_scale = None
if self.use_flash_attn_3 or self.use_spda_attn:
assert self.attn_type == "flash" and self.force_varlen_attn is False
assert self.cross_attn is False
if self.use_flex_attention:
assert self.attn_type == "flash" and self.use_spda_attn
assert allow_any_spda is False
assert self.softmax_scale is None
self.use_flex_attention_cache = False
self.warn_cache_dtype = True
def update_kv_cache(self, q, new_k, new_v, batch_size, start_pos, seq_len):
self.cache_k[:, start_pos : start_pos + seq_len] = new_k
self.cache_v[:, start_pos : start_pos + seq_len] = new_v
k = self.cache_k[:, :start_pos + seq_len] # (batch_size, cache_len + seq_len, nheads, headdim)
v = self.cache_v[:, :start_pos + seq_len] # (batch_size, cache_len + seq_len, nheads, headdim)
return q, k, v # q is (batch_size, seq_len, nheads*headdim)
def reset_kv_cache(self, batch_size, seq_len, dtype, device, set_to_none=False):
assert self.use_kv_cache
if set_to_none:
del self.cache_k
del self.cache_v
self.cache_k = None
self.cache_v = None
else:
self.cache_k = torch.zeros(
batch_size, seq_len, self.n_heads, self.head_dim, dtype=dtype, device=device
)
self.cache_v = torch.zeros(
batch_size, seq_len, self.n_heads, self.head_dim, dtype=dtype, device=device
)
def set_flex_attention_cache(self, batch_size, seq_len, device, dtype):
assert self.use_flex_attention
self.use_flex_attention_cache = True
self.cache_k = torch.zeros(batch_size, self.n_heads, seq_len, self.head_dim, device=device, dtype=dtype)
self.cache_v = torch.zeros(batch_size, self.n_heads, seq_len, self.head_dim, device=device, dtype=dtype)
def forward(
self,
x,
x_cond=None,
x_skip=None,
rotary_cos_sin=None,
cu_seqlens=None,
max_seqlen_in_batch=None,
bias_dropout_scale_fn=None,
gate_msa=None,
attention_mask=None,
start_pos=None,
modality=None,
block_mask=None,
update_cache_slice=None,
):
if x.ndim == 2:
batch_size, seq_len = 1, x.shape[0]
has_batch_dim = False
else:
batch_size, seq_len = x.shape[0], x.shape[1]
has_batch_dim = True
if is_xla_linear_patched:
x = x.to(torch.float32)
qkv = self.attn_qkv(x)
if self.use_kv_cache and start_pos is not None:
if not self.cache_k.dtype == self.cache_v.dtype == qkv.dtype:
self.cache_k = self.cache_k.to(qkv.dtype)
self.cache_v = self.cache_v.to(qkv.dtype)
if is_xla_linear_patched:
qkv = qkv.to(torch.bfloat16)
if self.cross_attn:
qkv_cond = self.attn_qkv_cond(x_cond)
if not has_batch_dim:
if self.cross_attn:
q = q.unsqueeze(0)
kv = kv.unsqueeze(0)
else:
qkv = qkv.unsqueeze(0)
# qkv now has b s (three h d)
if self.qk_norm:
if is_xla_available:
if is_xla_linear_patched:
qkv_size = self.n_heads * self.head_dim
qkv = torch.cat(
[
self.q_norm(qkv[:, :, :qkv_size].to(torch.bfloat16)).to(torch.bfloat16),
self.k_norm(qkv[:, :, qkv_size : 2 * qkv_size].to(torch.bfloat16)).to(torch.bfloat16),
qkv[:, :, 2 * qkv_size :].to(torch.bfloat16),
],
dim=-1,
).to(torch.bfloat16)
else:
qkv_size = self.n_heads * self.head_dim
qkv = torch.cat(
[self.q_norm(qkv[:, :, :qkv_size]), self.k_norm(qkv[:, :, qkv_size : 2 * qkv_size]), qkv[:, :, 2 * qkv_size :]], dim=-1
)
else:
qkv_size = self.n_heads * self.head_dim
qkv[:, :, :qkv_size] = self.q_norm(qkv[:, :, :qkv_size])
qkv[:, :, qkv_size : 2 * qkv_size] = self.k_norm(qkv[:, :, qkv_size : 2 * qkv_size])
if rotary_cos_sin is not None:
orig_dtype = qkv.dtype
assert not (self.is_compiled and self.qk_norm is None)
if cu_seqlens is not None and self.force_varlen_attn is False:
assert not self.cross_attn, "Not yet supported"
assert qkv.is_contiguous()
qkv = rearrange(qkv, "b s (three h d) -> (b s) three h d", three=3, h=self.n_heads)
qk = qkv[:, :2].reshape(seq_len, -1, self.head_dim) # (b s) (two h) d
with torch.autocast(x.device.type, enabled=False):
cos, sin = rotary_cos_sin
qk = apply_rotary_emb(
qk, cos.to(qkv.dtype), sin.to(qkv.dtype), inplace=True, cu_seqlens=cu_seqlens, max_seqlen=max_seqlen_in_batch
)
qkv[:, :2] = qk.reshape(seq_len, 2, -1, self.head_dim)
else:
qkv = rearrange(qkv, "b s (three h d) -> b s three h d", three=3, h=self.n_heads)
if self.cross_attn:
qkv_cond = rearrange(qkv_cond, "b s (three h d) -> b s three h d", three=3, h=self.n_heads)
with torch.autocast(x.device.type, enabled=is_xla_available):
cos, sin = rotary_cos_sin
# TODO: This causes a ~4-8% slowdown on XLA
if self.compile_flag_pos_emb:
if is_xla_available:
if is_xla_linear_patched:
cos, sin, qkv = cos.to(torch.bfloat16), sin.to(torch.bfloat16), qkv.to(torch.bfloat16)
qk = qkv[:, :, :2].to(torch.bfloat16).reshape(batch_size, seq_len, -1, self.head_dim).to(torch.bfloat16)
qk = flash_torch_apply_rotary_emb_torch(qk, cos, sin)
qkv = qkv.clone() # TODO: Appears to be needed for XLA
qkv = qkv.to(torch.bfloat16)
qkv[:, :, :2] = qk.to(torch.bfloat16).reshape(batch_size, seq_len, 2, -1, self.head_dim).to(torch.bfloat16)
qkv = qkv.to(torch.bfloat16)
else:
qk = qkv[:, :, :2].reshape(batch_size, seq_len, -1, self.head_dim)
qk = flash_torch_apply_rotary_emb_torch(qk, cos, sin).to(x)
qkv = qkv.clone() # TODO: Appears to be needed for XLA
qkv[:, :, :2] = qk.reshape(batch_size, seq_len, 2, -1, self.head_dim)
qkv = qkv.to(x)
else:
qk = qkv[:, :, :2].reshape(batch_size, seq_len, -1, self.head_dim)
qk = flash_torch_apply_rotary_emb_torch(qk, cos, sin)
qkv[:, :, :2] = qk.reshape(batch_size, seq_len, 2, -1, self.head_dim)
else:
qkv = apply_rotary_pos_emb(qkv, cos.to(qkv.dtype), sin.to(qkv.dtype))
if self.cross_attn:
qkv_cond = apply_rotary_pos_emb(qkv_cond, cos.to(qkv_cond.dtype), sin.to(qkv_cond.dtype))
qkv_cond = qkv_cond.to(orig_dtype)
q, _, _ = qkv.unbind(dim=2)
_, k_cond, v_cond = qkv_cond.unbind(dim=2)
qkv = qkv.to(orig_dtype)
if self.force_varlen_attn:
assert start_pos is not None
qkv = rearrange(qkv, "b s ... -> (b s) ...")
else:
assert not self.use_flash_attn_3
if cu_seqlens is not None:
assert False
else:
qkv = rearrange(qkv, "b s (three h d) -> b s three h d", three=3, h=self.n_heads)
if self.use_kv_cache:
assert self.attn_type == "flash" and self.use_spda_attn and allow_any_spda is False and not self.use_flex_attention
if self.attn_type == "flash":
if cu_seqlens is None and self.force_varlen_attn is False: # qkv: (batch_size, seqlen, 3, nheads, headdim)
if self.use_flash_attn_3:
# We do not yet support flash attn 3 for cross attention
q, k, v = qkv[:, :, 0, :, :], qkv[:, :, 1, :, :], qkv[:, :, 2, :, :]
x = flash_attn_func_v3(
q, k, v, softmax_scale=self.softmax_scale, causal=self.causal
)[0]
elif self.use_spda_attn:
if allow_any_spda:
b, s, _, h, d = qkv.shape
q, k, v = qkv[:, :, 0, :, :], qkv[:, :, 1, :, :], qkv[:, :, 2, :, :]
q = q.view(b, -1, h, d).transpose(1, 2)
k = k.view(b, -1, h, d).transpose(1, 2)
v = v.view(b, -1, h, d).transpose(1, 2)
if attention_mask is None:
with nullcontext() if allow_any_spda else sdpa_kernel(backends=[SDPBackend.CUDNN_ATTENTION, SDPBackend.FLASH_ATTENTION]):
x = sdpa(q.contiguous(), k.contiguous(), v.contiguous(), attn_mask=None, is_causal=self.causal)
else:
x = sdpa(q.contiguous(), k.contiguous(), v.contiguous(), attn_mask=attention_mask, is_causal=self.causal)
else:
if is_xla_linear_patched:
qkv = qkv.to(torch.bfloat16)
q, k, v = qkv.unbind(dim=2)
disable_causal_attn = False
if self.use_kv_cache and start_pos is not None:
disable_causal_attn = True
q, k, v = self.update_kv_cache(q, k, v, batch_size, start_pos, seq_len)
is_causal = self.causal and not disable_causal_attn
q, k, v = q.transpose(1, 2), k.transpose(1, 2), v.transpose(1, 2)
if self.use_flex_attention:
# During inference we have a variable batch size which is not supported by torch.compile w/flex attention right now
# See: https://github.com/pytorch/pytorch/issues/136196
if self.training:
x = compiled_flex_attention(q, k, v, block_mask=block_mask)
else:
# Step 0: We want full attention for joint img/txt update
# Step 1: We want txt -> (txt + img) attention and img -> img attention. Cache the img kv for the next step
# Step 2...N: We want txt -> (txt + img) attention, using the cached kv for img
if self.use_flex_attention_cache:
if seq_len != self.cache_k.shape[2]: # Step 2
assert update_cache_slice is not None
# (B, H, S, D)
self.cache_k[:, :, update_cache_slice] = k
self.cache_v[:, :, update_cache_slice] = v
elif block_mask is not None and block_mask is not True: # Step 1
assert update_cache_slice is not None
assert (update_cache_slice.stop - update_cache_slice.start) == k.shape[2]
self.cache_k = k
self.cache_v = v
else: # Step 0
pass
assert block_mask is not None
# Hack to set full attention when we explicitly want it
if block_mask is True:
block_mask = None
x = flex_attention(q, k, v, block_mask=block_mask)
elif force_xla_flash_attention:
assert not is_causal, "XLA Flash Attention does not support causal attention"
x = apply_xla_flash_attention_with_spmd(q=q, k=k, v=v, causal=is_causal)
elif force_cudnn_spda_context:
with (
nullcontext()
if (is_xla_available or attention_mask is not None)
else sdpa_kernel(backends=[
SDPBackend.CUDNN_ATTENTION,
*([] if (self.use_spda_attn and force_cudnn_spda_context) else [SDPBackend.FLASH_ATTENTION])
])
):
dropout_p = self.attn_dropout if self.training else 0
x = sdpa(q, k, v, attn_mask=None, is_causal=is_causal, scale=self.softmax_scale, dropout_p=dropout_p)
else:
dropout_p = self.attn_dropout if self.training else 0
x = sdpa(q, k, v, attn_mask=attention_mask, is_causal=is_causal, scale=self.softmax_scale, dropout_p=dropout_p)
if is_xla_linear_patched:
x = x.to(torch.bfloat16)
elif self.cross_attn:
x = flash_attn_func(q, k_cond, v_cond, dropout_p=0.0, softmax_scale=self.softmax_scale, causal=self.causal)
else:
if use_non_packed_fa2:
q, k, v = qkv.unbind(dim=2)
x = flash_attn_func(
q, k, v, dropout_p=0.0, softmax_scale=self.softmax_scale, causal=self.causal
)
else:
x = flash_attn_qkvpacked_func(qkv, dropout_p=0.0, softmax_scale=self.softmax_scale, causal=self.causal)
if self.use_spda_attn:
x = rearrange(x, "b h s d -> b s (h d)", b=batch_size)
else:
x = rearrange(x, "b s h d -> b s (h d)", b=batch_size)
else:
if cu_seqlens is None:
cu_seqlens = torch.arange(0, (batch_size + 1) * seq_len, step=seq_len, dtype=torch.int32, device=qkv.device)
# If we want all *other* ops to be FP32, we still need to cast the input for attn to BF16 as Flash Attn only supports FP16/BF16. This is a quick hack to do this.
with torch.amp.autocast(x.device.type, dtype=torch.bfloat16) if self.force_cast_bf16 else nullcontext():
if self.cross_attn:
if self.force_cast_bf16:
q = q.to(torch.bfloat16)
k_cond = k_cond.to(torch.bfloat16)
v_cond = v_cond.to(torch.bfloat16)
x = flash_attn_varlen_func(
q, k_cond, v_cond, cu_seqlens, seq_len, dropout_p=0.0, softmax_scale=self.softmax_scale, causal=self.causal
)
else:
if self.force_cast_bf16:
qkv = qkv.to(torch.bfloat16)
x = flash_attn_varlen_qkvpacked_func(
qkv, cu_seqlens, seq_len, dropout_p=0.0, softmax_scale=self.softmax_scale, causal=self.causal
)
x = rearrange(x, "(b s) h d -> b s (h d)", b=batch_size)
if not has_batch_dim:
x = x.squeeze(0)
if is_xla_linear_patched:
x = x.to(torch.float32)
if bias_dropout_scale_fn is not None:
return bias_dropout_scale_fn(
x=self.attn_out(x),
bias=None,
scale=gate_msa,
residual=x_skip,
prob=self.dropout,
modality=(modality if self.time_conditioning else None),
)
else:
return self.attn_out(x)
class DDiTBlock(nn.Module):
def __init__(
self,
dim,
n_heads,
cond_dim,
mlp_ratio=4,
dropout=0.1,
time_conditioning=True,
img_cond=False,
norm_type="layernorm",
sandwich_normalization=False,
**kwargs,
):
super().__init__()
self.time_conditioning = time_conditioning
self.dropout = dropout
self.attention = Attention(dim, n_heads, dropout, **kwargs)
self.img_cond = img_cond
if img_cond:
self.cross_attention = Attention(dim, n_heads, dropout, cross_attn=True, **kwargs)
self.norm1 = get_norm(dim, norm_type=norm_type)
self.dropout1 = nn.Dropout(dropout)
self.norm2 = get_norm(dim, norm_type=norm_type)
self.mlp = nn.Sequential(
get_linear(dim, mlp_ratio * dim, bias=True), nn.GELU(approximate="tanh"), get_linear(mlp_ratio * dim, dim, bias=True)
)
self.dropout2 = nn.Dropout(dropout)
if self.time_conditioning:
self.adaLN_modulation = nn.Linear(cond_dim, 6 * dim, bias=True)
self.adaLN_modulation.weight.data.zero_()
self.adaLN_modulation.bias.data.zero_()
self.sandwich_normalization = sandwich_normalization
if self.sandwich_normalization:
self.post_ff_norm = get_norm(dim, norm_type=norm_type)
self.pre_residual_norm = get_norm(dim, norm_type=norm_type)
assert self.img_cond is False, "Sandwich normalization is not supported with cross attention."
else:
self.pre_residual_norm = nn.Identity()
self.post_ff_norm = nn.Identity()
def _get_bias_dropout_scale(self):
if self.training:
return bias_dropout_add_scale_fused_train
else:
return bias_dropout_add_scale_fused_inference
def reset_kv_cache(self, *args, **kwargs):
self.attention.reset_kv_cache(*args, **kwargs)
def set_flex_attention_cache(self, *args, **kwargs):
self.attention.set_flex_attention_cache(*args, **kwargs)
def forward(
self,
x,
rotary_cos_sin=None,
c=None,
cu_seqlens=None,
max_seqlen_in_batch=None,
x_cond=None,
attention_mask=None,
modality=None,
start_pos=None,
block_mask=None,
update_cache_slice=None,
):
bias_dropout_scale_fn = self._get_bias_dropout_scale()
if self.time_conditioning:
_cond = self.adaLN_modulation(c)
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = (_cond if _cond.ndim == 3 else _cond[:, None, :]).chunk(6, dim=2)
else:
gate_msa, gate_mlp = None, None
x_skip = x
x = self.norm1(x)
if self.time_conditioning:
x = modulate_fused(x, shift_msa, scale_msa, modality)
# Self Attention Start
x = self.attention(
x,
rotary_cos_sin=rotary_cos_sin,
cu_seqlens=cu_seqlens,
max_seqlen_in_batch=max_seqlen_in_batch,
x_skip=x_skip,
bias_dropout_scale_fn=None if self.sandwich_normalization else bias_dropout_scale_fn,
gate_msa=gate_msa,
attention_mask=attention_mask,
modality=modality,
start_pos=start_pos,
block_mask=block_mask,
update_cache_slice=update_cache_slice,
)
# Self Attention End
if self.sandwich_normalization:
x = x_skip + self.pre_residual_norm(x)
# Cross Attention Start
if self.img_cond:
x = self.cross_attention(
x,
x_cond=x_cond,
rotary_cos_sin=rotary_cos_sin,
cu_seqlens=cu_seqlens,
max_seqlen_in_batch=max_seqlen_in_batch,
x_skip=x_skip,
bias_dropout_scale_fn=bias_dropout_scale_fn,
gate_msa=gate_msa,
)
# Cross Attention End
# mlp operation
_modality = (modality if self.time_conditioning else None)
if self.time_conditioning:
# assert not self.sandwich_normalization
x = bias_dropout_scale_fn(
x=self.post_ff_norm(self.mlp(modulate_fused(self.norm2(x), shift_mlp, scale_mlp, modality))),
bias=None,
scale=gate_mlp,
residual=x,
prob=self.dropout,
modality=_modality,
)
else:
x = bias_dropout_scale_fn(
x=self.post_ff_norm(self.mlp(self.norm2(x))),
bias=None,
scale=None,
residual=x,
prob=self.dropout,
modality=_modality,
)
return x
class EmbeddingLayer(nn.Module):
def __init__(self, dim, vocab_dim):
super().__init__()
self.embedding = nn.Parameter(torch.empty((vocab_dim, dim)))
torch.nn.init.kaiming_uniform_(self.embedding, a=math.sqrt(5))
def forward(self, x):
return self.embedding[x]
def get_2d_rope(seq_len_2d, dim, linear_factor):
seq_len_2d_side = int(math.sqrt(seq_len_2d))
assert seq_len_2d_side**2 == seq_len_2d, f"seq_len_2d must be a square number, got {seq_len_2d}"
if linear_factor is not None:
rprint(f"Using Scale factor: {linear_factor}")
ntk_factor = 1.0
rotary_emb_2d = get_2d_rotary_pos_embed_lumina(
dim,
seq_len_2d_side,
seq_len_2d_side,
linear_factor=linear_factor,
ntk_factor=ntk_factor,
)
cos_2d_emb = rotary_emb_2d.flatten(0, 1).real
sin_2d_emb = rotary_emb_2d.flatten(0, 1).imag
return cos_2d_emb, sin_2d_emb
class DDitFinalLayer(nn.Module):
def __init__(self, hidden_size, out_channels, cond_dim, time_conditioning=True, norm_type="layernorm", zero_linear_init=True):
super().__init__()
self.time_conditioning = time_conditioning
self.norm_final = get_norm(hidden_size, norm_type=norm_type)
linear_kwargs = dict()
self.linear = get_linear(hidden_size, out_channels, **linear_kwargs)
if zero_linear_init:
self.linear.weight.data.zero_()
self.linear.bias.data.zero_()
else:
self.linear.bias.data.zero_()
if self.time_conditioning:
self.adaLN_modulation = nn.Linear(cond_dim, 2 * hidden_size, bias=True)
self.adaLN_modulation.weight.data.zero_()
self.adaLN_modulation.bias.data.zero_()
def forward(self, x, c, modality):
if self.time_conditioning:
_cond = self.adaLN_modulation(c)
shift, scale = (_cond if _cond.ndim == 3 else _cond[:, None, :]).chunk(2, dim=2)
x = modulate_fused(self.norm_final(x), shift, scale, modality)
else:
x = self.norm_final(x)
x = self.linear(x)
return x
class DIT(nn.Module, huggingface_hub.PyTorchModelHubMixin):
def __init__(self, config, vocab_size: int, text_vocab_size: int, mask_index: int, dtype=None, device=None, static_img_sl=None, static_txt_sl=None, **kwargs):
super().__init__()
if type(config) == dict:
config = omegaconf.OmegaConf.create(config)
self.config = config
self.autocast_dtype = dtype
self.vocab_size = vocab_size
self.text_vocab_size = text_vocab_size
self.time_conditioning = config.time_conditioning or getattr(self.config.model, "force_time_conditioning", False)
self.use_gradient_checkpointing = getattr(config.trainer, "use_gradient_checkpointing", False)
self.img_cond = getattr(config.model, "img_cond", False)
self.mask_index = mask_index
self.force_cast_bf16 = (self.autocast_dtype == torch.float32)
self.use_flash_attn_3 = getattr(config.model, "use_flash_attn_3", False)
self.use_spda_attn = getattr(config.model, "use_spda_attn", False)
self.compile_flag_pos_emb = getattr(config.trainer, "compile_flag_pos_emb", False)
self.sandwich_normalization = getattr(config.model, "sandwich_normalization", False)
self.use_kv_cache = getattr(config.model, "use_kv_cache", False)
self.use_flex_attention = getattr(config.model, "use_flex_attention", False)
self.static_img_sl = static_img_sl
self.static_txt_sl = static_txt_sl
self.causal = not config.model.full_attention
if getattr(config.model, "use_flash_attn_3", False):
assert not failed_to_import_fa3
if getattr(self.config.model, "cond_label", False):
self.y_embedder = LabelEmbedderCFG(1000, config.model.cond_dim, 0.1)
if getattr(config.model, "use_pretrained_img_emb", False):
from model import get_vae
self.vocab_embed = EmbeddingLayer(config.model.hidden_size, text_vocab_size + 1)
if getattr(config.model, "freeze_txt_emb", False):
self.vocab_embed.requires_grad_(False)
device = next(iter(self.vocab_embed.parameters())).device
vae = get_vae(config, device)
self.img_vocab_embed = vae.quantize.embedding
if self.time_conditioning: # TODO: Debug
rprint("Requires grad: False")
self.img_vocab_embed.requires_grad_(False)
self.img_vocab_proj = get_linear(self.img_vocab_embed.embedding_dim, config.model.hidden_size)
self.split_embed = True
self.new_mask_index = text_vocab_size
rprint(f"Using pretrained image embedding. Projecting from: {self.img_vocab_embed.embedding_dim} to {config.model.hidden_size}")
else:
self.vocab_embed = EmbeddingLayer(config.model.hidden_size, vocab_size)
self.split_embed = False
self.is_compiled = getattr(config.trainer, "compile", False)
if self.img_cond:
if getattr(config.model, "use_pretrained_img_emb", False):
cond_vae = get_vae(config, device, use_cond=True)
self.cond_img_vocab_embed = cond_vae.quantize.embedding
self.cond_img_vocab_proj = get_linear(self.cond_img_vocab_embed.embedding_dim, config.model.hidden_size)
else:
self.cond_img_vocab_embed = EmbeddingLayer(config.model.hidden_size, config.model.cond_image_vocab_size)
img_cond_blocks = []
for idx in range(8):
img_cond_blocks.append(
DDiTBlock(
config.model.hidden_size,
config.model.n_heads,
config.model.cond_dim,
dropout=config.model.dropout,
img_cond=False,
time_conditioning=self.time_conditioning,
attn_type=config.model.attn_type,
is_compiled=self.is_compiled,
force_varlen_attn=config.model.force_varlen_attn,
force_cast_bf16=self.force_cast_bf16,
norm_type=config.model.norm_type,
qk_norm=config.model.qk_norm,
use_flash_attn_3=self.use_flash_attn_3,
use_spda_attn=self.use_spda_attn,
compile_flag_pos_emb=self.compile_flag_pos_emb,
sandwich_normalization=self.sandwich_normalization,
causal=not config.model.full_attention,
use_kv_cache=self.use_kv_cache,
use_flex_attention=self.use_flex_attention,
idx=idx,
attn_dropout=getattr(config.model, "attn_dropout", None),
)
)
self.img_cond_blocks = nn.ModuleList(img_cond_blocks)
self.img_cond_rotary_emb = Rotary(config.model.hidden_size // config.model.n_heads)
assert not self.is_compiled, "Need to fix rotary embeddings"
self.sigma_map = None
if self.time_conditioning and getattr(self.config.model, "cond_label", False) is False:
self.sigma_map = TimestepEmbedder(config.model.cond_dim)
rprint(f"Using timestep embedder with dim: {config.model.cond_dim}")
self.use_legacy_rotary = False
self.modality_embed = None
if self.config.model.modality_embed:
self.modality_embed = EmbeddingLayer(self.config.model.hidden_size, 2)
continuous_mode = self.config.trainer.image_mode == "continuous"
if continuous_mode:
assert getattr(config.model, "vae_type", None) == "stable_diffusion"
# an extra projection layer for the continuous diffusion
self.continuous_img_proj = get_linear(4 * (config.model.patching_downscale ** 2), config.model.hidden_size) # todo remove 4 (vae hardcode)
if self.config.model.rope_2d:
seq_len_1d = self.config.model.txt_length
seq_len_2d = self.config.model.img_length
linear_factor = getattr(config.model, "linear_factor", 1.0)
dim = config.model.hidden_size // config.model.n_heads
if self.config.data.require_sample_ids:
for seq_len_2d, linear_factor in ((256, 1), (1024, 2), (2304, 3), (4096, 4)):
cos_2d_emb, sin_2d_emb = get_2d_rope(seq_len_2d, dim, linear_factor)
self.register_buffer(f'rotary_cos_emb_img_{seq_len_2d}', cos_2d_emb, persistent=False)
self.register_buffer(f'rotary_sin_emb_img_{seq_len_2d}', sin_2d_emb, persistent=False)
max_images_in_sequence = 16
self.img_count_embedding = nn.Parameter(torch.zeros((max_images_in_sequence, config.model.hidden_size)))
else:
cos_2d_emb, sin_2d_emb = get_2d_rope(seq_len_2d, dim, linear_factor)
self.register_buffer('rotary_cos_emb_img', cos_2d_emb, persistent=False)
self.register_buffer('rotary_sin_emb_img', sin_2d_emb, persistent=False)
rotary_emb_1d = Rotary(dim)(seq_len_1d)
cos_1d_emb = rotary_emb_1d[0][0, :, 0, 0, : cos_2d_emb.shape[1]]
sin_1d_emb = rotary_emb_1d[1][0, :, 0, 0, : sin_2d_emb.shape[1]]
if self.config.trainer.multimodal_batches:
seq_len_1d = self.config.model.length
rotary_emb_1d = Rotary(config.model.hidden_size // config.model.n_heads)(seq_len_1d)
cos_1d_emb = rotary_emb_1d[0][0,:,0, 0,: cos_2d_emb.shape[1]]
sin_1d_emb = rotary_emb_1d[1][0,:,0, 0,: sin_2d_emb.shape[1]]
self.register_buffer('rotary_cos_emb_txt', cos_1d_emb, persistent=False)
self.register_buffer('rotary_sin_emb_txt', sin_1d_emb, persistent=False)
else:
seq_len_1d = self.config.model.length
self.rotary_emb_1d = Rotary(config.model.hidden_size // config.model.n_heads)(seq_len_1d)
cos_1d_emb = self.rotary_emb_1d[0][0,:,0, 0,: self.rotary_emb_1d[0].shape[-1] // 2]
sin_1d_emb = self.rotary_emb_1d[1][0,:,0, 0,: self.rotary_emb_1d[1].shape[-1] // 2]
self.register_buffer('rotary_cos_emb', cos_1d_emb, persistent=False)
self.register_buffer('rotary_sin_emb', sin_1d_emb, persistent=False)
blocks = []
for idx in range(config.model.n_blocks):
blocks.append(
DDiTBlock(
config.model.hidden_size,
config.model.n_heads,
config.model.cond_dim,
dropout=config.model.dropout,
time_conditioning=self.time_conditioning,
img_cond=self.img_cond,
attn_type=config.model.attn_type,
is_compiled=self.is_compiled,
force_varlen_attn=config.model.force_varlen_attn,
force_cast_bf16=self.force_cast_bf16,
norm_type=config.model.norm_type,
qk_norm=config.model.qk_norm,
use_flash_attn_3=self.use_flash_attn_3,
use_spda_attn=self.use_spda_attn,
compile_flag_pos_emb=self.compile_flag_pos_emb,
sandwich_normalization=self.sandwich_normalization,
causal=not config.model.full_attention,
use_kv_cache=self.use_kv_cache,
use_flex_attention=self.use_flex_attention,
idx=idx,
attn_dropout=getattr(config.model, "attn_dropout", None),
)
)
self.blocks = nn.ModuleList(blocks)
self.output_layer = DDitFinalLayer(
config.model.hidden_size,
1 if config.parameterization == "planner" else vocab_size,
config.model.cond_dim,
time_conditioning=self.time_conditioning,
norm_type=config.model.norm_type,
zero_linear_init=config.model.zero_linear_init,
)
if continuous_mode:
assert getattr(self.config.model, "vae_type", None) == "stable_diffusion"
self.output_later_img = DDitFinalLayer(
config.model.hidden_size,
4 * (config.model.patching_downscale ** 2), # todo, remove hardcoding
config.model.cond_dim,
time_conditioning=self.time_conditioning,
norm_type=config.model.norm_type,
zero_linear_init=config.model.zero_linear_init,
)
self.scale_by_sigma = config.model.scale_by_sigma
self.txt_dropout = getattr(config.model, "txt_dropout", None)
if config.parameterization != "ar":
rprint(f"Not using AR, disabling txt dropout")
self.txt_dropout = None
self.txt_length = self.config.model.txt_length
self.img_length = self.config.model.img_length
self.total_length = self.config.model.length
assert (self.txt_length + self.img_length == self.total_length) or self.config.trainer.multimodal_batches
self.allow_compiled_embed = self.config.model.rope_2d is False and self.config.model.modality_embed is False and not getattr(self.config.model, "disable_allow_compiled_embed", False)
self.multimodal_batches = self.config.trainer.multimodal_batches
self.rope_2d = self.config.model.rope_2d
rprint(f"DIT Found XLA: {is_xla_available}")
self.require_sample_ids = self.config.data.require_sample_ids
if self.config.model.force_optimized_native_attn:
assert force_cudnn_spda_context
assert self.config.model.use_spda_attn
def _get_bias_dropout_scale(self):
if self.training:
return bias_dropout_add_scale_fused_train
else:
return bias_dropout_add_scale_fused_inference
def reset_kv_cache(self, *args, **kwargs):
for block in self.blocks:
block.reset_kv_cache(*args, **kwargs)
def set_flex_attention_cache(self, *args, **kwargs):
for block in self.blocks:
block.set_flex_attention_cache(*args, **kwargs)
def forward(
self,
indices,
sigma=None,
label=None,
x_cond=None,
attention_mask=None,
continuous_mode=False,
x_img_emb=None,
modality=None,
start_pos=None,
block_mask=None,
update_cache_slice=None,
sample_ids=None,
):
if self.txt_dropout is not None and self.training:
mask = torch.rand_like(indices, dtype=torch.float) < self.txt_dropout
indices = torch.where(mask & (modality == 0), self.mask_index, indices)
if self.split_embed:
# TODO: This is a bit inefficient
text_mask = indices < self.text_vocab_size
img_mask = (indices >= self.text_vocab_size) & (indices != self.mask_index)
mask_token_mask = indices == self.mask_index
text_indices = indices.clone()
text_indices[~text_mask] = 0 # Set non-text tokens to 0
text_indices[mask_token_mask] = self.new_mask_index
txt_x = self.vocab_embed(text_indices)
img_indices = indices.clone() - self.text_vocab_size
img_indices[~img_mask] = 0 # Set non-image tokens to 0
img_x = self.img_vocab_proj(self.img_vocab_embed(img_indices))
mask_x = self.vocab_embed(torch.full_like(indices, self.new_mask_index))
x = torch.where(text_mask.unsqueeze(-1), txt_x, torch.where(img_mask.unsqueeze(-1), img_x, mask_x))
elif continuous_mode:
assert sigma is not None
text_embed = self.vocab_embed(indices)
img_embed = self.continuous_img_proj(x_img_emb)
x = torch.where(modality[:, :, None] == 1, img_embed, text_embed)
attention_mask_shape = self.total_length if self.use_kv_cache else modality.shape[1]
attention_mask = get_transfusion_mask(indices.shape[0], attention_mask_shape, self.txt_length, self.img_length, modality)
if self.use_kv_cache:
# we only care about (seq_len, cache_len+seq_len)
assert self.total_length <= self.inference_max_seq_len
seq_len = indices.shape[1]
attention_mask = attention_mask[:, start_pos:start_pos+seq_len, :start_pos+seq_len]
x = x[:, start_pos:start_pos+seq_len, :]
attention_mask = attention_mask.unsqueeze(1).to(x.device) # (B, 1, N_tot, N_tot) for SDPA
else:
x = self.vocab_embed(indices)
x = x.to(self.autocast_dtype)
c = None
if self.sigma_map is not None:
c = F.silu(self.sigma_map(sigma))
if label is not None:
assert c is None
c = self.y_embedder(label, train=self.training)
if x_cond is not None:
assert not self.use_kv_cache
if self.split_embed:
x_cond = self.cond_img_vocab_proj(self.cond_img_vocab_embed(x_cond))
else:
x_cond = self.cond_img_vocab_embed(x_cond)
img_cond_rotary_cos_sin = True if self.is_compiled else self.img_cond_rotary_emb(x_cond)
img_cond_attention_args = (img_cond_rotary_cos_sin, None, None, None, None, attention_mask, start_pos)
with torch.autocast(x_cond.device.type, dtype=self.autocast_dtype):
for i in range(len(self.img_cond_blocks)):
x_cond = (
checkpoint(ckpt_wrapper(self.img_cond_blocks[i]), x_cond, *img_cond_attention_args, use_reentrant=True)
if (self.use_gradient_checkpointing and self.training)
else self.img_cond_blocks[i](x_cond, *img_cond_attention_args)
)
if self.modality_embed is not None:
if self.multimodal_batches:
assert modality is not None
try:
x = x + torch.where((modality == 0).unsqueeze(-1), self.modality_embed(0).unsqueeze(0).unsqueeze(0), self.modality_embed(1).unsqueeze(0).unsqueeze(0))
except:
breakpoint()
else:
x[:, self.static_txt_sl] = x[:, self.static_txt_sl] + self.modality_embed(0).unsqueeze(0).unsqueeze(0)
x[:, self.static_img_sl] = x[:, self.static_img_sl] + self.modality_embed(1).unsqueeze(0).unsqueeze(0)
if self.is_compiled and self.allow_compiled_embed:
rotary_cos_sin = True
else:
if self.use_legacy_rotary:
rotary_cos_sin = self.rotary_emb(x)
else:
if self.modality_embed is not None and self.rope_2d and self.multimodal_batches:
valid_sl = slice(start_pos, start_pos+x.shape[1]) if start_pos is not None else slice(None, x.shape[1])
if self.require_sample_ids:
assert modality.shape == indices.shape == sample_ids.shape
cos = torch.zeros((x.shape[0], *self.rotary_cos_emb_txt.shape), device=x.device, dtype=x.dtype)
sin = torch.zeros((x.shape[0], *self.rotary_sin_emb_txt.shape), device=x.device, dtype=x.dtype)
modality_mask = modality.bool()
@torch.compiler.disable()
def fn():
add_img_data_to_blocks(x, cos, modality_mask, sample_ids, {
256: self.rotary_cos_emb_img_256,
1024: self.rotary_cos_emb_img_1024,
2304: self.rotary_cos_emb_img_2304,
4096: self.rotary_cos_emb_img_4096
}, self.img_count_embedding)
add_img_data_to_blocks(None, sin, modality_mask, sample_ids, {
256: self.rotary_sin_emb_img_256,
1024: self.rotary_sin_emb_img_1024,
2304: self.rotary_sin_emb_img_2304,
4096: self.rotary_sin_emb_img_4096
}, None)
add_txt_data_to_blocks(cos, modality_mask, sample_ids, self.rotary_cos_emb_txt)
add_txt_data_to_blocks(sin, modality_mask, sample_ids, self.rotary_sin_emb_txt)
fn()
rotary_cos_sin = (cos, sin)
elif modality.shape[-1] != self.img_length:
# Pretty hacky but we want to support the following batch: [[text img], [text], [img]]
pad_size = modality.shape[-1] - self.img_length
pad_size = max(pad_size, 0)
padding = torch.full((1, pad_size, self.rotary_cos_emb_img.shape[-1]), torch.nan, device=x.device, dtype=x.dtype)
rotary_cos_sin = (
torch.where(modality[:, :, None] == 0, self.rotary_cos_emb_txt[None, valid_sl], torch.cat([padding, self.rotary_cos_emb_img[None, valid_sl]], dim=1)[:, valid_sl]).squeeze(0),
torch.where(modality[:, :, None] == 0, self.rotary_sin_emb_txt[None, valid_sl], torch.cat([padding, self.rotary_sin_emb_img[None, valid_sl]], dim=1)[:, valid_sl]).squeeze(0)
)
else:
rotary_cos_sin = (
torch.where(modality[:, :, None] == 0, self.rotary_cos_emb_txt[None, valid_sl], self.rotary_cos_emb_img[None, valid_sl]).squeeze(0),
torch.where(modality[:, :, None] == 0, self.rotary_sin_emb_txt[None, valid_sl], self.rotary_sin_emb_img[None, valid_sl]).squeeze(0)
)
else:
rotary_cos_sin = (self.rotary_cos_emb, self.rotary_sin_emb)
if start_pos is not None: assert self.use_kv_cache
if self.use_kv_cache and start_pos is not None:
cos, sin = rotary_cos_sin
seq_len = x.shape[1]
if cos.ndim == 3:
rotary_cos_sin = (
cos[:, start_pos:start_pos+seq_len],
sin[:, start_pos:start_pos+seq_len]
)
elif cos.ndim == 2:
rotary_cos_sin = (
cos[start_pos:start_pos+seq_len],
sin[start_pos:start_pos+seq_len]
)
else:
raise ValueError(f"Invalid rotary cos and sin shape for KV cache slicing: {cos.shape}")
if self.causal and self.use_flex_attention and block_mask is None and not (self.use_kv_cache and start_pos is not None):
# For causal, we do not need a mask if we are using KV cache
block_mask = create_block_mask(causal_mask, B=None, H=None, Q_LEN=x.shape[1], KV_LEN=x.shape[1])
attention_args = (rotary_cos_sin, c, None, None, x_cond, attention_mask, modality, start_pos, block_mask, update_cache_slice)
with torch.autocast(x.device.type, dtype=self.autocast_dtype):
for i in range(len(self.blocks)):
x = (
checkpoint(ckpt_wrapper(self.blocks[i]), x, *attention_args, use_reentrant=True)
if (self.use_gradient_checkpointing and self.training)
else self.blocks[i](x, *attention_args)
)
if continuous_mode:
x_img_emb = self.output_later_img(x, c, modality)
x = self.output_layer(x, c, modality)
if continuous_mode:
return (x, x_img_emb)
return x
|