File size: 69,568 Bytes
131da64
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
import math
import typing
from contextlib import nullcontext
import os

# Torch must be imported before flash-attn
from unidisc.utils.tensor_utils import get_contiguous_blocks, get_interleaved_indices
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.checkpoint import checkpoint
from diffusers.models.embeddings import get_2d_rotary_pos_embed_lumina
from decoupled_utils import gprint, is_torch_xla_available, rprint
from models.standalone_rotary import flash_torch_apply_rotary_emb_torch

import huggingface_hub
import omegaconf
from einops import rearrange

is_xla_available = is_torch_xla_available()

force_cudnn_spda_context = os.environ.get("UNIDISC_FORCE_CUDNN_SPDA_CONTEXT", "0") == "1"
allow_any_spda = os.environ.get("UNIDISC_ALLOW_ANY_SPDA", "0") == "1"
force_xla_flash_attention = os.environ.get("UNIDISC_FORCE_XLA_FLASH_ATTENTION", "0") == "1"
use_non_packed_fa2 = os.getenv("UNIDISC_USE_NON_PACKED_FA2", "0") == "1"
disable_flash_attention_3 = os.getenv("UNIDISC_FORCE_DISABLE_FA3", "0") == "1"
is_xla_linear_patched = os.getenv("UNIDISC_IS_XLA_LINEAR_PATCHED", "0") == "1"
use_causal_attn = os.getenv("UNIDISC_USE_CAUSAL_ATTN", "0") == "1"

if force_cudnn_spda_context: rprint("Forcing cudnn spda context")
if allow_any_spda: rprint("Allowing any spda")
if force_xla_flash_attention: rprint("Forcing xla flash attention")
if use_non_packed_fa2: rprint("Using non-packed Flash Attention 2!")
if disable_flash_attention_3: rprint("Disabling Flash Attention 3!")

try:
    failed_to_import_fa3 = True
    if disable_flash_attention_3 is False:
        from flash_attn_interface import flash_attn_func as flash_attn_func_v3, flash_attn_varlen_func as flash_attn_varlen_func_v3

        failed_to_import_fa3 = False
        rprint("Imported Flash Attention 3!")
except:
    rprint("Not using Flash Attention 3!")

try:
    import flash_attn.layers.rotary
    from flash_attn.layers.rotary import apply_rotary_emb

    if failed_to_import_fa3:
        from flash_attn.flash_attn_interface import (flash_attn_func,
                                                     flash_attn_qkvpacked_func,
                                                     flash_attn_varlen_func,
                                                     flash_attn_varlen_qkvpacked_func)
        rprint("Imported Flash Attention 2!")
except:
    rprint("Failed to import Flash Attention 2!")

try:
    from torch.nn.functional import scaled_dot_product_attention as sdpa
    from torch.nn.attention import SDPBackend, sdpa_kernel
except:
    pass

try:
    from torch.nn.attention.flex_attention import flex_attention, create_block_mask
    compiled_flex_attention = torch.compile(flex_attention)
except:
    pass

# Flags required to enable jit fusion kernels
torch._C._jit_set_profiling_mode(False)
torch._C._jit_set_profiling_executor(False)
torch._C._jit_override_can_fuse_on_cpu(True)
torch._C._jit_override_can_fuse_on_gpu(True)

class RMSNorm(torch.nn.Module):
    def __init__(self, dim: int, eps: float = 1e-6):
        """
        Initialize the RMSNorm normalization layer.

        Args:
            dim (int): The dimension of the input tensor.
            eps (float, optional): A small value added to the denominator for numerical stability. Default is 1e-6.

        Attributes:
            eps (float): A small value added to the denominator for numerical stability.
            weight (nn.Parameter): Learnable scaling parameter.

        """
        super().__init__()
        self.eps = eps
        self.weight = nn.Parameter(torch.ones(dim))

    def _norm(self, x):
        return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)

    def forward(self, x):
        output = self._norm(x.float()).type_as(x)
        return output * self.weight

@torch.no_grad()
def get_transfusion_mask(B, N_tot, img_start_idx, img_length, modality):
    # todo - this is temporary and only works for [text+image] mode. does NOT handle interleaved (need to use modality_mask for this)
    # (B, N_tot) -> (B, N_tot, N_tot)
    rows, cols = torch.meshgrid(torch.arange(N_tot), torch.arange(N_tot), indexing="ij")
    idxs = torch.stack([rows, cols], dim=-1).to(modality.device)
    idxs = idxs.expand(B, -1, -1, -1)
    q_idx, kv_idx = idxs.unbind(dim=-1)

    offset = torch.full((B,), img_start_idx, device=modality.device).unsqueeze(-1).unsqueeze(-1)
    limit = torch.full((B,), img_length, device=modality.device).unsqueeze(-1).unsqueeze(-1)

    ar = q_idx >= kv_idx
    nar = (q_idx >= offset) & (kv_idx >= limit)
    mask = ar | nar

    # Assume that batches with all text are autoregressive only
    mask = torch.where(((modality == 0).all(dim=-1))[:, None, None], ar, mask)
    return mask

@torch.compiler.disable()
def add_img_data_to_blocks(input_emb, rotary_emb, modality_mask, sample_ids, add_data, img_count_embedding):
    """
    Dynamically adds 2D RoPE embeddings to image blocks. Handles variable resolutions by matching to hardcoded block sizes.
    """
    assert sample_ids is not None
    B, N = modality_mask.shape
    batch_indices, start_positions, end_positions = get_interleaved_indices(modality_mask)

    block_sizes = end_positions - start_positions
    unique_block_sizes = [size for size in torch.unique(block_sizes).tolist() if size in add_data.keys()]

    # For each block, count number of blocks before it within same sample_id group
    block_counts = torch.zeros_like(batch_indices)
    for i in range(len(batch_indices)):
        curr_sample_id = sample_ids[batch_indices[i], start_positions[i]]
        
        # Find blocks before this one with same batch index and sample_id
        prev_blocks_mask = (batch_indices[:i] == batch_indices[i]) & \
                          (sample_ids[batch_indices[:i], start_positions[:i]] == curr_sample_id)
        
        block_counts[i] = prev_blocks_mask.sum()

    for block_size in unique_block_sizes:
        block_mask = (block_sizes == block_size)
        block_indices = block_mask.nonzero(as_tuple=False).squeeze()
        if block_indices.ndim == 0:
            block_indices = block_indices.unsqueeze(0)

        if block_indices.numel() == 0:
            continue

        # Get the batch indices and start positions for these blocks
        batch_idx = batch_indices[block_indices]
        start_pos = start_positions[block_indices]
        img_idx = block_counts[block_indices]  # Get the block count for each selected block

        # Calculate the maximum valid length for each block (in case they exceed N)
        max_lengths = torch.clamp(N - start_pos, max=block_size)
        max_block_length = max_lengths.max().item()

        positions = start_pos.unsqueeze(1) + torch.arange(max_block_length, device=rotary_emb.device).unsqueeze(0) # [num_blocks, max_block_length]

        # Create a mask to handle blocks that may be shorter than block_size
        valid_mask = torch.arange(max_block_length, device=rotary_emb.device).unsqueeze(0) < max_lengths.unsqueeze(1)
        positions = positions * valid_mask  # Positions beyond valid lengths are set to zero
        batch_idx_expanded = batch_idx.unsqueeze(1).expand(-1, max_block_length)

        if input_emb is not None:
            input_emb_to_add_full = img_count_embedding[img_idx][:, None, :]  # Shape: [block_size]
            input_emb_to_add = input_emb_to_add_full.expand(-1, valid_mask.shape[-1], -1)
            input_emb_to_add = input_emb_to_add * valid_mask.unsqueeze(-1)  # Mask data beyond valid lengths
            input_emb[batch_idx_expanded[valid_mask], positions[valid_mask], :] = input_emb[batch_idx_expanded[valid_mask], positions[valid_mask], :] + input_emb_to_add[valid_mask]

        rotary_emb_to_add_full = add_data[block_size]  # Shape: [block_size]
        rotary_emb_to_add = rotary_emb_to_add_full[:max_block_length].unsqueeze(0).expand(batch_idx.size(0), -1, -1)
        rotary_emb_to_add = rotary_emb_to_add * valid_mask.unsqueeze(-1)  # Mask data beyond valid lengths
        rotary_emb[batch_idx_expanded[valid_mask], positions[valid_mask], :] = rotary_emb_to_add[valid_mask]

@torch.compiler.disable()
def add_txt_data_to_blocks(rotary_emb, modality_mask, sample_ids, add_data):
    assert sample_ids is not None
    batch_indices, start_positions, end_positions = get_contiguous_blocks(sample_ids)
    block_sizes = end_positions - start_positions
    for i in range(len(batch_indices)):
        batch_idx = batch_indices[i]
        start_pos = start_positions[i]
        block_size = block_sizes[i]
        sample_slice = slice(start_pos, start_pos+block_size)
        rotary_emb[batch_idx, sample_slice, :] = torch.where(modality_mask[batch_idx, sample_slice, None], rotary_emb[batch_idx, sample_slice, :], add_data[:block_size])

def apply_xla_flash_attention_with_spmd(query_states, key_states, value_states, causal=False):
    from torch_xla.experimental.custom_kernel import flash_attention

    # q, k, v should all have the shape [B, n_head, S, head_dim]
    head_dim = query_states.size()[-1]
    query_states = query_states / math.sqrt(head_dim)

    # Our simplified version of decoder only model does not use any mask.
    # flash_attention will use the global_mesh set in the TrainDecoderOnlyFSDPv2.
    attn_output = flash_attention(query_states, key_states, value_states, causal=causal, partition_spec=("fsdp", None, None, None))
    return attn_output


def ckpt_wrapper(module):
    def ckpt_forward(*inputs):
        outputs = module(*inputs)
        return outputs

    return ckpt_forward


# To avoid XLA issues
if is_xla_available:
    def _dropout(x: torch.Tensor, p: float, training: bool) -> torch.Tensor:
        if p > 0.0:
            return F.dropout(input=x, p=p, training=training).to(torch.bfloat16)
        else:
            return x
else:
    def _dropout(x: torch.Tensor, p: float, training: bool) -> torch.Tensor:
        if p > 0.0:
            return F.dropout(input=x, p=p, training=training)
        else:
            return x


def bias_dropout_add_scale(
    x: torch.Tensor,
    bias: typing.Optional[torch.Tensor],
    scale: typing.Optional[torch.Tensor],
    residual: typing.Optional[torch.Tensor],
    prob: float,
    training: bool,
    modality: typing.Optional[torch.Tensor] = None,
) -> torch.Tensor:

    out = _dropout(x=(x + bias) if bias is not None else x, p=prob, training=training)

    if scale is not None:
        out = scale * out

    if modality is not None:
        out = torch.where((modality == 1).unsqueeze(-1), out, _dropout(x, p=prob, training=training))

    if modality is not None:
        out = torch.where((modality == 1).unsqueeze(-1), out, x)

    if residual is not None:
        out = residual + out

    return out


def get_bias_dropout_add_scale(training):
    def _bias_dropout_add(x, bias, scale, residual, prob):
        return bias_dropout_add_scale(x, bias, scale, residual, prob, training)

    return _bias_dropout_add

# function overload
def modulate(x: torch.Tensor, shift: torch.Tensor, scale: torch.Tensor) -> torch.Tensor:
    return x * (1 + scale) + shift

def modulate_with_mask(x: torch.Tensor, shift: torch.Tensor, scale: torch.Tensor, modality: torch.Tensor) -> torch.Tensor:
    # Only images need time conditioning
    return torch.where(modality.unsqueeze(-1) == 1, x * (1 + scale) + shift, x)

if is_xla_available:
    def bias_dropout_add_scale_fused_train(
        x: torch.Tensor, bias: typing.Optional[torch.Tensor], scale: typing.Optional[torch.Tensor], residual: typing.Optional[torch.Tensor], prob: float, modality: typing.Optional[torch.Tensor] = None
    ) -> torch.Tensor:
        return bias_dropout_add_scale(x, bias, scale, residual, prob, True, modality)

    def bias_dropout_add_scale_fused_inference(
        x: torch.Tensor, bias: typing.Optional[torch.Tensor], scale: typing.Optional[torch.Tensor], residual: typing.Optional[torch.Tensor], prob: float, modality: typing.Optional[torch.Tensor] = None
    ) -> torch.Tensor:
        return bias_dropout_add_scale(x, bias, scale, residual, prob, False, modality)

    def modulate_fused(x: torch.Tensor, shift: torch.Tensor, scale: torch.Tensor, modality: torch.Tensor=None) -> torch.Tensor:
        if modality is not None and modality.any():
            return modulate_with_mask(x, shift, scale, modality)
        return modulate(x, shift, scale)
else:
    @torch.jit.script
    def bias_dropout_add_scale_fused_train(
        x: torch.Tensor, bias: typing.Optional[torch.Tensor], scale: typing.Optional[torch.Tensor], residual: typing.Optional[torch.Tensor], prob: float, modality: typing.Optional[torch.Tensor] = None
    ) -> torch.Tensor:
        return bias_dropout_add_scale(x, bias, scale, residual, prob, True, modality)


    @torch.jit.script
    def bias_dropout_add_scale_fused_inference(
        x: torch.Tensor, bias: typing.Optional[torch.Tensor], scale: typing.Optional[torch.Tensor], residual: typing.Optional[torch.Tensor], prob: float, modality: typing.Optional[torch.Tensor] = None
    ) -> torch.Tensor:
        return bias_dropout_add_scale(x, bias, scale, residual, prob, False, modality)


    @torch.jit.script
    def modulate_fused(x: torch.Tensor, shift: torch.Tensor, scale: torch.Tensor, modality: typing.Optional[torch.Tensor] = None) -> torch.Tensor:
        if modality is not None and modality.any():
            return modulate_with_mask(x, shift, scale, modality)
        return modulate(x, shift, scale)


class Rotary(torch.nn.Module):
    def __init__(self, dim, base=10_000):
        super().__init__()
        inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2).float() / dim))
        self.register_buffer("inv_freq", inv_freq)
        self.seq_len_cached = None
        self.cos_cached = None
        self.sin_cached = None

    def forward(self, seq_len, device=None):
        # seq_len = x.shape[seq_dim]
        if seq_len != self.seq_len_cached:
            self.seq_len_cached = seq_len
            t = torch.arange(seq_len, device=device).type_as(self.inv_freq)
            freqs = torch.einsum("i,j->ij", t, self.inv_freq.clone())
            emb = torch.cat((freqs, freqs), dim=-1).to(device)
            # dims are: batch, seq_len, qkv, head, dim
            self.cos_cached = emb.cos()[None, :, None, None, :].repeat(1, 1, 3, 1, 1)
            self.sin_cached = emb.sin()[None, :, None, None, :].repeat(1, 1, 3, 1, 1)
            # This makes the transformation on v an identity.
            self.cos_cached[:, :, 2, :, :].fill_(1.0)
            self.sin_cached[:, :, 2, :, :].fill_(0.0)

        return self.cos_cached, self.sin_cached

    @staticmethod
    def precompute_freqs_cis(dim: int, seq_len: int, theta: float = 10000.0, rope_scaling_factor: float = 1.0, ntk_factor: float = 1.0):
        """
        Precompute the frequency tensor for complex exponentials (cis) with
        given dimensions.

        This function calculates a frequency tensor with complex exponentials
        using the given dimension 'dim' and the end index 'end'. The 'theta'
        parameter scales the frequencies. The returned tensor contains complex
        values in complex64 data type.

        Args:
            dim (int): Dimension of the frequency tensor.
            end (int): End index for precomputing frequencies.
            theta (float, optional): Scaling factor for frequency computation.
                Defaults to 10000.0.

        Returns:
            torch.Tensor: Precomputed frequency tensor with complex
                exponentials.
        """

        theta = theta * ntk_factor

        rprint(f"theta {theta} rope scaling {rope_scaling_factor} ntk {ntk_factor}")

        freqs = 1.0 / (theta ** (torch.arange(0, dim, 2)[: (dim // 2)].float().cuda() / dim))
        t = torch.arange(seq_len, device=freqs.device, dtype=torch.float)  # type: ignore
        t = t / rope_scaling_factor
        freqs = torch.outer(t, freqs).float()  # type: ignore
        emb = torch.cat((freqs, freqs), dim=-1)
        cos = emb.cos()
        sin = emb.sin()
        cos = cos[:, : cos.shape[-1] // 2]
        sin = sin[:, : sin.shape[-1] // 2]
        return cos, sin


def rotate_half(x):
    x1, x2 = x[..., : x.shape[-1] // 2], x[..., x.shape[-1] // 2 :]
    return torch.cat((-x2, x1), dim=-1)


def apply_rotary_pos_emb(qkv, cos, sin):
    # cos = cos[0, :, 0, 0, : cos.shape[-1] // 2]
    # sin = sin[0, :, 0, 0, : sin.shape[-1] // 2]
    return flash_attn.layers.rotary.apply_rotary_emb_qkv_(qkv, cos, sin)

#################################################################################
#                                  Layers                                       #
#################################################################################
class LayerNorm(nn.Module):
    def __init__(self, dim):
        super().__init__()
        self.weight = nn.Parameter(torch.ones([dim]))
        self.dim = dim

    def forward(self, x):
        with torch.amp.autocast(x.device.type, enabled=False):
            x = F.layer_norm(x.float(), [self.dim])

        if is_xla_available:
            x = x.to(torch.bfloat16)
            if x.ndim == 3:
                return (x * self.weight[None, None, :]).to(torch.bfloat16)
            elif x.ndim == 2:
                return (x * self.weight[None]).to(torch.bfloat16)
        else:
            if x.ndim == 3:
                return x * self.weight[None, None, :]
            elif x.ndim == 2:
                return x * self.weight[None]


def residual_linear(x, W, x_skip, residual_scale):
    """x_skip + residual_scale * W @ x"""
    dim_out, dim_in = W.shape[0], W.shape[1]
    return torch.addmm(x_skip.view(-1, dim_out), x.view(-1, dim_in), W.T, alpha=residual_scale).view(*x.shape[:-1], dim_out)


#################################################################################
#               Embedding Layers for Timesteps and Class Labels                 #
#################################################################################
class TimestepEmbedder(nn.Module):
    """
    Embeds scalar timesteps into vector representations.
    """

    def __init__(self, hidden_size, frequency_embedding_size=256):
        super().__init__()
        self.mlp = nn.Sequential(
            nn.Linear(frequency_embedding_size, hidden_size, bias=True), nn.SiLU(), nn.Linear(hidden_size, hidden_size, bias=True)
        )
        self.frequency_embedding_size = frequency_embedding_size

    @staticmethod
    def timestep_embedding(t, dim, max_period=10000):
        """
        Create sinusoidal timestep embeddings.
        :param t: a 1-D Tensor of N indices, one per batch element.
                          These may be fractional.
        :param dim: the dimension of the output.
        :param max_period: controls the minimum frequency of the embeddings.
        :return: an (N, D) Tensor of positional embeddings.
        """
        # https://github.com/openai/glide-text2im/blob/main/glide_text2im/nn.py
        half = dim // 2
        freqs = torch.exp(-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half).to(device=t.device)
        args = (t[:, None].float() * freqs[None] if t.ndim == 1 else t[..., None].float() * freqs[None, None]) # TODO @sid I think this is right but remind me if things aren't working
        embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
        if dim % 2:
            embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
        return embedding

    def forward(self, t):
        t_freq = self.timestep_embedding(t, self.frequency_embedding_size)
        t_emb = self.mlp(t_freq)
        return t_emb


class LabelEmbedderCFG(nn.Module):
    """
    Embeds class labels into vector representations. Also handles label dropout for classifier-free guidance.
    """

    def __init__(self, num_classes, hidden_size, dropout_prob):
        super().__init__()
        use_cfg_embedding = dropout_prob > 0
        self.embedding_table = nn.Embedding(num_classes + use_cfg_embedding, hidden_size)
        self.num_classes = num_classes
        self.dropout_prob = dropout_prob

    def token_drop(self, labels, force_drop_ids=None):
        """
        Drops labels to enable classifier-free guidance.
        """
        if force_drop_ids is None:
            drop_ids = torch.rand(labels.shape[0], device=labels.device) < self.dropout_prob
        else:
            drop_ids = force_drop_ids == 1
        labels = torch.where(drop_ids, self.num_classes, labels)
        return labels

    def forward(self, labels, train, force_drop_ids=None):
        use_dropout = self.dropout_prob > 0
        if (train and use_dropout) or (force_drop_ids is not None):
            labels = self.token_drop(labels, force_drop_ids)
        embeddings = self.embedding_table(labels)
        return embeddings


class LabelEmbedder(nn.Module):
    """Embeds class labels into vector representations.

    Also handles label dropout for classifier-free guidance.
    """

    def __init__(self, num_classes, cond_size):
        super().__init__()
        self.embedding_table = nn.Embedding(num_classes + 1, cond_size)
        self.num_classes = num_classes

        # TODO think of initializing with 0.02 std deviation like in original DiT paper

    def forward(self, labels):
        embeddings = self.embedding_table(labels)
        return embeddings


def get_norm(*args, norm_type="layernorm", elementwise_affine=False, **kwargs):
    if norm_type == "layernorm":
        return LayerNorm(*args, **kwargs)
    elif norm_type == "rms":
        return RMSNorm(*args, **kwargs)
    else:
        raise ValueError(f"Unknown norm type: {norm_type}")


def get_linear(*args, **kwargs):
    return nn.Linear(*args, **kwargs)

def causal_mask(b, h, q_idx, kv_idx):
    return q_idx >= kv_idx

class Attention(nn.Module):
    def __init__(
        self,
        dim,
        n_heads,
        dropout=0.1,
        cross_attn=False,
        attn_type="flash",
        is_compiled=False,
        force_varlen_attn=False,
        force_cast_bf16=False,
        qk_norm=False,
        use_flash_attn_3=False,
        use_spda_attn=False,
        compile_flag_pos_emb=False,
        causal=False,
        use_kv_cache=False,
        time_conditioning=False,
        use_flex_attention=False,
        idx=None,
        attn_dropout=None
    ):
        super().__init__()
        self.cross_attn = cross_attn
        self.attn_type = attn_type
        self.force_varlen_attn = force_varlen_attn
        self.is_compiled = is_compiled
        self.compile_flag_pos_emb = compile_flag_pos_emb
        self.n_heads = n_heads
        self.force_cast_bf16 = force_cast_bf16
        self.qk_norm = qk_norm
        self.head_dim = dim // n_heads
        self.dropout = dropout
        self.use_flash_attn_3 = use_flash_attn_3
        self.use_spda_attn = use_spda_attn
        self.causal = causal
        self.use_kv_cache = use_kv_cache
        self.time_conditioning = time_conditioning
        self.use_flex_attention = use_flex_attention
        self.idx = idx
        self.attn_dropout = attn_dropout
        if self.attn_dropout is None:
            self.attn_dropout = 0
        
        self.old_start_pos = None

        self.attn_qkv = get_linear(dim, 3 * dim, bias=False)

        if self.cross_attn:
            self.attn_qkv_cond = get_linear(dim, 3 * dim, bias=False)

        self.attn_out = get_linear(dim, dim, bias=False)

        if self.qk_norm:
            self.q_norm = nn.LayerNorm(self.n_heads * self.head_dim)
            self.k_norm = nn.LayerNorm(self.n_heads * self.head_dim)
            assert self.cross_attn is False

        self.softmax_scale = None

        if self.use_flash_attn_3 or self.use_spda_attn:
            assert self.attn_type == "flash" and self.force_varlen_attn is False
            assert self.cross_attn is False

        if self.use_flex_attention:
            assert self.attn_type == "flash" and self.use_spda_attn
            assert allow_any_spda is False
            assert self.softmax_scale is None

        self.use_flex_attention_cache = False
        self.warn_cache_dtype = True

    def update_kv_cache(self, q, new_k, new_v, batch_size, start_pos, seq_len):
        self.cache_k[:, start_pos : start_pos + seq_len] = new_k
        self.cache_v[:, start_pos : start_pos + seq_len] = new_v
        k = self.cache_k[:, :start_pos + seq_len] # (batch_size, cache_len + seq_len, nheads, headdim)
        v = self.cache_v[:, :start_pos + seq_len] # (batch_size, cache_len + seq_len, nheads, headdim)
        return q, k, v # q is (batch_size, seq_len, nheads*headdim)

    def reset_kv_cache(self, batch_size, seq_len, dtype, device, set_to_none=False):
        assert self.use_kv_cache
        if set_to_none:
            del self.cache_k
            del self.cache_v
            self.cache_k = None
            self.cache_v = None
        else:
            self.cache_k = torch.zeros(
                batch_size, seq_len, self.n_heads, self.head_dim, dtype=dtype, device=device
            )
            self.cache_v = torch.zeros(
                batch_size, seq_len, self.n_heads, self.head_dim, dtype=dtype, device=device
            )
    
    def set_flex_attention_cache(self, batch_size, seq_len, device, dtype):
        assert self.use_flex_attention
        self.use_flex_attention_cache = True
        self.cache_k = torch.zeros(batch_size, self.n_heads, seq_len, self.head_dim, device=device, dtype=dtype)
        self.cache_v = torch.zeros(batch_size, self.n_heads, seq_len, self.head_dim, device=device, dtype=dtype)

    def forward(
        self,
        x,
        x_cond=None,
        x_skip=None,
        rotary_cos_sin=None,
        cu_seqlens=None,
        max_seqlen_in_batch=None,
        bias_dropout_scale_fn=None,
        gate_msa=None,
        attention_mask=None,
        start_pos=None,
        modality=None,
        block_mask=None,
        update_cache_slice=None,
    ):
        if x.ndim == 2:
            batch_size, seq_len = 1, x.shape[0]
            has_batch_dim = False
        else:
            batch_size, seq_len = x.shape[0], x.shape[1]
            has_batch_dim = True

        if is_xla_linear_patched:
            x = x.to(torch.float32)

        qkv = self.attn_qkv(x)
        if self.use_kv_cache and start_pos is not None:
            if not self.cache_k.dtype == self.cache_v.dtype == qkv.dtype:
                self.cache_k = self.cache_k.to(qkv.dtype)
                self.cache_v = self.cache_v.to(qkv.dtype)
                
        if is_xla_linear_patched:
            qkv = qkv.to(torch.bfloat16)

        if self.cross_attn:
            qkv_cond = self.attn_qkv_cond(x_cond)

        if not has_batch_dim:
            if self.cross_attn:
                q = q.unsqueeze(0)
                kv = kv.unsqueeze(0)
            else:
                qkv = qkv.unsqueeze(0)

        # qkv now has b s (three h d)
        if self.qk_norm:
            if is_xla_available:
                if is_xla_linear_patched:
                    qkv_size = self.n_heads * self.head_dim
                    qkv = torch.cat(
                        [
                            self.q_norm(qkv[:, :, :qkv_size].to(torch.bfloat16)).to(torch.bfloat16),
                            self.k_norm(qkv[:, :, qkv_size : 2 * qkv_size].to(torch.bfloat16)).to(torch.bfloat16),
                            qkv[:, :, 2 * qkv_size :].to(torch.bfloat16),
                        ],
                        dim=-1,
                    ).to(torch.bfloat16)
                else:
                    qkv_size = self.n_heads * self.head_dim
                    qkv = torch.cat(
                        [self.q_norm(qkv[:, :, :qkv_size]), self.k_norm(qkv[:, :, qkv_size : 2 * qkv_size]), qkv[:, :, 2 * qkv_size :]], dim=-1
                    )
            else:
                qkv_size = self.n_heads * self.head_dim
                qkv[:, :, :qkv_size] = self.q_norm(qkv[:, :, :qkv_size])
                qkv[:, :, qkv_size : 2 * qkv_size] = self.k_norm(qkv[:, :, qkv_size : 2 * qkv_size])
            
        if rotary_cos_sin is not None:
            orig_dtype = qkv.dtype
            assert not (self.is_compiled and self.qk_norm is None)
            if cu_seqlens is not None and self.force_varlen_attn is False:
                assert not self.cross_attn, "Not yet supported"
                assert qkv.is_contiguous()
                qkv = rearrange(qkv, "b s (three h d) -> (b s) three h d", three=3, h=self.n_heads)
                qk = qkv[:, :2].reshape(seq_len, -1, self.head_dim)  # (b s) (two h) d
                with torch.autocast(x.device.type, enabled=False):
                    cos, sin = rotary_cos_sin
                    qk = apply_rotary_emb(
                        qk, cos.to(qkv.dtype), sin.to(qkv.dtype), inplace=True, cu_seqlens=cu_seqlens, max_seqlen=max_seqlen_in_batch
                    )
                qkv[:, :2] = qk.reshape(seq_len, 2, -1, self.head_dim)
            else:
                qkv = rearrange(qkv, "b s (three h d) -> b s three h d", three=3, h=self.n_heads)
                if self.cross_attn:
                    qkv_cond = rearrange(qkv_cond, "b s (three h d) -> b s three h d", three=3, h=self.n_heads)

                with torch.autocast(x.device.type, enabled=is_xla_available):
                    cos, sin = rotary_cos_sin

                    # TODO: This causes a ~4-8% slowdown on XLA
                    if self.compile_flag_pos_emb:
                        if is_xla_available:
                            if is_xla_linear_patched:
                                cos, sin, qkv = cos.to(torch.bfloat16), sin.to(torch.bfloat16), qkv.to(torch.bfloat16)
                                qk = qkv[:, :, :2].to(torch.bfloat16).reshape(batch_size, seq_len, -1, self.head_dim).to(torch.bfloat16)
                                qk = flash_torch_apply_rotary_emb_torch(qk, cos, sin)
                                qkv = qkv.clone()  # TODO: Appears to be needed for XLA
                                qkv = qkv.to(torch.bfloat16)
                                qkv[:, :, :2] = qk.to(torch.bfloat16).reshape(batch_size, seq_len, 2, -1, self.head_dim).to(torch.bfloat16)
                                qkv = qkv.to(torch.bfloat16)
                            else:
                                qk = qkv[:, :, :2].reshape(batch_size, seq_len, -1, self.head_dim)
                                qk = flash_torch_apply_rotary_emb_torch(qk, cos, sin).to(x)
                                qkv = qkv.clone()  # TODO: Appears to be needed for XLA
                                qkv[:, :, :2] = qk.reshape(batch_size, seq_len, 2, -1, self.head_dim)
                                qkv = qkv.to(x)
                        else:
                            qk = qkv[:, :, :2].reshape(batch_size, seq_len, -1, self.head_dim)
                            qk = flash_torch_apply_rotary_emb_torch(qk, cos, sin)
                            qkv[:, :, :2] = qk.reshape(batch_size, seq_len, 2, -1, self.head_dim)
                    else:
                        qkv = apply_rotary_pos_emb(qkv, cos.to(qkv.dtype), sin.to(qkv.dtype))

                    if self.cross_attn:
                        qkv_cond = apply_rotary_pos_emb(qkv_cond, cos.to(qkv_cond.dtype), sin.to(qkv_cond.dtype))
                        qkv_cond = qkv_cond.to(orig_dtype)
                        q, _, _ = qkv.unbind(dim=2)
                        _, k_cond, v_cond = qkv_cond.unbind(dim=2)

                qkv = qkv.to(orig_dtype)
                if self.force_varlen_attn:
                    assert start_pos is not None
                    qkv = rearrange(qkv, "b s ... -> (b s) ...")
        else:
            assert not self.use_flash_attn_3
            if cu_seqlens is not None:
                assert False
            else:
                qkv = rearrange(qkv, "b s (three h d) -> b s three h d", three=3, h=self.n_heads)

        if self.use_kv_cache:
            assert self.attn_type == "flash" and self.use_spda_attn and allow_any_spda is False and not self.use_flex_attention

        if self.attn_type == "flash":
            if cu_seqlens is None and self.force_varlen_attn is False:  # qkv: (batch_size, seqlen, 3, nheads, headdim)
                if self.use_flash_attn_3:
                    # We do not yet support flash attn 3 for cross attention
                    q, k, v = qkv[:, :, 0, :, :], qkv[:, :, 1, :, :], qkv[:, :, 2, :, :]
                    x = flash_attn_func_v3(
                        q, k, v, softmax_scale=self.softmax_scale, causal=self.causal
                    )[0]
                elif self.use_spda_attn:
                    if allow_any_spda:
                        b, s, _, h, d = qkv.shape
                        q, k, v = qkv[:, :, 0, :, :], qkv[:, :, 1, :, :], qkv[:, :, 2, :, :]
                        q = q.view(b, -1, h, d).transpose(1, 2)
                        k = k.view(b, -1, h, d).transpose(1, 2)
                        v = v.view(b, -1, h, d).transpose(1, 2)

                        if attention_mask is None:
                            with nullcontext() if allow_any_spda else sdpa_kernel(backends=[SDPBackend.CUDNN_ATTENTION, SDPBackend.FLASH_ATTENTION]):
                                x = sdpa(q.contiguous(), k.contiguous(), v.contiguous(), attn_mask=None, is_causal=self.causal)
                        else:
                            x = sdpa(q.contiguous(), k.contiguous(), v.contiguous(), attn_mask=attention_mask, is_causal=self.causal)
                    else:
                        if is_xla_linear_patched:
                            qkv = qkv.to(torch.bfloat16)

                        q, k, v = qkv.unbind(dim=2)
                        disable_causal_attn = False
                        if self.use_kv_cache and start_pos is not None:
                            disable_causal_attn = True
                            q, k, v = self.update_kv_cache(q, k, v, batch_size, start_pos, seq_len)

                        is_causal = self.causal and not disable_causal_attn
                        q, k, v = q.transpose(1, 2), k.transpose(1, 2), v.transpose(1, 2)

                        if self.use_flex_attention:
                            # During inference we have a variable batch size which is not supported by torch.compile w/flex attention right now
                            # See: https://github.com/pytorch/pytorch/issues/136196
                            if self.training:
                                x = compiled_flex_attention(q, k, v, block_mask=block_mask)
                            else:
                                # Step 0: We want full attention for joint img/txt update
                                # Step 1: We want txt -> (txt + img) attention and img -> img attention. Cache the img kv for the next step
                                # Step 2...N: We want txt -> (txt + img) attention, using the cached kv for img
                                if self.use_flex_attention_cache:
                                    if seq_len != self.cache_k.shape[2]: # Step 2
                                        assert update_cache_slice is not None
                                        # (B, H, S, D)
                                        self.cache_k[:, :, update_cache_slice] = k
                                        self.cache_v[:, :, update_cache_slice] = v
                                    elif block_mask is not None and block_mask is not True: # Step 1
                                        assert update_cache_slice is not None
                                        assert (update_cache_slice.stop - update_cache_slice.start) == k.shape[2]
                                        self.cache_k = k
                                        self.cache_v = v
                                    else: # Step 0
                                        pass
                                
                                assert block_mask is not None
                                
                                # Hack to set full attention when we explicitly want it
                                if block_mask is True:
                                    block_mask = None
                                x = flex_attention(q, k, v, block_mask=block_mask)
                        elif force_xla_flash_attention:
                            assert not is_causal, "XLA Flash Attention does not support causal attention"
                            x = apply_xla_flash_attention_with_spmd(q=q, k=k, v=v, causal=is_causal)
                        elif force_cudnn_spda_context:
                            with (
                                nullcontext()
                                if (is_xla_available or attention_mask is not None)
                                else sdpa_kernel(backends=[
                                    SDPBackend.CUDNN_ATTENTION,
                                    *([] if (self.use_spda_attn and force_cudnn_spda_context) else [SDPBackend.FLASH_ATTENTION])
                                ])
                            ):
                                dropout_p = self.attn_dropout if self.training else 0
                                x = sdpa(q, k, v, attn_mask=None, is_causal=is_causal, scale=self.softmax_scale, dropout_p=dropout_p)
                        else:
                            dropout_p = self.attn_dropout if self.training else 0
                            x = sdpa(q, k, v, attn_mask=attention_mask, is_causal=is_causal, scale=self.softmax_scale, dropout_p=dropout_p)

                        if is_xla_linear_patched:
                            x = x.to(torch.bfloat16)

                elif self.cross_attn:
                    x = flash_attn_func(q, k_cond, v_cond, dropout_p=0.0, softmax_scale=self.softmax_scale, causal=self.causal)
                else:
                    if use_non_packed_fa2:
                        q, k, v = qkv.unbind(dim=2)
                        x = flash_attn_func(
                            q, k, v, dropout_p=0.0, softmax_scale=self.softmax_scale, causal=self.causal
                        )
                    else:
                        x = flash_attn_qkvpacked_func(qkv, dropout_p=0.0, softmax_scale=self.softmax_scale, causal=self.causal)

                if self.use_spda_attn:
                    x = rearrange(x, "b h s d -> b s (h d)", b=batch_size)
                else:
                    x = rearrange(x, "b s h d -> b s (h d)", b=batch_size)
            else:
                if cu_seqlens is None:
                    cu_seqlens = torch.arange(0, (batch_size + 1) * seq_len, step=seq_len, dtype=torch.int32, device=qkv.device)

                # If we want all *other* ops to be FP32, we still need to cast the input for attn to BF16 as Flash Attn only supports FP16/BF16. This is a quick hack to do this.
                with torch.amp.autocast(x.device.type, dtype=torch.bfloat16) if self.force_cast_bf16 else nullcontext():
                    if self.cross_attn:
                        if self.force_cast_bf16:
                            q = q.to(torch.bfloat16)
                            k_cond = k_cond.to(torch.bfloat16)
                            v_cond = v_cond.to(torch.bfloat16)
                        x = flash_attn_varlen_func(
                            q, k_cond, v_cond, cu_seqlens, seq_len, dropout_p=0.0, softmax_scale=self.softmax_scale, causal=self.causal
                        )
                    else:
                        if self.force_cast_bf16:
                            qkv = qkv.to(torch.bfloat16)
                        x = flash_attn_varlen_qkvpacked_func(
                            qkv, cu_seqlens, seq_len, dropout_p=0.0, softmax_scale=self.softmax_scale, causal=self.causal
                        )
                x = rearrange(x, "(b s) h d -> b s (h d)", b=batch_size)

        if not has_batch_dim:
            x = x.squeeze(0)

        if is_xla_linear_patched:
            x = x.to(torch.float32)

        if bias_dropout_scale_fn is not None:
            return bias_dropout_scale_fn(
                x=self.attn_out(x),
                bias=None,
                scale=gate_msa,
                residual=x_skip,
                prob=self.dropout,
                modality=(modality if self.time_conditioning else None),
            )
        else:
            return self.attn_out(x)


class DDiTBlock(nn.Module):
    def __init__(
        self,
        dim,
        n_heads,
        cond_dim,
        mlp_ratio=4,
        dropout=0.1,
        time_conditioning=True,
        img_cond=False,
        norm_type="layernorm",
        sandwich_normalization=False,
        **kwargs,
    ):
        super().__init__()
        self.time_conditioning = time_conditioning

        self.dropout = dropout
        self.attention = Attention(dim, n_heads, dropout, **kwargs)
        self.img_cond = img_cond
        if img_cond:
            self.cross_attention = Attention(dim, n_heads, dropout, cross_attn=True, **kwargs)

        self.norm1 = get_norm(dim, norm_type=norm_type)
        self.dropout1 = nn.Dropout(dropout)
        self.norm2 = get_norm(dim, norm_type=norm_type)

        self.mlp = nn.Sequential(
            get_linear(dim, mlp_ratio * dim, bias=True), nn.GELU(approximate="tanh"), get_linear(mlp_ratio * dim, dim, bias=True)
        )
        self.dropout2 = nn.Dropout(dropout)

        if self.time_conditioning:
            self.adaLN_modulation = nn.Linear(cond_dim, 6 * dim, bias=True)
            self.adaLN_modulation.weight.data.zero_()
            self.adaLN_modulation.bias.data.zero_()

        self.sandwich_normalization = sandwich_normalization
        if self.sandwich_normalization:
            self.post_ff_norm = get_norm(dim, norm_type=norm_type)
            self.pre_residual_norm = get_norm(dim, norm_type=norm_type)
            assert self.img_cond is False, "Sandwich normalization is not supported with cross attention."
        else:
            self.pre_residual_norm = nn.Identity()
            self.post_ff_norm = nn.Identity()

    def _get_bias_dropout_scale(self):
        if self.training:
            return bias_dropout_add_scale_fused_train
        else:
            return bias_dropout_add_scale_fused_inference

    def reset_kv_cache(self, *args, **kwargs):
        self.attention.reset_kv_cache(*args, **kwargs)
    
    def set_flex_attention_cache(self, *args, **kwargs):
        self.attention.set_flex_attention_cache(*args, **kwargs)

    def forward(
            self, 
            x, 
            rotary_cos_sin=None, 
            c=None, 
            cu_seqlens=None, 
            max_seqlen_in_batch=None, 
            x_cond=None, 
            attention_mask=None, 
            modality=None, 
            start_pos=None,
            block_mask=None,
            update_cache_slice=None,
        ):

        bias_dropout_scale_fn = self._get_bias_dropout_scale()

        if self.time_conditioning:
            _cond = self.adaLN_modulation(c)
            shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = (_cond if _cond.ndim == 3 else _cond[:, None, :]).chunk(6, dim=2)
        else:
            gate_msa, gate_mlp = None, None
        x_skip = x
        x = self.norm1(x)

        if self.time_conditioning:
            x = modulate_fused(x, shift_msa, scale_msa, modality)

        # Self Attention Start
        x = self.attention(
            x,
            rotary_cos_sin=rotary_cos_sin,
            cu_seqlens=cu_seqlens,
            max_seqlen_in_batch=max_seqlen_in_batch,
            x_skip=x_skip,
            bias_dropout_scale_fn=None if self.sandwich_normalization else bias_dropout_scale_fn,
            gate_msa=gate_msa,
            attention_mask=attention_mask,
            modality=modality,
            start_pos=start_pos,
            block_mask=block_mask,
            update_cache_slice=update_cache_slice,
        )
        
        # Self Attention End
        if self.sandwich_normalization:
            x = x_skip + self.pre_residual_norm(x)


        # Cross Attention Start
        if self.img_cond:
            x = self.cross_attention(
                x,
                x_cond=x_cond,
                rotary_cos_sin=rotary_cos_sin,
                cu_seqlens=cu_seqlens,
                max_seqlen_in_batch=max_seqlen_in_batch,
                x_skip=x_skip,
                bias_dropout_scale_fn=bias_dropout_scale_fn,
                gate_msa=gate_msa,
            )
        # Cross Attention End

        # mlp operation
        _modality = (modality if self.time_conditioning else None)
        if self.time_conditioning:
            # assert not self.sandwich_normalization
            x = bias_dropout_scale_fn(
                x=self.post_ff_norm(self.mlp(modulate_fused(self.norm2(x), shift_mlp, scale_mlp, modality))),
                bias=None,
                scale=gate_mlp,
                residual=x,
                prob=self.dropout,
                modality=_modality,
            )
        else:
            x = bias_dropout_scale_fn(
                x=self.post_ff_norm(self.mlp(self.norm2(x))),
                bias=None,
                scale=None,
                residual=x,
                prob=self.dropout,
                modality=_modality,
            )

        return x


class EmbeddingLayer(nn.Module):
    def __init__(self, dim, vocab_dim):
        super().__init__()
        self.embedding = nn.Parameter(torch.empty((vocab_dim, dim)))
        torch.nn.init.kaiming_uniform_(self.embedding, a=math.sqrt(5))

    def forward(self, x):
        return self.embedding[x]


def get_2d_rope(seq_len_2d, dim, linear_factor):
    seq_len_2d_side = int(math.sqrt(seq_len_2d))
    assert seq_len_2d_side**2 == seq_len_2d, f"seq_len_2d must be a square number, got {seq_len_2d}"
    if linear_factor is not None:
        rprint(f"Using Scale factor: {linear_factor}")
    ntk_factor = 1.0
    rotary_emb_2d = get_2d_rotary_pos_embed_lumina(
        dim,
        seq_len_2d_side,
        seq_len_2d_side,
        linear_factor=linear_factor,
        ntk_factor=ntk_factor,
    )
    cos_2d_emb = rotary_emb_2d.flatten(0, 1).real
    sin_2d_emb = rotary_emb_2d.flatten(0, 1).imag
    return cos_2d_emb, sin_2d_emb

class DDitFinalLayer(nn.Module):
    def __init__(self, hidden_size, out_channels, cond_dim, time_conditioning=True, norm_type="layernorm", zero_linear_init=True):
        super().__init__()
        self.time_conditioning = time_conditioning
        self.norm_final = get_norm(hidden_size, norm_type=norm_type)

        linear_kwargs = dict()
        self.linear = get_linear(hidden_size, out_channels, **linear_kwargs)
    
        if zero_linear_init:
            self.linear.weight.data.zero_()
            self.linear.bias.data.zero_()
        else:
            self.linear.bias.data.zero_()

        if self.time_conditioning:
            self.adaLN_modulation = nn.Linear(cond_dim, 2 * hidden_size, bias=True)
            self.adaLN_modulation.weight.data.zero_()
            self.adaLN_modulation.bias.data.zero_()

    def forward(self, x, c, modality):
        if self.time_conditioning:
            _cond = self.adaLN_modulation(c)
            shift, scale = (_cond if _cond.ndim == 3 else _cond[:, None, :]).chunk(2, dim=2)
            x = modulate_fused(self.norm_final(x), shift, scale, modality)
        else:
            x = self.norm_final(x)

        x = self.linear(x)
        return x


class DIT(nn.Module, huggingface_hub.PyTorchModelHubMixin):
    def __init__(self, config, vocab_size: int, text_vocab_size: int, mask_index: int, dtype=None, device=None, static_img_sl=None, static_txt_sl=None, **kwargs):
        super().__init__()
        if type(config) == dict:
            config = omegaconf.OmegaConf.create(config)

        self.config = config
        self.autocast_dtype = dtype
        self.vocab_size = vocab_size
        self.text_vocab_size = text_vocab_size
        self.time_conditioning = config.time_conditioning or getattr(self.config.model, "force_time_conditioning", False)
        self.use_gradient_checkpointing = getattr(config.trainer, "use_gradient_checkpointing", False)
        self.img_cond = getattr(config.model, "img_cond", False)
        self.mask_index = mask_index
        self.force_cast_bf16 = (self.autocast_dtype == torch.float32)
        self.use_flash_attn_3 = getattr(config.model, "use_flash_attn_3", False)
        self.use_spda_attn = getattr(config.model, "use_spda_attn", False)
        self.compile_flag_pos_emb = getattr(config.trainer, "compile_flag_pos_emb", False)
        self.sandwich_normalization = getattr(config.model, "sandwich_normalization", False)
        self.use_kv_cache = getattr(config.model, "use_kv_cache", False)
        self.use_flex_attention = getattr(config.model, "use_flex_attention", False)
        self.static_img_sl = static_img_sl
        self.static_txt_sl = static_txt_sl
        self.causal = not config.model.full_attention

        if getattr(config.model, "use_flash_attn_3", False):
            assert not failed_to_import_fa3

        if getattr(self.config.model, "cond_label", False):
            self.y_embedder = LabelEmbedderCFG(1000, config.model.cond_dim, 0.1)

        if getattr(config.model, "use_pretrained_img_emb", False):
            from model import get_vae

            self.vocab_embed = EmbeddingLayer(config.model.hidden_size, text_vocab_size + 1)
            if getattr(config.model, "freeze_txt_emb", False):
                self.vocab_embed.requires_grad_(False)
            device = next(iter(self.vocab_embed.parameters())).device
            vae = get_vae(config, device)
            self.img_vocab_embed = vae.quantize.embedding
            if self.time_conditioning:  # TODO: Debug
                rprint("Requires grad: False")
                self.img_vocab_embed.requires_grad_(False)
            self.img_vocab_proj = get_linear(self.img_vocab_embed.embedding_dim, config.model.hidden_size)
            self.split_embed = True
            self.new_mask_index = text_vocab_size
            rprint(f"Using pretrained image embedding. Projecting from: {self.img_vocab_embed.embedding_dim} to {config.model.hidden_size}")
        else:
            self.vocab_embed = EmbeddingLayer(config.model.hidden_size, vocab_size)
            self.split_embed = False

        self.is_compiled = getattr(config.trainer, "compile", False)
        if self.img_cond:
            if getattr(config.model, "use_pretrained_img_emb", False):
                cond_vae = get_vae(config, device, use_cond=True)
                self.cond_img_vocab_embed = cond_vae.quantize.embedding
                self.cond_img_vocab_proj = get_linear(self.cond_img_vocab_embed.embedding_dim, config.model.hidden_size)
            else:
                self.cond_img_vocab_embed = EmbeddingLayer(config.model.hidden_size, config.model.cond_image_vocab_size)

            img_cond_blocks = []
            for idx in range(8):
                img_cond_blocks.append(
                    DDiTBlock(
                        config.model.hidden_size,
                        config.model.n_heads,
                        config.model.cond_dim,
                        dropout=config.model.dropout,
                        img_cond=False,
                        time_conditioning=self.time_conditioning,
                        attn_type=config.model.attn_type,
                        is_compiled=self.is_compiled,
                        force_varlen_attn=config.model.force_varlen_attn,
                        force_cast_bf16=self.force_cast_bf16,
                        norm_type=config.model.norm_type,
                        qk_norm=config.model.qk_norm,
                        use_flash_attn_3=self.use_flash_attn_3,
                        use_spda_attn=self.use_spda_attn,
                        compile_flag_pos_emb=self.compile_flag_pos_emb,
                        sandwich_normalization=self.sandwich_normalization,
                        causal=not config.model.full_attention,
                        use_kv_cache=self.use_kv_cache,
                        use_flex_attention=self.use_flex_attention,
                        idx=idx,
                        attn_dropout=getattr(config.model, "attn_dropout", None),
                    )
                )
            self.img_cond_blocks = nn.ModuleList(img_cond_blocks)
            self.img_cond_rotary_emb = Rotary(config.model.hidden_size // config.model.n_heads)
            assert not self.is_compiled, "Need to fix rotary embeddings"

        self.sigma_map = None
        if self.time_conditioning and getattr(self.config.model, "cond_label", False) is False:
            self.sigma_map = TimestepEmbedder(config.model.cond_dim)
            rprint(f"Using timestep embedder with dim: {config.model.cond_dim}")

        self.use_legacy_rotary = False
        self.modality_embed = None

        if self.config.model.modality_embed:
            self.modality_embed = EmbeddingLayer(self.config.model.hidden_size, 2)

        continuous_mode = self.config.trainer.image_mode == "continuous"
        if continuous_mode:
            assert getattr(config.model, "vae_type", None) == "stable_diffusion"
            # an extra projection layer for the continuous diffusion
            self.continuous_img_proj = get_linear(4 * (config.model.patching_downscale ** 2), config.model.hidden_size) # todo remove 4 (vae hardcode)

        if self.config.model.rope_2d:
            seq_len_1d = self.config.model.txt_length
            seq_len_2d = self.config.model.img_length
            linear_factor = getattr(config.model, "linear_factor", 1.0)
            dim = config.model.hidden_size // config.model.n_heads

            if self.config.data.require_sample_ids:
                for seq_len_2d, linear_factor in ((256, 1), (1024, 2), (2304, 3), (4096, 4)):
                    cos_2d_emb, sin_2d_emb = get_2d_rope(seq_len_2d, dim, linear_factor)
                    self.register_buffer(f'rotary_cos_emb_img_{seq_len_2d}', cos_2d_emb, persistent=False)
                    self.register_buffer(f'rotary_sin_emb_img_{seq_len_2d}', sin_2d_emb, persistent=False)

                max_images_in_sequence = 16
                self.img_count_embedding = nn.Parameter(torch.zeros((max_images_in_sequence, config.model.hidden_size)))
            else:
                cos_2d_emb, sin_2d_emb = get_2d_rope(seq_len_2d, dim, linear_factor)
                self.register_buffer('rotary_cos_emb_img', cos_2d_emb, persistent=False)
                self.register_buffer('rotary_sin_emb_img', sin_2d_emb, persistent=False)

            rotary_emb_1d = Rotary(dim)(seq_len_1d)
            cos_1d_emb = rotary_emb_1d[0][0, :, 0, 0, : cos_2d_emb.shape[1]]
            sin_1d_emb = rotary_emb_1d[1][0, :, 0, 0, : sin_2d_emb.shape[1]]

            if self.config.trainer.multimodal_batches:
                seq_len_1d = self.config.model.length
                rotary_emb_1d = Rotary(config.model.hidden_size // config.model.n_heads)(seq_len_1d)
                cos_1d_emb = rotary_emb_1d[0][0,:,0, 0,: cos_2d_emb.shape[1]]
                sin_1d_emb = rotary_emb_1d[1][0,:,0, 0,: sin_2d_emb.shape[1]]
                self.register_buffer('rotary_cos_emb_txt', cos_1d_emb, persistent=False)
                self.register_buffer('rotary_sin_emb_txt', sin_1d_emb, persistent=False)
        else:
            seq_len_1d = self.config.model.length
            self.rotary_emb_1d = Rotary(config.model.hidden_size // config.model.n_heads)(seq_len_1d)
            cos_1d_emb = self.rotary_emb_1d[0][0,:,0, 0,: self.rotary_emb_1d[0].shape[-1] // 2]
            sin_1d_emb = self.rotary_emb_1d[1][0,:,0, 0,: self.rotary_emb_1d[1].shape[-1] // 2]
            self.register_buffer('rotary_cos_emb', cos_1d_emb, persistent=False)
            self.register_buffer('rotary_sin_emb', sin_1d_emb, persistent=False)

        blocks = []
        for idx in range(config.model.n_blocks):
            blocks.append(
                DDiTBlock(
                    config.model.hidden_size,
                    config.model.n_heads,
                    config.model.cond_dim,
                    dropout=config.model.dropout,
                    time_conditioning=self.time_conditioning,
                    img_cond=self.img_cond,
                    attn_type=config.model.attn_type,
                    is_compiled=self.is_compiled,
                    force_varlen_attn=config.model.force_varlen_attn,
                    force_cast_bf16=self.force_cast_bf16,
                    norm_type=config.model.norm_type,
                    qk_norm=config.model.qk_norm,
                    use_flash_attn_3=self.use_flash_attn_3,
                    use_spda_attn=self.use_spda_attn,
                    compile_flag_pos_emb=self.compile_flag_pos_emb,
                    sandwich_normalization=self.sandwich_normalization,
                    causal=not config.model.full_attention,
                    use_kv_cache=self.use_kv_cache,
                    use_flex_attention=self.use_flex_attention,
                    idx=idx,
                    attn_dropout=getattr(config.model, "attn_dropout", None),
                )
            )
        
        self.blocks = nn.ModuleList(blocks)
        self.output_layer = DDitFinalLayer(
            config.model.hidden_size,
            1 if config.parameterization == "planner" else vocab_size,
            config.model.cond_dim,
            time_conditioning=self.time_conditioning,
            norm_type=config.model.norm_type,
            zero_linear_init=config.model.zero_linear_init,
        )
        
        if continuous_mode:
            assert getattr(self.config.model, "vae_type", None) == "stable_diffusion"
            self.output_later_img = DDitFinalLayer(
                config.model.hidden_size,
                4 * (config.model.patching_downscale ** 2),  # todo, remove hardcoding
                config.model.cond_dim,
                time_conditioning=self.time_conditioning,
                norm_type=config.model.norm_type,
                zero_linear_init=config.model.zero_linear_init,
            )
            
        self.scale_by_sigma = config.model.scale_by_sigma
        self.txt_dropout = getattr(config.model, "txt_dropout", None)
        if config.parameterization != "ar":
            rprint(f"Not using AR, disabling txt dropout")
            self.txt_dropout = None

        self.txt_length = self.config.model.txt_length
        self.img_length = self.config.model.img_length
        self.total_length = self.config.model.length
        assert (self.txt_length + self.img_length == self.total_length) or self.config.trainer.multimodal_batches
        self.allow_compiled_embed = self.config.model.rope_2d is False and self.config.model.modality_embed is False and not getattr(self.config.model, "disable_allow_compiled_embed", False)
        self.multimodal_batches = self.config.trainer.multimodal_batches
        self.rope_2d = self.config.model.rope_2d
        rprint(f"DIT Found XLA: {is_xla_available}")
        self.require_sample_ids = self.config.data.require_sample_ids

        if self.config.model.force_optimized_native_attn:
            assert force_cudnn_spda_context
            assert self.config.model.use_spda_attn

    def _get_bias_dropout_scale(self):
        if self.training:
            return bias_dropout_add_scale_fused_train
        else:
            return bias_dropout_add_scale_fused_inference
        
    def reset_kv_cache(self, *args, **kwargs):
        for block in self.blocks:
            block.reset_kv_cache(*args, **kwargs)

    def set_flex_attention_cache(self, *args, **kwargs):
        for block in self.blocks:
            block.set_flex_attention_cache(*args, **kwargs)

    def forward(
        self,
        indices,
        sigma=None,
        label=None,
        x_cond=None,
        attention_mask=None,
        continuous_mode=False,
        x_img_emb=None,
        modality=None,
        start_pos=None,
        block_mask=None,
        update_cache_slice=None,
        sample_ids=None,
    ):
        if self.txt_dropout is not None and self.training:
            mask = torch.rand_like(indices, dtype=torch.float) < self.txt_dropout
            indices = torch.where(mask & (modality == 0), self.mask_index, indices)

        if self.split_embed:
            # TODO: This is a bit inefficient
            text_mask = indices < self.text_vocab_size
            img_mask = (indices >= self.text_vocab_size) & (indices != self.mask_index)
            mask_token_mask = indices == self.mask_index

            text_indices = indices.clone()
            text_indices[~text_mask] = 0  # Set non-text tokens to 0
            text_indices[mask_token_mask] = self.new_mask_index
            txt_x = self.vocab_embed(text_indices)

            img_indices = indices.clone() - self.text_vocab_size
            img_indices[~img_mask] = 0  # Set non-image tokens to 0
            img_x = self.img_vocab_proj(self.img_vocab_embed(img_indices))

            mask_x = self.vocab_embed(torch.full_like(indices, self.new_mask_index))
            x = torch.where(text_mask.unsqueeze(-1), txt_x, torch.where(img_mask.unsqueeze(-1), img_x, mask_x))
        elif continuous_mode:
            assert sigma is not None
            text_embed = self.vocab_embed(indices)
            img_embed = self.continuous_img_proj(x_img_emb)
            x = torch.where(modality[:, :, None] == 1, img_embed, text_embed)
            attention_mask_shape = self.total_length if self.use_kv_cache else modality.shape[1]
            attention_mask = get_transfusion_mask(indices.shape[0], attention_mask_shape, self.txt_length, self.img_length, modality)
            if self.use_kv_cache:
                # we only care about (seq_len, cache_len+seq_len)
                assert self.total_length <= self.inference_max_seq_len
                seq_len = indices.shape[1]
                attention_mask = attention_mask[:, start_pos:start_pos+seq_len, :start_pos+seq_len]
                x = x[:, start_pos:start_pos+seq_len, :]
            attention_mask = attention_mask.unsqueeze(1).to(x.device)  # (B, 1, N_tot, N_tot) for SDPA
        else:
            x = self.vocab_embed(indices)
        x = x.to(self.autocast_dtype)
        c = None
        if self.sigma_map is not None:
            c = F.silu(self.sigma_map(sigma))

        if label is not None:
            assert c is None
            c = self.y_embedder(label, train=self.training)

        if x_cond is not None:
            assert not self.use_kv_cache
            if self.split_embed:
                x_cond = self.cond_img_vocab_proj(self.cond_img_vocab_embed(x_cond))
            else:
                x_cond = self.cond_img_vocab_embed(x_cond)

            img_cond_rotary_cos_sin = True if self.is_compiled else self.img_cond_rotary_emb(x_cond)
            img_cond_attention_args = (img_cond_rotary_cos_sin, None, None, None, None, attention_mask, start_pos)
            with torch.autocast(x_cond.device.type, dtype=self.autocast_dtype):
                for i in range(len(self.img_cond_blocks)):
                    x_cond = (
                        checkpoint(ckpt_wrapper(self.img_cond_blocks[i]), x_cond, *img_cond_attention_args, use_reentrant=True)
                        if (self.use_gradient_checkpointing and self.training)
                        else self.img_cond_blocks[i](x_cond, *img_cond_attention_args)
                    )

        if self.modality_embed is not None:
            if self.multimodal_batches:
                assert modality is not None
                try:
                    x = x + torch.where((modality == 0).unsqueeze(-1), self.modality_embed(0).unsqueeze(0).unsqueeze(0), self.modality_embed(1).unsqueeze(0).unsqueeze(0))
                except:
                    breakpoint()
            else:
                x[:, self.static_txt_sl] = x[:, self.static_txt_sl] + self.modality_embed(0).unsqueeze(0).unsqueeze(0)
                x[:, self.static_img_sl] = x[:, self.static_img_sl] + self.modality_embed(1).unsqueeze(0).unsqueeze(0)
        
        if self.is_compiled and self.allow_compiled_embed:
            rotary_cos_sin = True
        else:
            if self.use_legacy_rotary:
                rotary_cos_sin = self.rotary_emb(x)
            else:        
                if self.modality_embed is not None and self.rope_2d and self.multimodal_batches:
                    valid_sl = slice(start_pos, start_pos+x.shape[1]) if start_pos is not None else slice(None, x.shape[1])
                    if self.require_sample_ids:
                        assert modality.shape == indices.shape == sample_ids.shape
                        cos = torch.zeros((x.shape[0], *self.rotary_cos_emb_txt.shape), device=x.device, dtype=x.dtype)
                        sin = torch.zeros((x.shape[0], *self.rotary_sin_emb_txt.shape), device=x.device, dtype=x.dtype)
                        modality_mask = modality.bool()
                        @torch.compiler.disable()
                        def fn():
                            add_img_data_to_blocks(x, cos, modality_mask, sample_ids, {
                                256: self.rotary_cos_emb_img_256,
                                1024: self.rotary_cos_emb_img_1024,
                                2304: self.rotary_cos_emb_img_2304,
                                4096: self.rotary_cos_emb_img_4096
                            },  self.img_count_embedding)
                            add_img_data_to_blocks(None, sin, modality_mask, sample_ids, {
                                256: self.rotary_sin_emb_img_256,
                                1024: self.rotary_sin_emb_img_1024,
                                2304: self.rotary_sin_emb_img_2304,
                                4096: self.rotary_sin_emb_img_4096
                            }, None)
                            add_txt_data_to_blocks(cos, modality_mask, sample_ids, self.rotary_cos_emb_txt)
                            add_txt_data_to_blocks(sin, modality_mask, sample_ids, self.rotary_sin_emb_txt)

                        fn()
                        rotary_cos_sin = (cos, sin)
                    elif modality.shape[-1] != self.img_length:
                        # Pretty hacky but we want to support the following batch: [[text img], [text], [img]]
                        pad_size = modality.shape[-1] - self.img_length
                        pad_size = max(pad_size, 0)
                        padding = torch.full((1, pad_size, self.rotary_cos_emb_img.shape[-1]), torch.nan, device=x.device, dtype=x.dtype)
                        rotary_cos_sin = (
                            torch.where(modality[:, :, None] == 0, self.rotary_cos_emb_txt[None, valid_sl], torch.cat([padding, self.rotary_cos_emb_img[None, valid_sl]], dim=1)[:, valid_sl]).squeeze(0), 
                            torch.where(modality[:, :, None] == 0, self.rotary_sin_emb_txt[None, valid_sl], torch.cat([padding, self.rotary_sin_emb_img[None, valid_sl]], dim=1)[:, valid_sl]).squeeze(0)
                        )
                    else:
                        rotary_cos_sin = (
                            torch.where(modality[:, :, None] == 0, self.rotary_cos_emb_txt[None, valid_sl], self.rotary_cos_emb_img[None, valid_sl]).squeeze(0), 
                            torch.where(modality[:, :, None] == 0, self.rotary_sin_emb_txt[None, valid_sl], self.rotary_sin_emb_img[None, valid_sl]).squeeze(0)
                        )
                else:
                    rotary_cos_sin = (self.rotary_cos_emb, self.rotary_sin_emb)

            if start_pos is not None: assert self.use_kv_cache
            if self.use_kv_cache and start_pos is not None:
                cos, sin = rotary_cos_sin
                seq_len = x.shape[1]
                if cos.ndim == 3:
                    rotary_cos_sin = (
                        cos[:, start_pos:start_pos+seq_len],
                        sin[:, start_pos:start_pos+seq_len]
                    )
                elif cos.ndim == 2:
                    rotary_cos_sin = (
                        cos[start_pos:start_pos+seq_len],
                        sin[start_pos:start_pos+seq_len]
                    )
                else:
                    raise ValueError(f"Invalid rotary cos and sin shape for KV cache slicing: {cos.shape}")
                
        if self.causal and self.use_flex_attention and block_mask is None and not (self.use_kv_cache and start_pos is not None):
            # For causal, we do not need a mask if we are using KV cache
            block_mask = create_block_mask(causal_mask, B=None, H=None, Q_LEN=x.shape[1], KV_LEN=x.shape[1])
                
        attention_args = (rotary_cos_sin, c, None, None, x_cond, attention_mask, modality, start_pos, block_mask, update_cache_slice)
        with torch.autocast(x.device.type, dtype=self.autocast_dtype):
            for i in range(len(self.blocks)):
                x = (
                    checkpoint(ckpt_wrapper(self.blocks[i]), x, *attention_args, use_reentrant=True)
                    if (self.use_gradient_checkpointing and self.training)
                    else self.blocks[i](x, *attention_args)
                )
            
        if continuous_mode:
            x_img_emb = self.output_later_img(x, c, modality)
        
        x = self.output_layer(x, c, modality)
        
        if continuous_mode:
            return (x, x_img_emb)
        
        return x