File size: 4,657 Bytes
131da64
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
import abc

import torch
import torch.nn as nn

# Flags required to enable jit fusion kernels
torch._C._jit_set_profiling_mode(False)
torch._C._jit_set_profiling_executor(False)
torch._C._jit_override_can_fuse_on_cpu(True)
torch._C._jit_override_can_fuse_on_gpu(True)


def get_noise(config, dtype=torch.float32):
  if config.noise.type == 'geometric':
    return GeometricNoise(config.noise.sigma_min,
                          config.noise.sigma_max)
  elif config.noise.type == 'loglinear':
    return LogLinearNoise()
  elif config.noise.type == 'cosine':
    return CosineNoise()
  elif config.noise.type == 'cosinesqr':
    return CosineSqrNoise()
  elif config.noise.type == 'linear':
    return Linear(config.noise.sigma_min,
                  config.noise.sigma_max,
                  dtype)
  else:
    raise ValueError(f'{config.noise.type} is not a valid noise')


def binary_discretization(z):
  z_hard = torch.sign(z)
  z_soft = z / torch.norm(z, dim=-1, keepdim=True)
  return z_soft + (z_hard - z_soft).detach()


class Noise(abc.ABC, nn.Module):
  """
  Baseline forward method to get the total + rate of noise at a timestep
  """
  def forward(self, t):
    # Assume time goes from 0 to 1
    return self.total_noise(t), self.rate_noise(t)
  
  @abc.abstractmethod
  def rate_noise(self, t):
    """
    Rate of change of noise ie g(t)
    """
    pass

  @abc.abstractmethod
  def total_noise(self, t):
    """
    Total noise ie \int_0^t g(t) dt + g(0)
    """
    pass


class CosineNoise(Noise):
  def __init__(self, eps=1e-3):
    super().__init__()
    self.eps = eps

  def rate_noise(self, t):
    cos = (1 - self.eps) * torch.cos(t * torch.pi / 2)
    sin = (1 - self.eps) * torch.sin(t * torch.pi / 2)
    scale = torch.pi / 2
    return scale * sin / (cos + self.eps)

  def total_noise(self, t):
    cos = torch.cos(t * torch.pi / 2)
    return - torch.log(self.eps + (1 - self.eps) * cos)


class CosineSqrNoise(Noise):
  def __init__(self, eps=1e-3):
    super().__init__()
    self.eps = eps

  def rate_noise(self, t):
    cos = (1 - self.eps) * (
      torch.cos(t * torch.pi / 2) ** 2)
    sin = (1 - self.eps) * torch.sin(t * torch.pi)
    scale = torch.pi / 2
    return scale * sin / (cos + self.eps)

  def total_noise(self, t):
    cos = torch.cos(t * torch.pi / 2) ** 2
    return - torch.log(self.eps + (1 - self.eps) * cos)


class Linear(Noise):
  def __init__(self, sigma_min=0, sigma_max=10, dtype=torch.float32):
    super().__init__()
    self.sigma_min = torch.tensor(sigma_min, dtype=dtype)
    self.sigma_max = torch.tensor(sigma_max, dtype=dtype)

  def rate_noise(self, t):
    return self.sigma_max - self.sigma_min

  def total_noise(self, t):
    return self.sigma_min + t * (self.sigma_max - self.sigma_min)

  def importance_sampling_transformation(self, t):
    f_T = torch.log1p(- torch.exp(- self.sigma_max))
    f_0 = torch.log1p(- torch.exp(- self.sigma_min))
    sigma_t = - torch.log1p(- torch.exp(t * f_T + (1 - t) * f_0))
    return (sigma_t - self.sigma_min) / (
      self.sigma_max - self.sigma_min)


class GeometricNoise(Noise):
  def __init__(self, sigma_min=1e-3, sigma_max=1):
    super().__init__()
    self.sigmas = 1.0 * torch.tensor([sigma_min, sigma_max])

  def rate_noise(self, t):
    return self.sigmas[0] ** (1 - t) * self.sigmas[1] ** t * (
      self.sigmas[1].log() - self.sigmas[0].log())

  def total_noise(self, t):
    return self.sigmas[0] ** (1 - t) * self.sigmas[1] ** t

from decoupled_utils import is_torch_xla_available
is_xla_available = is_torch_xla_available()

class LogLinearNoise(Noise):
  """Log Linear noise schedule.
  
  Built such that 1 - 1/e^(n(t)) interpolates between 0 and
  ~1 when t varies from 0 to 1. Total noise is
  -log(1 - (1 - eps) * t), so the sigma will be
  (1 - eps) * t.
  """
  def __init__(self, eps=1e-3):
    super().__init__()
    self.eps = eps
    self.sigma_max = self.total_noise(torch.tensor(1.0, dtype=torch.float32))
    self.sigma_min = self.eps + self.total_noise(torch.tensor(0.0, dtype=torch.float32))

  def rate_noise(self, t):
    return (1 - self.eps) / (1 - (1 - self.eps) * t)

  def total_noise(self, t):
    if is_xla_available:
      # XLA breaks here with large batch sizes...
      return -torch.log(1 + (-(1 - self.eps) * t.to(torch.float64))).to(t.dtype)
    else:
      return -torch.log1p(-(1 - self.eps) * t)

  def importance_sampling_transformation(self, t):
    f_T = torch.log1p(- torch.exp(- self.sigma_max))
    f_0 = torch.log1p(- torch.exp(- self.sigma_min))
    sigma_t = - torch.log1p(- torch.exp(t * f_T + (1 - t) * f_0))
    t = - torch.expm1(- sigma_t) / (1 - self.eps)
    return t