unidisc / models /datasets /text_datasets.py
aswerdlow's picture
Initial commit
131da64
import functools
import itertools
import json
import math
import os
import random
import re
import shutil
import typing
import urllib
import zipfile
from pathlib import Path
import datasets
import fsspec
import pandas as pd
import requests
import tokenizers
import torch
import transformers
import utils
from decoupled_utils import rprint
def wt_detokenizer(string):
# contractions
string = string.replace("s '", "s'")
string = re.sub(r"/' [0-9]/", r"/'[0-9]/", string)
# number separators
string = string.replace(" @-@ ", "-")
string = string.replace(" @,@ ", ",")
string = string.replace(" @.@ ", ".")
# punctuation
string = string.replace(" : ", ": ")
string = string.replace(" ; ", "; ")
string = string.replace(" . ", ". ")
string = string.replace(" ! ", "! ")
string = string.replace(" ? ", "? ")
string = string.replace(" , ", ", ")
# double brackets
string = re.sub(r"\(\s*([^\)]*?)\s*\)", r"(\1)", string)
string = re.sub(r"\[\s*([^\]]*?)\s*\]", r"[\1]", string)
string = re.sub(r"{\s*([^}]*?)\s*}", r"{\1}", string)
string = re.sub(r"\"\s*([^\"]*?)\s*\"", r'"\1"', string)
string = re.sub(r"'\s*([^']*?)\s*'", r"'\1'", string)
# miscellaneous
string = string.replace("= = = =", "====")
string = string.replace("= = =", "===")
string = string.replace("= =", "==")
string = string.replace(" " + chr(176) + " ", chr(176))
string = string.replace(" \n", "\n")
string = string.replace("\n ", "\n")
string = string.replace(" N ", " 1 ")
string = string.replace(" 's", "'s")
return string
def ptb_detokenizer(x):
x = x.replace(" 's", "'s")
x = x.replace("s ' ", "s' ")
x = x.replace(" n't", "n't")
x = x.replace(" \n ", "\n")
x = x.replace("\\/", "/")
for _ in range(10):
x = x.replace(" N ", " 1 ")
x = x.replace("$ 1", "$1")
x = x.replace("# 1", "#1")
x = x.replace("<unk>", "?")
return x
def lm1b_detokenizer(x):
x = x.replace('http : / / ', 'http://')
x = x.replace('https : / / ', 'https://')
x = re.sub(r' \'(\w+)', r"'\1", x)
x = re.sub(r' (\w+) \. ', r' \1. ', x)
x = re.sub(r' (\w+) \.$', r' \1.', x)
x = x.replace(' ? ', '? ')
x = re.sub(r' \?$', '?', x)
x = x.replace(' ! ', '! ')
x = re.sub(r' \!$', '!', x)
x = x.replace(' , ', ', ')
x = x.replace(' : ', ': ')
x = x.replace(' ; ', '; ')
x = x.replace(' / ', '/')
x = re.sub(r'\" ([^\"]+) \"', r'"\1"', x)
x = re.sub(r'\' ([^\']+) \'', r"'\1'", x)
x = re.sub(r'\( ([^\(\)]+) \)', r"(\1)", x)
x = re.sub(r'\[ ([^\[\]]+) \]', r"[\1]", x)
x = x.replace('$ ', '$')
x = x.replace('£ ', '£')
return x
def lambada_detokenizer(text):
text = text.replace("“", '"')
text = text.replace("”", '"')
return '\n'+text.strip()
def scientific_papers_detokenizer(x):
x = wt_detokenizer(x)
x = lm1b_detokenizer(x)
return x
class Text8Tokenizer(transformers.PreTrainedTokenizer):
def __init__(
self,
bos_token='[BOS]',
eos_token='[EOS]',
sep_token='[SEP]',
cls_token='[CLS]',
pad_token='[PAD]',
mask_token='[MASK]',
unk_token='[UNK]',
**kwargs):
self.characters = list('abcdefghijklmnopqrstuvwxyz ')
self._vocab_str_to_int = {
'[CLS]': 0,
'[SEP]': 1,
'[BOS]': 2,
'[EOS]': 3,
'[MASK]': 4,
'[PAD]': 5,
'[RESERVED]': 6,
'[UNK]': 7,
** {ch: i + 8 for i, ch in enumerate(self.characters)}}
self._vocab_int_to_str = {
v: k for k, v in self._vocab_str_to_int.items()}
super().__init__(
bos_token=bos_token,
eos_token=eos_token,
sep_token=sep_token,
cls_token=cls_token,
pad_token=pad_token,
mask_token=mask_token,
unk_token=unk_token,
**kwargs)
@property
def vocab_size(self) -> int:
return len(self._vocab_str_to_int)
def _tokenize(self, text: str, **kwargs):
return list(text.lower())
def _convert_token_to_id(self, token: str) -> int:
return self._vocab_str_to_int.get(
token, self._vocab_str_to_int['[UNK]'])
def _convert_id_to_token(self, index: int) -> str:
return self._vocab_int_to_str[index]
def convert_tokens_to_string(self, tokens):
return ''.join(tokens)
def get_vocab(self) -> typing.Dict[str, int]:
return self._vocab_str_to_int
def get_lambada_test_dataset():
url = "https://openaipublic.blob.core.windows.net/gpt-2/data/lambada_test.jsonl"
def read_jsonl_to_list(url):
response = requests.get(url, stream=True)
data_list = []
# Process each line in the response content
for line in response.iter_lines(decode_unicode=True):
if line:
data = json.loads(line)
data_list.append(data)
return data_list
lambada_data = read_jsonl_to_list(url)
dataset = datasets.Dataset.from_list(lambada_data)
return dataset
def get_text8_dataset(cache_dir, max_seq_length=256,
drop_last=True, crop_train=False):
"""Adapted from:
https://github.com/google-research/google-research/blob/master/d3pm/text/datasets.py#L344
Args:
cache_dir: str, path to cache directory.
max_seq_length: int, maximum length of sequences.
(default: 256, as in D3PM codebase.)
drop_last: bool, whether to drop the last incomplete
batch. (default: True, as in D3PM codebase.)
crop_train: bool, whether to subsample contiguous
subsequences from training example. serves to
make sure transformer models with absolute position
embeddings do not have incorrect position-wise
marginals. (default: False, but necessary to match D3PM AR)
Returns:
dataset: dataset.DatasetDict, with keys 'train',
'valid', 'test'.
"""
url = 'http://mattmahoney.net/dc/text8.zip'
if not crop_train:
cache_dir = f'{cache_dir}/text8'
else:
cache_dir = f'{cache_dir}/text8-crop-train'
split_names = ['train', 'validation', 'test']
if not all([
utils.fsspec_exists(os.path.join(cache_dir, split))
for split in split_names
]):
# Check if raw data exists
raw_cache_dir = os.path.join(cache_dir, 'raw_data')
if not all([
utils.fsspec_exists(
os.path.join(raw_cache_dir, f'text8.{split}.txt'))
for split in split_names
]):
if not utils.fsspec_exists(
os.path.join(raw_cache_dir, 'text8.zip')):
utils.fsspec_mkdirs(raw_cache_dir, exist_ok=True)
print('Downloading text8 from URL {}.'.format(url))
with (urllib.request.urlopen(url) as in_stream,
open(os.path.join(raw_cache_dir, 'text8.zip'),
'wb') as out_file):
shutil.copyfileobj(in_stream, out_file)
with fsspec.open(
os.path.join(raw_cache_dir, 'text8.zip'),
'rb') as f:
rawdata = zipfile.ZipFile(f).read(
'text8').decode('utf-8')
# Splits taken from D3PM codebase
splits = {
'train': rawdata[:90000000],
'validation': rawdata[90000000: 95000000],
'test': rawdata[95000000:],
}
for split, data in splits.items():
_path = os.path.join(raw_cache_dir,
f'text8.{split}.txt')
with fsspec.open(_path, 'w') as f:
f.write(data)
else:
splits = {}
for split in split_names:
_path = os.path.join(raw_cache_dir,
f'text8.{split}.txt')
with fsspec.open(_path, 'r') as f:
splits[split] = f.read()
# Chunk and save as datasets.DatasetDict
def chunks(lst, n):
"""Yield successive n-sized chunks from lst."""
for i in range(0, len(lst), n):
yield lst[i:i + n]
dataset_dict = {}
for k, v in splits.items():
if k == 'train' and crop_train == True:
chunk_size = 2 * max_seq_length
else:
chunk_size = max_seq_length
text = list(chunks(v, chunk_size))
if drop_last and len(text[-1]) < chunk_size:
text = text[:-1]
dataset_dict[k] = datasets.Dataset.from_dict({'text': text})
dataset = datasets.DatasetDict(dataset_dict)
dataset.save_to_disk(cache_dir)
else:
dataset = datasets.load_from_disk(cache_dir)
return dataset
def _group_texts(examples, block_size, bos, eos):
# Concatenate all texts.
concatenated_examples = list(itertools.chain(* examples['input_ids']))
total_length = len(concatenated_examples)
# TODO(yair): look into not dropping the remainder but rather padding it.
# We drop the small remainder, and if the total_length < block_size - 2
# we exclude this batch and return an empty dict.
# We could add padding if the model supported it instead of
# this drop, you can customize this part to your needs.
new_block_size = block_size - 2 # [BOS] and [EOS] to be added
total_length = (total_length // new_block_size) * new_block_size
# Split by chunks of max_len.
result = {}
_values = []
_attn_masks = []
for i in range(0, total_length, new_block_size):
_values.append(
[bos]
+ concatenated_examples[i : i + new_block_size]
+ [eos])
_attn_masks.append(torch.ones(block_size))
result['input_ids'] = _values
result['attention_mask'] = _attn_masks
return result
def get_text_dataset(dataset_name, tokenizer, wrap, mode, cache_dir, block_size=1024, num_proc=len(os.sched_getaffinity(0)), streaming=False, **kwargs):
if wrap:
filename = f'{dataset_name}_{mode}_bs{block_size}_{tokenizer.__class__.__name__}_wrapped.dat'
else:
filename = f'{dataset_name}_{mode}_bs{block_size}_{tokenizer.__class__.__name__}_unwrapped.dat'
_path = os.path.join(cache_dir, filename)
if utils.fsspec_exists(_path):
print(f'Loading data from: {_path}')
_dataset = datasets.load_from_disk(_path).with_format('torch')
rprint(f"Sample 0: {_dataset[0]}")
rprint(f"Sample -1: {_dataset[-1]}")
return _dataset
print(f'Generating new data at: {_path}')
crop_train = dataset_name == 'text8-crop'
if mode == 'train' and crop_train:
# double block size for sub-sampling
block_size *= 2
if dataset_name == 'wikitext103':
dataset = datasets.load_dataset(
'wikitext',
name='wikitext-103-raw-v1',
cache_dir=cache_dir)
elif dataset_name == 'wikitext2':
dataset = datasets.load_dataset(
'wikitext',
name='wikitext-2-raw-v1',
cache_dir=cache_dir)
elif dataset_name == 'ptb':
dataset = datasets.load_dataset(
'ptb_text_only', cache_dir=cache_dir)
elif dataset_name == 'lambada':
dataset = get_lambada_test_dataset()
elif dataset_name == 'text8':
assert wrap
dataset = get_text8_dataset(
cache_dir, max_seq_length=block_size)
elif dataset_name == 'text8-crop':
dataset = get_text8_dataset(
cache_dir, max_seq_length=block_size, crop_train=True)
elif dataset_name == 'openwebtext-train':
dataset = datasets.load_dataset(
'openwebtext',
split='train' if streaming else 'train[:-100000]',
cache_dir=cache_dir,
streaming=streaming, trust_remote_code=True)
elif dataset_name == 'openwebtext-valid':
dataset = datasets.load_dataset(
'openwebtext',
split='train' if streaming else 'train[-100000:]',
cache_dir=cache_dir,
streaming=streaming)
elif dataset_name == 'scientific_papers_arxiv':
dataset = datasets.load_dataset(
'scientific_papers', 'arxiv',
trust_remote_code=True,
cache_dir=cache_dir,
streaming=streaming)
elif dataset_name == 'scientific_papers_pubmed':
dataset = datasets.load_dataset(
'scientific_papers', 'pubmed',
trust_remote_code=True,
cache_dir=cache_dir,
streaming=streaming)
elif dataset_name == 'ag_news':
dataset = datasets.load_dataset(
'ag_news',
cache_dir=cache_dir,
streaming=streaming)
else:
dataset = datasets.load_dataset(
dataset_name,
cache_dir=cache_dir,
streaming=streaming,
trust_remote_code=True)
if dataset_name in ['lambada', 'openwebtext-train',
'openwebtext-valid']:
data = dataset
else:
data = dataset[mode]
if dataset_name.startswith('wikitext'):
detokenizer = wt_detokenizer
elif dataset_name == 'ptb':
detokenizer = ptb_detokenizer
elif dataset_name == 'lm1b':
detokenizer = lm1b_detokenizer
elif dataset_name == 'lambada':
detokenizer = lambada_detokenizer
elif dataset_name.startswith('scientific_papers'):
detokenizer = scientific_papers_detokenizer
else:
detokenizer = None
def _apply_detokenizer(detokenizer):
def detok(text):
for i, t in enumerate(text, 0):
text[i] = detokenizer(t)
return text
return detok
EOS = tokenizer.encode(tokenizer.eos_token)[0]
BOS = tokenizer.encode(tokenizer.bos_token)[0]
def preprocess_and_tokenize(example):
if dataset_name == 'ptb':
text = example['sentence']
elif 'scientific_papers' in dataset_name:
text = example['article']
else:
text = example['text']
if detokenizer is not None:
text = _apply_detokenizer(detokenizer)(text)
tokenizer.padding_side = 'right'
tokenizer.truncation_side = 'right'
if wrap:
tokens = tokenizer(text,
add_special_tokens=False,
return_attention_mask=False,
return_token_type_ids=False)
tokens = {'input_ids':
[t + [EOS] for t in tokens['input_ids']]}
# Still missing BOS, but will be added in group_texts
else:
tokens = tokenizer(text,
max_length=block_size,
padding='max_length',
truncation=True,
add_special_tokens=True,
return_attention_mask=True,
return_token_type_ids=True)
return tokens
if streaming:
tokenized_dataset = data.map(
preprocess_and_tokenize,
batched=True
)
else:
rprint(f"Tokenizing with num_proc: {num_proc}")
tokenized_dataset = data.map(
preprocess_and_tokenize,
batched=True,
num_proc=num_proc,
load_from_cache_file=True,
desc='Tokenizing')
if dataset_name == 'ptb':
tokenized_dataset = tokenized_dataset.remove_columns(
'sentence')
elif 'scientific_papers' in dataset_name:
tokenized_dataset = tokenized_dataset.remove_columns([
'article', 'abstract', 'section_names'])
elif dataset_name == 'ag_news':
tokenized_dataset = tokenized_dataset.remove_columns(
['text', 'label'])
else:
tokenized_dataset = tokenized_dataset.remove_columns(
'text')
if not wrap:
if streaming is False:
tokenized_dataset.save_to_disk(_path)
return tokenized_dataset.with_format('torch')
group_texts = functools.partial(
_group_texts, block_size=block_size, bos=BOS, eos=EOS)
if streaming:
chunked_dataset = tokenized_dataset.map(
group_texts,
batched=True)
else:
chunked_dataset = tokenized_dataset.map(
group_texts,
batched=True,
num_proc=num_proc,
load_from_cache_file=True,
desc='Grouping')
chunked_dataset.save_to_disk(_path)
chunked_dataset = chunked_dataset.with_format('torch')
return chunked_dataset