|
from typing import Tuple |
|
import torch |
|
from einops import rearrange, repeat |
|
|
|
def flash_torch_rotate_half(x, interleaved=False): |
|
if not interleaved: |
|
x1, x2 = x.chunk(2, dim=-1) |
|
return torch.cat((-x2, x1), dim=-1) |
|
else: |
|
x1, x2 = x[..., ::2], x[..., 1::2] |
|
return rearrange(torch.stack((-x2, x1), dim=-1), "... d two -> ... (d two)", two=2) |
|
|
|
|
|
def flash_torch_apply_rotary_emb_torch(x, cos, sin, interleaved=False): |
|
""" |
|
x: (batch_size, seqlen, nheads, headdim) |
|
cos, sin: (seqlen, rotary_dim / 2) or (batch_size, seqlen, rotary_dim / 2) |
|
""" |
|
if x.shape[-3] < cos.shape[-2]: |
|
|
|
cos = cos[..., :x.shape[1], :] |
|
sin = sin[..., :x.shape[1], :] |
|
|
|
ro_dim = cos.shape[-1] * 2 |
|
assert ro_dim <= x.shape[-1] |
|
cos = repeat(cos, "... d -> ... 1 (2 d)" if not interleaved else "... d -> ... 1 (d 2)") |
|
sin = repeat(sin, "... d -> ... 1 (2 d)" if not interleaved else "... d -> ... 1 (d 2)") |
|
return torch.cat( |
|
[x[..., :ro_dim] * cos + flash_torch_rotate_half(x[..., :ro_dim], interleaved) * sin, x[..., ro_dim:]], |
|
dim=-1, |
|
) |
|
|
|
def apply_rotary_emb(x: torch.Tensor, freqs_cis: torch.Tensor) -> torch.Tensor: |
|
"""Applies the rotary embedding to the query and key tensors.""" |
|
x_ = torch.view_as_complex( |
|
torch.stack(torch.chunk(x.transpose(1, 2).float(), 2, dim=-1), |
|
dim=-1)) |
|
x_out = torch.view_as_real(x_ * freqs_cis).type_as(x) |
|
x_out = torch.cat(torch.chunk(x_out, 2, dim=-1), dim=-2) |
|
x_out = x_out.reshape(x_out.shape[0], x_out.shape[1], x_out.shape[2], |
|
-1).transpose(1, 2) |
|
return x_out |
|
|
|
def rotate_half_(x): |
|
x1, x2 = x.chunk(2, dim=-1) |
|
return torch.cat((-x2, x1), dim=-1) |
|
|
|
def apply_rotary_pos_emb_(x, cos, sin): |
|
|
|
|
|
|
|
cos = cos[:, :, : x.shape[-2], :] |
|
sin = sin[:, :, : x.shape[-2], :] |
|
|
|
return (x * cos) + (rotate_half_(x) * sin) |
|
|
|
class StandaloneRotaryEmbedding(torch.nn.Module): |
|
""" |
|
The rotary position embeddings from RoFormer_ (Su et. al). |
|
A crucial insight from the method is that the query and keys are |
|
transformed by rotation matrices which depend on the relative positions. |
|
|
|
Other implementations are available in the Rotary Transformer repo_ and in |
|
GPT-NeoX_, GPT-NeoX was an inspiration |
|
|
|
.. _RoFormer: https://arxiv.org/abs/2104.09864 |
|
.. _repo: https://github.com/ZhuiyiTechnology/roformer |
|
.. _GPT-NeoX: https://github.com/EleutherAI/gpt-neox |
|
|
|
|
|
.. warning: Please note that this embedding is not registered on purpose, as it is transformative |
|
(it does not create the embedding dimension) and will likely be picked up (imported) on a ad-hoc basis |
|
""" |
|
|
|
def __init__(self, dim_model: int, *_, **__): |
|
super().__init__() |
|
|
|
inv_freq = 1.0 / (10000 ** (torch.arange(0, dim_model, 2).float() / dim_model)) |
|
self.register_buffer("inv_freq", inv_freq) |
|
|
|
self._seq_len_cached = None |
|
self._cos_cached = None |
|
self._sin_cached = None |
|
|
|
def _update_cos_sin_tables(self, x, seq_dimension=1): |
|
seq_len = x.shape[seq_dimension] |
|
|
|
|
|
|
|
if ( |
|
seq_len != self._seq_len_cached |
|
or self._cos_cached.device != x.device |
|
or self._cos_cached.dtype != x.dtype |
|
): |
|
self._seq_len_cached = seq_len |
|
t = torch.arange( |
|
x.shape[seq_dimension], device=x.device, dtype=torch.float32 |
|
) |
|
freqs = torch.einsum("i,j->ij", t, self.inv_freq.to(x.dtype)) |
|
emb = torch.cat((freqs, freqs), dim=-1).to(x.device) |
|
|
|
self._cos_cached = emb.cos()[None, None, :, :].to(x.dtype) |
|
self._sin_cached = emb.sin()[None, None, :, :].to(x.dtype) |
|
|
|
return self._cos_cached, self._sin_cached |
|
|
|
def forward( |
|
self, q: torch.Tensor, k: torch.Tensor |
|
) -> Tuple[torch.Tensor, torch.Tensor]: |
|
self._cos_cached, self._sin_cached = self._update_cos_sin_tables( |
|
k, seq_dimension=-2 |
|
) |
|
|
|
return ( |
|
apply_rotary_pos_emb_(q, self._cos_cached, self._sin_cached), |
|
apply_rotary_pos_emb_(k, self._cos_cached, self._sin_cached), |
|
) |
|
|