# Installation Guide First, if you did not clone with submodules (`--recurse-submodules`), run: ```bash git submodule update --init --recursive ``` ## UV (Recommended) First, install [uv](https://docs.astral.sh/uv/getting-started/installation/): ```bash curl -LsSf https://astral.sh/uv/install.sh | sh ``` **Note:** You may need to set `CUDA_HOME` and have it pointing to a valid CUDA 12.x installation. To use a different CUDA version, please change the sources in `pyproject.toml` (and the `torch`/`torchvision` versions). See [this guide](https://docs.astral.sh/uv/guides/integration/pytorch/) for more details. Next, run: ```bash uv sync --no-group dev uv sync # To install all dependencies: uv sync --all-groups ``` If it succeeded, that's it! Prefix any commands with `uv run` to use the environment. E.g., `accelerate launch main.py` -> `uv run accelerate launch main.py` or `python main.py` -> `uv run python main.py` Alternatively, you can activate the environment manually and run as follows: ```bash uv sync source .venv/bin/activate python main.py ``` ## Pip / Anaconda / Micromamba ### Step 1: Optional: Install Micromamba curl -Ls https://micro.mamba.pm/api/micromamba/linux-64/latest | tar -xvj bin/micromamba export MAMBA_ROOT_PREFIX="~/micromamba" eval "$(~/bin/micromamba shell hook -s posix)" alias conda='micromamba' ### Step 2: Create conda environment `conda create -n unidisc python=3.10` `conda config --add channels conda-forge` If using micromamba: `micromamba config append channels conda-forge` If using conda: `conda config --set channel_priority flexible` ### Step 3: Setup CUDA To use existing an existing cuda installation: `export CUDA_HOME=...` To install CUDA w/conda or micromamba: ``` conda install cuda cuda-nvcc -c nvidia/label/cuda-12.4.1 export LD_LIBRARY_PATH="$CONDA_PREFIX/lib:$LD_LIBRARY_PATH" export CUDA_HOME=$CONDA_PREFIX` ``` ### Step 4: Install PyTorch If using conda/micromamba CUDA: `conda install pytorch==2.4.1 pytorch-cuda=12.4 -c pytorch -c nvidia/label/cuda-12.4.1 -c nvidia` Otherwise, install from PyPI: `pip install torch==2.5.0 torchvision==0.20.0 --index-url https://download.pytorch.org/whl/test/cu124` ### [Optional] Install Flash Attention ``` pip install --upgrade packaging ninja pip wheel setuptools pip install flash-attn --no-build-isolation ``` #### [Optional] Flash Attn 3 ``` git clone https://github.com/Dao-AILab/flash-attention cd hopper; python setup.py install ``` To test: `pip install pytest; export PYTHONPATH=$PWD; pytest -q -s test_flash_attn.py` ### Step 5: Install Other Dependencies ``` pip install -r docs/reqs/requirements.txt pip install -r docs/reqs/requirements_eval.txt pip install --force-reinstall --no-deps -r docs/reqs/forked_requirements.txt pip install tensordict-nightly 'git+https://github.com/huggingface/accelerate' --force-reinstall --no-deps pip install 'git+https://github.com/huggingface/datasets' 'git+https://github.com/huggingface/transformers' pip install 'git+ssh://git@github.com/alexanderswerdlow/hydra.git@working_ci#egg=hydra-core' pip install 'git+ssh://git@github.com/alexanderswerdlow/hydra.git@working_ci#egg=hydra-submitit-launcher&subdirectory=plugins/hydra_submitit_launcher' pip install 'numpy>2.0.0' ``` ### Misc / Troubleshooting - This may be required if you don't install CUDA through conda: `conda install gcc_linux-64==12.4.0 gxx_linux-64===12.4.0` - Other non-forked deps [only if they show as not installed]: `pip install hydra-core webdataset` - Dependencies you may need for non-core code: ```bash pip install flask werkzeug sentence_transformers ngrok opencv-python lpips simple_slurm typer ftfy bitsandbytes sentencepiece flask requests peft transformers deepspeed langchain langchain_groq langchain_core langchain_community langchain-openai git+https://github.com/microsoft/mup.git pip install fairseq --no-deps ```