import ast from copy import deepcopy import json import math import os import pickle import random import shutil import string import time from datetime import datetime from pathlib import Path from typing import Optional import pandas as pd from constants import UNIDISC_DIR from data_defs import InterleavedBatch import einops import numpy as np from unidisc.utils.simple_llm import get_llm from unidisc.utils.viz_utils import augment_image_with_random_object_coco, create_text_image import torch import torch.utils.checkpoint from accelerate.utils import gather, gather_object from image_utils import Im from jaxtyping import Bool, Float, Integer from PIL import Image from tensordict import TensorDict, tensorclass from torch import Tensor from tqdm import tqdm from collections import defaultdict import torch.nn.functional as F import utils import wandb from decoupled_utils import (barrier, dprint, get_num_gpus, get_rank, get_world_size, gprint, is_main_process, print_memory_summary, rprint, save_memory_profile, show_memory_usage, try_except, sanitize_filename) from unidisc.tokenizers.chameleon_tokenizers import (decode_ids_batched, get_chameleon_images) from unidisc.tokenizers.image_tokenizers import decode_latents, get_image_batch from unidisc.utils.throughput_monitor import get_available_flops from model_utils import (_sample_categorical, empty_device_cache, get_chameleon_txt_indices, get_interleaved_block_mask, log, remap_image_torch, replace_nan_dict, wrapped_batch_decode) from torch import nn from model_utils import get_block_mask, MauveScore, Entropy def get_anole_data(self, model, processor, prompt, image, dtype, device): inputs = processor(text=prompt, images=[image], padding=True, return_tensors="pt").to(device=device, dtype=dtype) image_tokens = model.model.get_image_tokens(inputs["pixel_values"]) special_image_mask = inputs["input_ids"] == model.model.vocabulary_mapping.image_token_id image_tokens = image_tokens.to(inputs["input_ids"].device, inputs["input_ids"].dtype) inputs["input_ids"] = inputs["input_ids"].masked_scatter(special_image_mask, image_tokens) inputs.pop("pixel_values") return inputs def calculate_chameleon_perplexity(self, model, processor, prompts, images, dtype=torch.bfloat16, return_all=False, standalone=False): """ Calculate perplexities for multiple prompts and images using the Chameleon model. Args: model (ChameleonForConditionalGeneration): The Chameleon model. processor (ChameleonProcessor): The Chameleon processor. prompts (List[str]): List of prompt strings. images (List[Image.Image]): List of PIL Image objects. device (str): The device to use for computation (default: "cuda:0"). dtype (torch.dtype): The data type to use (default: torch.bfloat16). Returns: List[float]: List of perplexities for each prompt-image pair. """ device = self.device if model is None or processor is None: model = getattr(self, "chameleon_model", None) processor = getattr(self, "chameleon_processor", None) if model is None: from image_utils import Im from transformers import (ChameleonForConditionalGeneration, ChameleonProcessor) self.chameleon_model = ChameleonForConditionalGeneration.from_pretrained("leloy/Anole-7b-v0.1-hf", torch_dtype=torch.bfloat16).to("cuda") self.chameleon_processor = ChameleonProcessor.from_pretrained("leloy/Anole-7b-v0.1-hf") model = self.chameleon_model processor = self.chameleon_processor assert len(prompts) == len(images), "Number of prompts and images must match" perplexities = [] for prompt, image in zip(prompts, images): if not standalone: txt_first_prompt = f"{prompt} " img_first_prompt = f" {prompt}" else: txt_first_prompt = prompt img_first_prompt = "" tot_ppl = 0.0 tot_loss = 0.0 img_loss = 0.0 txt_loss = 0.0 for i, _prompt in enumerate([txt_first_prompt, img_first_prompt]): inputs = self.get_anole_data(model, processor, _prompt, image, dtype, device) img_start_tok_id = self.chameleon_processor.tokenizer(self.chameleon_processor.image_start_token)['input_ids'][1] img_end_tok_id = self.chameleon_processor.tokenizer(self.chameleon_processor.image_end_token)['input_ids'][1] if i == 0: # text first mod_mask = torch.cumsum(inputs['input_ids'] == img_start_tok_id, dim=1).bool() else: # img first mod_mask = torch.cumsum(inputs['input_ids'] == img_end_tok_id, dim=1).bool() mod_mask = mod_mask.cumsum(dim=1) > 1 output = model( input_ids=inputs['input_ids'].to(device), attention_mask=inputs['attention_mask'].to(device), labels=inputs['input_ids'].to(device) ) loss = output.loss perplexity = torch.exp(loss).item() tot_ppl += perplexity logits = output.logits logits = logits.transpose(-1, -2) sample_chunk = inputs["input_ids"] nlls = F.cross_entropy(logits[..., :-1].to(self.device), sample_chunk[..., 1:].to(self.device), reduction="none") mod_mask = mod_mask[:, 1:] # img nll is where mod_mask == 1 zeros = torch.zeros_like(nlls) img_nll = torch.where(mod_mask, nlls, zeros).mean().item() txt_nll = torch.where(~mod_mask, nlls, zeros).mean().item() tot_loss += loss.item() if not standalone: txt_loss += txt_nll img_loss += img_nll else: if i == 0: txt_loss += loss.item() else: img_loss += loss.item() if not standalone: tot_ppl /= 2 tot_loss /= 2 img_loss /= 2 txt_loss /= 2 if return_all: perplexities.append((tot_ppl, tot_loss, img_loss, txt_loss)) else: perplexities.append(tot_ppl) print(f"Total PPL: {tot_ppl} | Total Loss: {tot_loss} | Img Loss: {img_loss} | Txt Loss: {txt_loss}") return perplexities def get_every_n_evals(self, n): return ( self.config.mode == "eval" or ((self.num_evals > 0 or getattr(self.config.eval, "log_on_start", False)) and n > 0 and self.num_evals % n == 0) ) and n != -1 @try_except(write_error_to_file=True) def on_validation_epoch_start(self): rprint("on_validation_epoch_start") # EMA (Exponential Moving Average) is a technique used to maintain a moving average of model parameters # It can help stabilize training and potentially improve model performance if self.ema is not None and not self.config.trainer.use_custom_ema: # Store the current model parameters in the EMA object rprint(" [WARNING] USING EMA IN on_validation_epoch_start - THIS MIGHT RESET LOADED WEIGHTS ".center(100, "!")) self.ema.store(self.get_params()) # Copy the EMA parameters to the current model self.ema.copy_to(self.get_params()) self.backbone.eval() self.reset_validation_metrics() if getattr(self.config.trainer, "disable_torchmetrics", False) is False: assert self.valid_metrics.nll.mean_value == 0 assert self.valid_metrics.nll.weight == 0 if self.non_embedding_params < 1e9: self.print_hashes() if ( self.image_model and getattr(self.config.model, "image_model_fid_eval", False) and self.get_every_n_evals(getattr(self.config.eval, "log_every_n_fid", 10)) ): self.fid_eval = True if self.config.eval.fid_mode == "inline": from vqgan.inception_metrics import MultiInceptionMetrics self.inception_metrics = MultiInceptionMetrics( reset_real_features=False, compute_unconditional_metrics=True, compute_conditional_metrics=False, compute_conditional_metrics_per_class=False, num_classes=1000, num_inception_chunks=10, manifold_k=3, ) if self.config.mode == "eval": self.computed_tokens = [] else: if getattr(self.config.eval, "force_fid_output_dir", None) is None: shm_path = Path("/dev/shm") / os.getenv("USER") fid_save_path = shm_path / Path(self.config.output_dir).parent.stem / Path(self.config.output_dir).stem / f"{self.num_evals}_{self.global_step}" / "fid_gen" else: fid_save_path = Path(getattr(self.config.eval, "force_fid_output_dir", None)) / "fid_gen" fid_save_path.mkdir(parents=True, exist_ok=True) fid_gt_path = fid_save_path.parent / (fid_save_path.name.replace("gen", "gt")) fid_gt_path.mkdir(parents=True, exist_ok=True) self.fid_gen_dir = fid_save_path self.fid_gt_dir = fid_gt_path rprint(f"FID eval output dir: {self.fid_gen_dir}, FID GT dir: {self.fid_gt_dir}") rprint(f"Setting FID eval for epoch {self.num_evals}") else: self.fid_eval = False if self.image_model and getattr(self.config.model, "image_model_fid_eval", False): rprint(f"Not setting FID eval: num_evals: {self.num_evals} % {getattr(self.config.eval, 'log_every_n_fid', 10)}") if self.config.eval.compute_img_to_txt_mauve_clip: shm_path = Path("/dev/shm") / os.getenv("USER") img_to_txt_mauve_save_path = shm_path / Path(self.config.output_dir).parent.stem / Path(self.config.output_dir).stem / f"{self.num_evals}_{self.global_step}" / "img_to_txt_mauve_gen" img_to_txt_mauve_save_path.mkdir(parents=True, exist_ok=True) img_to_txt_mauve_gt_path = img_to_txt_mauve_save_path.parent / (img_to_txt_mauve_save_path.name.replace("gen", "gt")) img_to_txt_mauve_gt_path.mkdir(parents=True, exist_ok=True) self.img_to_txt_mauve_gen_dir = img_to_txt_mauve_save_path self.img_to_txt_mauve_gt_dir = img_to_txt_mauve_gt_path rprint(f"Img to txt mauve eval gen dir: {self.img_to_txt_mauve_gen_dir}, gt dir: {self.img_to_txt_mauve_gt_dir}") self.saved_tokens = defaultdict(list) self.validation_start_time = time.time() if getattr(self.config.trainer, "attach_oom_observer_eval", False): from torchtnt.utils.oom import attach_oom_observer attach_oom_observer(output_dir=str(self.config.output_dir), trace_max_entries=1000000) rprint(f"Attached OOM observer to {self.config.output_dir}") self.gpu_memory_reserved = torch.cuda.memory_reserved() def sample(self, return_input_ids=False, **kwargs): continuous_mode = self.config.trainer.image_mode == "continuous" text_only = kwargs.get("text_only", False) kwargs.pop("text_only", None) assert not continuous_mode txt_tokens, img_tokens = self._sample(text_only=text_only, **kwargs) if img_tokens is not None: img_pred = decode_latents(self.config, self.get_vae(), img_tokens) else: img_pred = None if txt_tokens is not None: txt_pred = wrapped_batch_decode(self.tokenizer, txt_tokens, clean_up_tokenization_spaces=True, skip_special_tokens=True) else: txt_pred = None if return_input_ids: return txt_pred, img_pred, txt_tokens, img_tokens else: return txt_pred, img_pred @torch.no_grad() def predict_step(self, batch, batch_idx, dataloader_idx=0): batch = self.update_batch(batch) assert (batch["input_ids"][~batch["x0_unmask"]] == self.mask_index).all() txt_pred, img_pred, txt_tokens, img_tokens = self.sample(x0=batch["input_ids"], x0_unmask=batch["x0_unmask"], return_input_ids=True) batch.update(dict(txt_pred=txt_pred, img_pred=img_pred, txt_tokens=txt_tokens, img_tokens=(img_tokens + self.text_vocab_size))) return batch @torch.no_grad() def zero_shot_eval_step(self, batch, batch_idx): batch = self.zero_shot_update_batch(batch) dataset_name = self.config.data.train def get_similarity(x0, batch, num_timesteps=None, txt_cond=True, return_unweighed=False, do_unconditional=False): # NOTE - this function assume [txt, img] order with self.config.model.txt_length + self.config.model.img_length # given a batch of img+text, get the similarity score return_unweighed = return_unweighed or getattr(self.config.eval, "return_unweighed_sim", False) class_log_probs = [] unweighed_class_log_probs = [] num_timesteps = num_timesteps or self.config.sampling.steps effective_batch_size = batch['modality'].shape[0] empty_device_cache() times = torch.linspace(0, 1, steps=num_timesteps + 2)[1:-1].to(self.device).to(torch.float32) if getattr(self.config.eval, "use_random_timesteps_same_batch", False): times = torch.rand(num_timesteps, device=x0.device) times = torch.sort(times)[0] if getattr(self.config.eval, "use_random_timesteps_diff_batch", False): # get a (B, num_timesteps) random timesteps times = torch.rand(effective_batch_size, num_timesteps, device=x0.device) times = torch.sort(times)[0] print(f'Times: {times}') do_unconditional = do_unconditional or getattr(self.config.eval, "do_unconditional", False) # unweighed/weighed, randomized but different over batch, randomized but same over batch, cond_mask = torch.full_like(x0, False, device=x0.device).bool() if txt_cond: cond_mask[:, :self.config.model.txt_length] = True else: # img conditioned cond_mask[:, self.config.model.txt_length:] = True full_mask = torch.full_like(x0, self.mask_index, device=x0.device) pad_mask = x0 == self.tokenizer.pad_token_id rprint(f'Getting similarity with {times.shape[0]} timesteps, {effective_batch_size} samples, {do_unconditional} unconditional, {self.parameterization} parameterization, {self.config.eval.cfg} cfg, {num_timesteps} num_timesteps, {txt_cond} txt_cond') # for t in times: # # t = self._sample_t(1, x0.device).expand(effective_batch_size) # breakpoint() # if getattr(self.config.eval, "`use_random_timesteps_diff_batch`", False): # t = t.expand(effective_batch_size) # else: # t = t.expand(1) for i in range(num_timesteps): empty_device_cache() if getattr(self.config.eval, "use_random_timesteps_diff_batch", False): t = times[:, i] else: t = times[i] t = t.expand(effective_batch_size) sigma, dsigma = self.noise(t) # print(sigma, t) unet_conditioning = None # sigma[:, None] -> This causes CUDA OOM move_chance = 1 - torch.exp(-sigma[:, None]) xt, ignore_batch_mask_for_metrics, joint_ar_nar_mask, _, __ = self.q_xt(x0, move_chance, return_ignore_batch_mask_for_metrics=True, batch=batch) if not do_unconditional: cond = torch.where(cond_mask, x0, xt) if self.config.eval.cfg is not None: uncond = torch.where(cond_mask, full_mask, xt) cond_output = self.forward( cond, unet_conditioning, return_additional_loss=True, batch=batch, x_img_emb=None, joint_ar_nar_mask=joint_ar_nar_mask, modality=batch['modality'], return_logits=True ) uncond_output = self.forward( uncond, unet_conditioning, return_additional_loss=True, batch=batch, x_img_emb=None, joint_ar_nar_mask=joint_ar_nar_mask, modality=batch['modality'], return_logits=True ) cat_output = torch.stack([cond_output, uncond_output]) logits = cfg(self.config, t, cat_output).squeeze(0) model_output = self._subs_parameterization(logits, xt=xt, batch=batch, modality=batch['modality']) else: # return logits false so already done with subs parameterization model_output = self.forward( cond, unet_conditioning, return_additional_loss=True, batch=batch, x_img_emb=None, joint_ar_nar_mask=joint_ar_nar_mask, modality=batch['modality'] ) else: if self.config.eval.cfg is not None: uncond = torch.where(cond_mask, full_mask, xt) cond_output = self.forward( xt, unet_conditioning, return_additional_loss=True, batch=batch, x_img_emb=None, joint_ar_nar_mask=joint_ar_nar_mask, modality=batch['modality'], return_logits=True ) uncond_output = self.forward( uncond, unet_conditioning, return_additional_loss=True, batch=batch, x_img_emb=None, joint_ar_nar_mask=joint_ar_nar_mask, modality=batch['modality'], return_logits=True ) cat_output = torch.stack([cond_output, uncond_output]) logits = cfg(self.config, t, cat_output).squeeze(0) model_output = self._subs_parameterization(logits, xt=xt, batch=batch, modality=batch['modality']) else: # return logits false so already done with subs parameterization model_output = self.forward( xt, unet_conditioning, return_additional_loss=True, batch=batch, x_img_emb=None, joint_ar_nar_mask=joint_ar_nar_mask, modality=batch['modality'] ) # print(f'Time: {t[0]}') log_p_theta = torch.gather(input=model_output, dim=-1, index=x0[:, :, None]).squeeze(-1) # print(f'Log P Theta before pad remove: {-log_p_theta.mean()} | {(log_p_theta == 0).sum()}') zeros = torch.zeros_like(log_p_theta) log_p_theta = torch.where(pad_mask, zeros, log_p_theta) # zero out the loss on conditioned part if not do_unconditional: log_p_theta = torch.where(cond_mask, zeros, log_p_theta) # print(f'Log P Theta after pad remove: {-log_p_theta.mean()} | {(log_p_theta == 0).sum()}') std_weighting = (dsigma / torch.expm1(sigma))[:, None] unweighed_log_p_theta = -log_p_theta loss = -log_p_theta * std_weighting log_probs = loss.sum(dim=-1) / (~pad_mask).sum(dim=-1) unweighed_log_probs = unweighed_log_p_theta.sum(dim=-1) / (~pad_mask).sum(dim=-1) # print(f'Weighed loss: {log_probs.mean()} | Log P Theta: {-log_p_theta.mean()} | Std Weighting: {std_weighting.mean()}') class_log_probs.append(log_probs) unweighed_class_log_probs.append(unweighed_log_probs) overall_time_log_probs = torch.stack(class_log_probs) # (num_time, B) unweighed_overall_time_log_probs = torch.stack(unweighed_class_log_probs) # (num_time, B) if return_unweighed: return unweighed_overall_time_log_probs.mean(dim=0) # (B) return overall_time_log_probs.mean(dim=0) # (B) def get_similarity_ar(x0, batch, txt_cond=True, do_unconditional=False, **kwargs): # get likelihood for each token and then average img_first = kwargs.get("img_first", False) if img_first: x0 = torch.cat([x0[:, self.config.model.txt_length:], x0[:, :self.config.model.txt_length]], dim=1) mod = batch['modality'] mod = torch.cat([mod[:, self.config.model.txt_length:], mod[:, :self.config.model.txt_length]], dim=1) else: mod = batch['modality'] empty_device_cache() do_unconditional = do_unconditional or getattr(self.config.eval, "do_unconditional", False) if getattr(self.config.eval, "cfg", None): rprint('NOT SETTING CFG for AR') # if getattr(self.config.eval, "cfg", None): # cat_mod_input_ids = torch.cat([x0, torch.where(batch['modality'] == 1, self.mask_index, x0)], dim=0) # _modality = torch.cat([batch['modality'], batch['modality']], dim=0) # cat_p_x0 = self.forward( # cat_mod_input_ids, # sigma=None, # batch=dict(modality=_modality), modality=_modality # ) # logit_c, logit_u = cat_p_x0.chunk(2, dim=0) # _w = getattr(self.config.eval, "cfg", None) # model_output = (1 + _w) * logit_c - _w * logit_u # else: model_output = self.forward(x=x0, sigma=None, modality=mod) x0 = x0[:, 1:] # attention_mask = batch['attention_mask'][0][None, :].repeat(x0.shape[0], 1)[:, 1:] attention_mask = x0 != self.tokenizer.pad_token_id log_p_theta = model_output.gather(-1, x0[:, :, None])[:, :, 0] if img_first: txt_sl = slice(self.config.model.img_length-1, None) img_sl = slice(None, self.config.model.img_length-1) else: txt_sl = slice(None, self.config.model.txt_length - 1) img_sl = slice(self.config.model.txt_length - 1, None) nll = (-log_p_theta * attention_mask).sum(dim=-1) / attention_mask.sum(dim=-1) txt_nll = (-log_p_theta[:, txt_sl] * attention_mask[:, txt_sl]).sum(dim=-1) / attention_mask[:, txt_sl].sum(dim=-1) img_nll = (-log_p_theta[:, img_sl] * attention_mask[:, img_sl]).sum(dim=-1) / attention_mask[:, img_sl].sum(dim=-1) if do_unconditional: return nll return img_nll if txt_cond else txt_nll def get_similarity_chameleon(zipp, batch, txt_cond=True, do_unconditional=False, prompts=None, images=None, **kwargs): # get likelihood for each token and then average empty_device_cache() img_first = kwargs.get("img_first", False) img_start_tok_id = self.chameleon_processor.tokenizer(self.chameleon_processor.image_start_token)['input_ids'][1] img_end_tok_id = self.chameleon_processor.tokenizer(self.chameleon_processor.image_end_token)['input_ids'][1] do_unconditional = do_unconditional or getattr(self.config.eval, "do_unconditional", False) if not prompts and not images: prompt, image = zipp if img_first: _prompt = f" {prompt}" else: _prompt = f"{prompt} " inputs = self.get_anole_data(self.chameleon_model, self.chameleon_processor, _prompt, image, dtype=self.dtype, device=self.device) else: inputs = self.get_anole_data(self.chameleon_model, self.chameleon_processor, prompts, images, dtype=self.dtype, device=self.device) # mod mask which is one for image tokens from the indx we see img_start_tok_id to img_end_tok_id if img_first: mod_mask = torch.cumsum(inputs['input_ids'] == img_end_tok_id, dim=1).bool() else: mod_mask = torch.cumsum(inputs['input_ids'] == img_start_tok_id, dim=1).bool() mod_mask = mod_mask.cumsum(dim=1) > 1 output = self.chameleon_model( input_ids=inputs['input_ids'].to(self.device), attention_mask=inputs['attention_mask'].to(self.device), labels=inputs['input_ids'].to(self.device) ) loss = output.loss logits = output.logits logits = logits.transpose(-1, -2) sample_chunk = inputs["input_ids"] nlls = F.cross_entropy(logits[..., :-1].to(self.device), sample_chunk[..., 1:].to(self.device), reduction="none") mod_mask = mod_mask[:, 1:] # img nll is where mod_mask == 1 zeros = torch.zeros_like(nlls) img_nll = torch.where(mod_mask, nlls, zeros) txt_nll = torch.where(~mod_mask, nlls, zeros) if do_unconditional: return nlls.mean(dim=-1) return img_nll.mean(dim=-1) if txt_cond else txt_nll.mean(dim=-1) if dataset_name == "nlphuji/flickr30k": txt_tokens, img_tokens = self._sample( text_only=False, x0=batch["input_ids"], x0_unmask=batch["attention_mask"], modality=batch["modality"], ) img_samples = decode_latents(self.config, self.get_vae(), img_tokens[:, :self.config.model.img_length]) txt_samples = wrapped_batch_decode(self.tokenizer, txt_tokens[:, self.config.model.img_length:], clean_up_tokenization_spaces=True, skip_special_tokens=True, disable_mask_after_eos=self.config.data.disable_mask_after_eos) gt_text_samples = wrapped_batch_decode(self.tokenizer, batch['gt_input_ids'][:, :self.config.model.txt_length], skip_special_tokens=True, clean_up_tokenization_spaces=True, disable_mask_after_eos=self.config.data.disable_mask_after_eos) self.compute_cider(txt_samples, gt_text_samples) elif dataset_name == "facebook/winoground": # breakpoint() # if batch_idx <= 15: # return a0_0 = batch["input_ids_0_0"] # a a0_1 = batch["input_ids_0_1"] # d a1_0 = batch["input_ids_1_0"] # b a1_1 = batch["input_ids_1_1"] # c text_correct_count = 0 image_correct_count = 0 group_correct_count = 0 wino_chameleon = getattr(self.config.eval, "wino_chameleon", False) s0_0, s0_1, s1_0, s1_1 = None, None, None, None modes = ['image', 'text', 'group'] if wino_chameleon: txt0 = wrapped_batch_decode(tokens=batch['caption_0_input_ids'], tokenizer=self.tokenizer, clean_up_tokenization_spaces=True, skip_special_tokens=True, disable_mask_after_eos=self.config.data.disable_mask_after_eos)[0] txt1 = wrapped_batch_decode(tokens=batch['caption_1_input_ids'], tokenizer=self.tokenizer, clean_up_tokenization_spaces=True, skip_special_tokens=True, disable_mask_after_eos=self.config.data.disable_mask_after_eos)[0] img0 = Im(batch['img_0']).pil img1 = Im(batch['img_1']).pil prompts = [txt0, txt0, txt1, txt1] images = [img0, img1, img0, img1] zipp = list(zip(prompts, images)) # note - signs are reversed since we have loss, so want to minimize instead of maximize def text_correct(result): return torch.logical_and(result["s0_i0"] < result["s1_i0"], result["s1_i1"] < result["s0_i1"]) def image_correct(result): return torch.logical_and(result["s0_i0"] < result["s0_i1"], result["s1_i1"] < result["s1_i0"]) def group_correct(result): return torch.logical_and(image_correct(result), text_correct(result)) results_cond = {} for mode in modes: do_unconditional = (mode == 'group') txt_cond = not (mode == 'text') img_first = mode == 'text' if wino_chameleon: do_unconditional = True s0_0 = get_similarity_chameleon(zipp[0], batch, txt_cond=False, do_unconditional=do_unconditional, img_first=img_first) s0_1 = get_similarity_chameleon(zipp[1], batch, txt_cond=False, do_unconditional=do_unconditional, img_first=img_first) s1_0 = get_similarity_chameleon(zipp[2], batch, txt_cond=False, do_unconditional=do_unconditional, img_first=img_first) s1_1 = get_similarity_chameleon(zipp[3], batch, txt_cond=False, do_unconditional=do_unconditional, img_first=img_first) elif self.parameterization == "ar": s0_0 = get_similarity_ar(a0_0, batch, txt_cond=False, do_unconditional=do_unconditional, img_first=img_first) s0_1 = get_similarity_ar(a0_1, batch, txt_cond=False, do_unconditional=do_unconditional, img_first=img_first) s1_0 = get_similarity_ar(a1_0, batch, txt_cond=False, do_unconditional=do_unconditional, img_first=img_first) s1_1 = get_similarity_ar(a1_1, batch, txt_cond=False, do_unconditional=do_unconditional, img_first=img_first) else: s0_0 = get_similarity(a0_0, batch, txt_cond=txt_cond, do_unconditional=do_unconditional) s0_1 = get_similarity(a0_1, batch, txt_cond=txt_cond, do_unconditional=do_unconditional) s1_0 = get_similarity(a1_0, batch, txt_cond=txt_cond, do_unconditional=do_unconditional) s1_1 = get_similarity(a1_1, batch, txt_cond=txt_cond, do_unconditional=do_unconditional) result = { "s0_i0": s0_0, "s0_i1": s0_1, "s1_i0": s1_0, "s1_i1": s1_1, } if mode == 'text': results_cond['text'] = text_correct(result) text_correct_count += text_correct(result).sum().item() elif mode == 'image': results_cond['image'] = image_correct(result) image_correct_count += image_correct(result).sum().item() elif mode == 'group': if getattr(self.config.eval, "wino_group_conditional", False): rprint('[Winoground] Using conditional group accuracy') group_correct_count = (torch.logical_and(results_cond['text'], results_cond['image'])).sum().item() else: rprint('[Winoground] Using unconditional group accuracy') group_correct_count += group_correct(result).sum().item() bsz = a0_0.shape[0] txt_acc = text_correct_count / bsz img_acc = image_correct_count / bsz group_acc = group_correct_count / bsz self.win_text_accuracy.update(txt_acc) self.win_image_accuracy.update(img_acc) self.win_group_accuracy.update(group_acc) running_avg_txt = self.win_text_accuracy.compute() running_avg_img = self.win_image_accuracy.compute() running_avg_group = self.win_group_accuracy.compute() rprint(f"[{batch_idx}] Winoground Text Accuracy: {txt_acc} ({running_avg_txt}), Image Accuracy: {img_acc} ({running_avg_img}), Group Accuracy: {group_acc} ({running_avg_group})") else: # def randomize_batch - input is a batch. for the batch['input_ids'] which contains self.config.model.txt_length txt tokens + self.config.model.img_length img tokens which are PAIRED # we want to randomly swap the img/txt tokens between each other x0 = batch['input_ids'] img_first = getattr(self.config.model, "img_first", False) only_one_correct = getattr(self.config.eval, "only_one_correct", False) wino_chameleon = getattr(self.config.eval, "wino_chameleon", False) # todo check attn mask for text retrieval x0_txt = x0.clone() x0_img = x0.clone() if only_one_correct: # for each sample from 1st batch onwards, shuffle the img/txt tokens, as in map randomly x0c = x0.clone() if img_first: second_half = x0c[1:, self.config.model.img_length:] else: second_half = x0c[1:, self.config.model.txt_length:] # shuffle second half # second_half = second_half[torch.randperm(second_half.size(0))] second_half = torch.cat([second_half[1:], second_half[0].unsqueeze(0)], dim=0) # replace img tokens with txt tokens if img_first: x0c[1:, self.config.model.img_length:] = second_half else: x0c[1:, self.config.model.txt_length:] = second_half if wino_chameleon: if img_first: img_tokens = x0c[:, :self.config.model.img_length] txt_tokens = x0c[:, self.config.model.img_length:] else: txt_tokens = x0c[:, :self.config.model.txt_length] img_tokens = x0c[:, self.config.model.txt_length:] dec_txt = wrapped_batch_decode(self.tokenizer, txt_tokens, clean_up_tokenization_spaces=True, skip_special_tokens=True, disable_mask_after_eos=self.config.data.disable_mask_after_eos) dec_imgs = decode_latents(self.config, self.get_vae(), img_tokens - self.text_vocab_size) dec_imgs = [Im(img).pil for img in dec_imgs] if img_first: # append '' to beginning of each txt sample dec_txt = [' ' + txt for txt in dec_txt] else: dec_txt = [txt + ' ' for txt in dec_txt] class_sim = get_similarity_chameleon(None, batch, do_unconditional=True, img_first=img_first, prompts=dec_txt, images=dec_imgs) if torch.isinf(class_sim).any(): rprint(f'[Chameleon] Inf found in class_sim, check transformers version') breakpoint() elif self.parameterization == "ar": class_sim = get_similarity_ar(x0c, batch, do_unconditional=True) else: class_sim = get_similarity(x0c, batch, do_unconditional=True) topk = class_sim.topk(k=1, dim=0, largest=False) topk_indices = topk.indices topk_acc = (topk_indices == 0).float().mean().item() rprint(f"[{batch_idx}] Datacomp Correct Pair Retrieval Acc: {topk_acc} ({self.datacomp_img_acc.compute()})") self.datacomp_img_acc.update(topk_acc) else: if img_first: # image retrieval given text, so fix text x0_txt[:, self.config.model.img_length:] = x0[0, self.config.model.img_length:] # make all texts the first text # text retrieval given image x0_img[:, :self.config.model.img_length] = x0[0, :self.config.model.img_length] # make all images the first image else: # image retrieval given text, so fix text x0_txt[:, :self.config.model.txt_length] = x0[0, :self.config.model.txt_length] # make all texts the first text # text retrieval given image x0_img[:, self.config.model.txt_length:] = x0[0, self.config.model.txt_length:] # make all images the first image if self.parameterization == "ar": txt_class_sim = get_similarity_ar(x0_txt, batch, txt_cond=True) img_class_sim = get_similarity_ar(x0_img, batch, txt_cond=True) # TODO MAYBE REVERT? else: txt_class_sim = get_similarity(x0_txt, batch, txt_cond=True) img_class_sim = get_similarity(x0_img, batch, txt_cond=False) img_topk = img_class_sim.topk(k=1, dim=0, largest=False) txt_topk = txt_class_sim.topk(k=1, dim=0, largest=False) img_topk_indices = img_topk.indices txt_topk_indices = txt_topk.indices img_acc = (img_topk_indices == 0).float().mean().item() txt_acc = (txt_topk_indices == 0).float().mean().item() rprint(f"[{batch_idx}] Datacomp Text Retrieval Acc: {img_acc}, Datacomp Image Retrieval Accuracy: {txt_acc}") self.datacomp_img_acc.update(img_acc) self.datacomp_txt_acc.update(txt_acc) # img_class_sim is (B) - argmin since loss txt_conds @torch.no_grad() def validation_step(self, batch, batch_idx): batch = self.update_batch(batch) continuous_mode = self.config.trainer.image_mode == "continuous" if self.config.mode == "eval": logs = dict() logs["gpu_max_mem_reserved_gb"] = torch.cuda.max_memory_reserved() / (1024**3) logs["gpu_cur_mem_reserved_gb"] = torch.cuda.memory_reserved() / (1024**3) logs["gpu_max_mem_allocated_gb"] = torch.cuda.max_memory_allocated() / (1024**3) logs["gpu_cur_mem_allocated_gb"] = torch.cuda.memory_allocated() / (1024**3) log({**logs, **self.get_step_metrics()}) if self.get_every_n_evals(getattr(self.config.eval, "log_every_n_evals", 10)) \ and self.image_model \ and (batch_idx == 0 or self.config.eval.visualize_data_only) \ and not continuous_mode: self.visualize_samples(batch, batch_idx) if self.config.eval.visualize_data_only: return if batch_idx < self.config.eval.num_sample_batches and self.config.eval.compute_generative_perplexity: if continuous_mode: # todo update to use modality once multimodal batches update is done by alex gt_text_samples = wrapped_batch_decode(self.tokenizer, batch['text_tokens'][:, :self.config.model.txt_length], skip_special_tokens=True, clean_up_tokenization_spaces=True, disable_mask_after_eos=self.config.data.disable_mask_after_eos) # since input_ids is for images else: input_ids = batch["input_ids"] pad_tokens = torch.full_like(input_ids, self.tokenizer.pad_token_id) text_tokens = torch.where(batch["modality"] == 0, input_ids, pad_tokens) gt_text_samples = wrapped_batch_decode(self.tokenizer, text_tokens, skip_special_tokens=True, clean_up_tokenization_spaces=True, disable_mask_after_eos=self.config.data.disable_mask_after_eos) if getattr(self.config.trainer, "disable_text_modality", False): gt_text_samples = [' '] self.compute_generative_perplexity(gt_text_samples, gt=True) if getattr(self.config.trainer, "log_flops", False) \ and batch_idx == 0 \ and self.current_run_global_step <= 1 \ and self.config.trainer.fsdp is False: self.log_flops(batch=batch, batch_idx=batch_idx) if self.fid_eval: if self.config.eval.fid_mode == "inline": self.update_inline_fid(batch, batch_idx) elif self.config.eval.fid_mode == "clean": self.update_clean_fid(batch, batch_idx) else: raise ValueError(f"Invalid FID mode: {self.config.eval.fid_mode}") if getattr(self.config.eval, "get_top_k", False) and self.config.parameterization == "ar": self.get_top_k(batch, batch_idx) try: if self.config.eval.compute_img_to_txt_mauve_clip and not self.config.eval.unconditional_fid: self.update_img_to_txt_mauve_clip(batch, batch_idx) except Exception as e: empty_device_cache() rprint(f"Error in update_img_to_txt_mauve_clip: {e}") if (self.get_every_n_evals(getattr(self.config.eval, "log_every_n_evals", 10)) \ and continuous_mode \ and self.config.eval.generate_samples \ and not self.config.eval.test_eval_speed): # todo remove this from here and move to on_validation_epoch_end data = self.sample_transfusion(batch_size_per_gpu=batch['input_ids'].shape[0]) # TODO @sid support batching. prob pass list of lists to be general. rec_embs = [data.xt_img_embed[i, data.modality[i] == 1] for i in range(data.shape[0])] # stack and transpose rec_embs = torch.stack(rec_embs) rec_txt = data.xt_ids[data.modality == 0][None] recon_image = decode_latents(self.config, self.get_vae(), rec_embs, batched=True) # TODO @sid support batching e.g. not just first element. prob pass list of lists to be general. txt = wrapped_batch_decode(self.tokenizer, rec_txt, clean_up_tokenization_spaces=True, skip_special_tokens=True, disable_mask_after_eos=self.config.data.disable_mask_after_eos) rprint(f"Sampled {len(txt)} text samples:\n {txt[:1][:50]}") image_list = [wandb.Image(img) for img in recon_image] val_loss = self.compute_loss(batch, prefix="val") log({"val/gen_img": image_list, "val/loss": val_loss, **self.get_step_metrics()}) if ( self.get_every_n_evals(getattr(self.config.eval, "log_every_n_evals", 10)) and (self.unified_model or self.cub_model or self.vggface_model) and batch_idx < getattr(self.config.eval, "num_masking_viz_batches", 1) and not continuous_mode # todo add masking val support s ): self.sample_masking(batch=batch, batch_idx=batch_idx) return self.compute_loss(batch, prefix="val", batch_idx=batch_idx) @try_except(write_error_to_file=True) @torch.no_grad() def zero_shot_eval_epoch_end(self, example_batch=None): dataset_name = self.config.data.train dprint("zero_shot_eval_epoch_end") if dataset_name == "nlphuji/flickr30k": cider_score = self.cider_score.compute() rprint('Flickr30k CIDEr score: ', cider_score) # log it log({ 'val/cider_score': cider_score }) elif dataset_name == "facebook/winoground": win_text_accuracy = self.win_text_accuracy.compute() win_image_accuracy = self.win_image_accuracy.compute() win_group_accuracy = self.win_group_accuracy.compute() rprint(f'Winoground Text Accuracy: {win_text_accuracy}') rprint(f'Winoground Image Accuracy: {win_image_accuracy}') rprint(f'Winoground Group Accuracy: {win_group_accuracy}') # log it log({ 'val/win_text_accuracy': win_text_accuracy, 'val/win_image_accuracy': win_image_accuracy, 'val/win_group_accuracy': win_group_accuracy }) else: datacomp_img_acc = self.datacomp_img_acc.compute() datacomp_txt_acc = self.datacomp_txt_acc.compute() rprint(f'Datacomp Text Accuracy: {datacomp_img_acc}') rprint(f'Datacomp Image Accuracy: {datacomp_txt_acc}') # log it log({ 'val/datacomp_text_retr_acc': datacomp_img_acc, 'val/datacomp_img_retr_acc': datacomp_txt_acc }) @try_except(write_error_to_file=True) @torch.no_grad() def get_img_text_saturation_batch(self, example_batch): max_sampling_steps = self.config.model.length batch_size_per_gpu = example_batch["input_ids"].shape[0] do_standalone = getattr(self.config.eval, "cham_standalone", False) pplx_per_step = [] # make stpes linspace between 1 and max_sampling_steps with 100 steps # steps = np.linspace(1, max_sampling_steps, 10).astype(int) # steps = [1,2,4,8,16,32,64,128,256,512,1024] steps = [1,2,4,8,16,32,64] # todo revert rprint(f"do_standalone: {do_standalone} with steps: {steps}") dec_txt_list = [] dec_img_list = [] for step in steps: rprint(f"Step: {step}") (txt_tokens, img_tokens), nfe_cnt = self._sample(text_only=False, batch_size_per_gpu=batch_size_per_gpu, sample_modality=example_batch["modality"], return_nfe=True, num_steps=step) decoded_img = Im(decode_latents(self.config, self.get_vae(), img_tokens)).pil decoded_txt = wrapped_batch_decode(self.tokenizer, txt_tokens, clean_up_tokenization_spaces=True, skip_special_tokens=True, disable_mask_after_eos=self.config.data.disable_mask_after_eos) if not isinstance(decoded_img, list): decoded_img = [decoded_img] if not isinstance(decoded_txt, list): decoded_txt = [decoded_txt] dec_txt_list.append(decoded_txt) dec_img_list.append(decoded_img) tot_ppl, tot_loss, img_loss, txt_loss = self.calculate_chameleon_perplexity(self.chameleon_model, self.chameleon_processor, prompts=decoded_txt, images=decoded_img, return_all=True)[0] rprint(f"Step {step} - Total PPL: {tot_ppl} | Total Loss: {tot_loss} | Img Loss: {img_loss} | Txt Loss: {txt_loss}") pplx_per_step.append((step, tot_ppl, tot_loss, img_loss, txt_loss)) empty_device_cache() return dec_txt_list, dec_img_list, pplx_per_step @torch.no_grad() @try_except(write_error_to_file=True) @torch.no_grad() def on_validation_epoch_end(self, example_batch=None): dprint("on_validation_epoch_end") if self.config.eval.compute_val_metrics_standalone: self.compute_val_metrics_standalone() all_val_metrics = self.get_step_metrics() all_val_metrics.update(self.valid_metrics.compute()) if hasattr(self, "valid_txt_metrics"): valid_txt_metrics = self.valid_txt_metrics.compute() valid_img_metrics = self.valid_img_metrics.compute() all_val_metrics.update({ **{f"val/txt_{k.split('/')[-1]}": v for k, v in replace_nan_dict(valid_txt_metrics).items()}, **{f"val/img_{k.split('/')[-1]}": v for k, v in replace_nan_dict(valid_img_metrics).items()}, }) log(all_val_metrics) gprint("example_batch['input_ids'].ndim: ", example_batch['input_ids'].ndim) if example_batch['input_ids'].ndim == 3: combined_batches = example_batch example_batch = self.update_batch(example_batch[0]) else: example_batch = self.update_batch(example_batch) if self.config.eval.auto_enhance: self.auto_enhance(combined_batches) continuous_mode = self.config.trainer.image_mode == "continuous" compute_chameleon_perplexity = getattr(self.config.eval, "compute_chameleon_perplexity", False) all_images = [] with try_except(write_error_to_file=True, clear_cuda_cache=True): if self.fid_eval: if self.config.eval.fid_mode == "inline": self.compute_inline_fid_eval() elif self.config.eval.fid_mode == "clean": self.compute_clean_fid_eval() else: raise ValueError(f"Invalid FID mode: {self.config.eval.fid_mode}") if self.config.eval.calculate_clip_score: prefix = "unconditional" if self.config.eval.unconditional_fid else "fid" self.compute_clip_score(self.fid_gen_dir, f"{prefix}_gen") self.compute_clip_score(self.fid_gt_dir, f"{prefix}_gt") if self.config.trainer.ar_inpainting: import shutil target_dir = Path(self.fid_gt_dir).parent / "fid_inpainting" target_dir.mkdir(parents=True, exist_ok=True) for img_file in Path(self.fid_gt_dir).rglob("*.png"): shutil.copy2(img_file, target_dir / img_file.name) for json_file in Path(self.fid_gen_dir).rglob("*.json"): shutil.copy2(json_file, target_dir / json_file.name) self.compute_clip_score(target_dir, f"{prefix}_inpainting") if self.config.eval.unconditional_fid and \ self.config.eval.compute_img_to_txt_mauve_during_unconditional_fid and self.config.eval.compute_img_to_txt_mauve_clip: rprint("Computing img to txt mauve during unconditional fid") # CLIP score is the same as the fid clip score so we don't need to compute it again gen_txt_tokens = self.gather_tokens(self.saved_tokens["unconditional_gen_txt_tokens"]) gt_txt_tokens = self.gather_tokens(self.saved_tokens["unconditional_gt_txt_tokens"]) if not getattr(self.config.eval, "global_disable_mauve", False): self.compute_mauve_entropy(self.fid_gen_dir, self.fid_gt_dir, gen_txt_tokens, gt_txt_tokens, "unconditional") elif self.config.eval.compute_img_to_txt_mauve_clip: gen_txt_tokens = self.gather_tokens(self.saved_tokens["img_to_txt_gen_txt_tokens"]) gt_txt_tokens = self.gather_tokens(self.saved_tokens["img_to_txt_gt_txt_tokens"]) if not getattr(self.config.eval, "global_disable_mauve", False): self.compute_mauve_entropy(self.img_to_txt_mauve_gen_dir, self.img_to_txt_mauve_gt_dir, gen_txt_tokens, gt_txt_tokens, "img_to_txt") if self.config.eval.calculate_clip_score: self.compute_clip_score(self.img_to_txt_mauve_gen_dir, "img_to_txt_mauve_gen") self.compute_clip_score(self.img_to_txt_mauve_gt_dir, "img_to_txt_mauve_gt") self.compute_mauve_entropy(self.img_to_txt_mauve_gen_dir, self.img_to_txt_mauve_gt_dir, gen_txt_tokens, gt_txt_tokens, "img_to_txt") should_eval_speed = getattr(self.config.eval, "test_eval_speed", False) if self.config.eval.generate_samples: with try_except(write_error_to_file=True): empty_device_cache() if getattr(self.config.eval, 'set_random_gen_seed', False): new_seed = get_rank() * 10 + 32 torch.manual_seed(new_seed) torch.cuda.manual_seed(new_seed) random.seed(new_seed) np.random.seed(new_seed) tot_time_per_sample = [] tot_token_time_per_token = [] tot_nfe_cnt = 0 batch_size_per_gpu = self.config.loader.eval_batch_size sampling_steps = self.config.sampling.steps num_batches = self.config.eval.num_sample_batches gen_ppl_max_batches = 1e8 compute_entropy = getattr(self.config.eval, "compute_entropy", False) compute_gen_ppl = self.config.eval.compute_generative_perplexity entropies = [] if self.config.eval.compute_standalone_mauve and not getattr(self.config.eval, "global_disable_mauve", False): mauve_N = self.config.eval.mauve_num_samples # we need to generate this many samples distributed over the batch size * num_gpus # if not clean division, generate one extra batch we can discard later num_batches = math.ceil(mauve_N / (batch_size_per_gpu * get_num_gpus())) should_eval_speed = True # if we are generating this many samples might as well time it gen_ppl_max_batches = getattr(self.config.eval, "gen_ppl_max_batches", 1e8) # since we are generating a lot of samples, we can compute gen ppl for a few batches but not all since that'll be slow with eval_mode = llama compute_entropy = True compute_gen_ppl = True rprint(f"[MAUVE] Generating {mauve_N} samples with batch size {batch_size_per_gpu}, sampling steps {sampling_steps}, total length {self.config.model.length}, num_batches: {num_batches}, max_gen_ppl_batches: {gen_ppl_max_batches}") rprint(f"Generating {num_batches} samples with batch size {batch_size_per_gpu}, sampling steps {sampling_steps}, total length {self.config.model.length}, compute_entropy: {compute_entropy}, compute_gen_ppl: {compute_gen_ppl}") all_samples = [] get_img_text_saturation = getattr(self.config.eval, "get_img_text_saturation", False) for i in tqdm(range(num_batches), desc="Generating samples"): if get_img_text_saturation: dec_txt_list, dec_img_list, all_vals = self.get_img_text_saturation_batch(example_batch) # Prepare data for logging df = pd.DataFrame(all_vals, columns=["step", "tot_ppl", "tot_loss", "img_loss", "txt_loss"]) df.to_csv(Path(self.config.output_dir) / f"img_text_saturation_batch_{i}.csv", index=False) rprint(f"Saved img_text_saturation_batch_{i}.csv to {Path(self.config.output_dir) / f'img_text_saturation_batch_{i}.csv'}") log_data = [] for (step, tot_ppl, tot_loss, img_loss, txt_loss), dec_txt, dec_img in zip(all_vals, dec_txt_list, dec_img_list): concatenated_text = ' | '.join(dec_txt) concatenated_image = dec_img[0] log_data.append([step, tot_ppl, tot_loss, img_loss, txt_loss, concatenated_text, wandb.Image(concatenated_image)]) # Log to wandb log_table = wandb.Table(columns=["Step", "Total PPL", "Total Loss", "Image Loss", "Text Loss", "Generated Text", "Generated Image"], data=log_data) wandb.log({"img_text_saturation": log_table, "trainer/global_step": self.global_step}) rprint("Logged img_text_saturation table to wandb") # log (step, Im) # make it into pd df and store in output_dir break if should_eval_speed: start_time = start_timing(sync=True, enable=True, message="Evaluating inference speed") if self.parameterization == "ar" and continuous_mode: data = self.sample_transfusion(text_only=True, batch_size_per_gpu=batch_size_per_gpu) txt_tokens = data.xt_ids[:, self.static_txt_sl] else: (txt_tokens, img_tokens), nfe_cnt = self._sample( text_only=False, batch_size_per_gpu=batch_size_per_gpu, sample_modality=example_batch["modality"], return_nfe=True, ) tot_nfe_cnt += nfe_cnt if should_eval_speed: tot_time = end_timing(start_time, enable=True, sync=True) if continuous_mode: assert (data.modality == 0).all() tot_time_per_sample.append(tot_time) tot_token_time_per_token.append((tot_time) / self.config.model.length) if compute_entropy: entropies.append(self.compute_entropy(txt_tokens).item()) if compute_chameleon_perplexity: all_images.extend(Im(decode_latents(self.config, self.get_vae(), img_tokens)).pil) text_samples = wrapped_batch_decode(self.tokenizer, txt_tokens, skip_special_tokens=True, clean_up_tokenization_spaces=True) if self.config.eval.compute_standalone_mauve and not getattr(self.config.eval, "global_disable_mauve", False): self.mauve_predictions.extend(text_samples) if len(text_samples) > 0 and len(text_samples[0]) > 0 and self.config.eval.compute_generative_perplexity and i <= gen_ppl_max_batches: self.compute_generative_perplexity(text_samples) rprint(f"Generated {len(text_samples)} samples - {[text_samples[i][:200] for i in range(min(len(text_samples), 5))]}") all_samples.extend(text_samples) # TODO: @ssg2 is this needed? # Log the last generated samples # if not compute_chameleon_perplexity: # text_samples = all_samples[:self.config.sampling.num_sample_log] # all_images = all_images[:self.config.sampling.num_sample_log] avg_nfe_cnt = tot_nfe_cnt / num_batches if should_eval_speed: # TODO: @ssg2 is this needed? # data_dict = { # f"samples": wandb.Table(columns=["Generated Samples", "Time per sample", "Time per token", "Generated Images"], data=[[s, t, tt, wandb.Image(img)] for s, t, tt, img in zip(text_samples, tot_time_per_sample, tot_token_time_per_token, all_images )]), # "trainer/global_step": self.global_step, # } data_dict = { f"samples": wandb.Table(columns=["Generated Samples", "Generated Images"], data=[[s, wandb.Image(img)] for s, img in zip(all_samples[:self.config.sampling.num_sample_log], all_images[:self.config.sampling.num_sample_log])]), "trainer/global_step": self.global_step, } assert len(tot_time_per_sample) == len(tot_token_time_per_token) if len(tot_time_per_sample) > 1: tot_time_per_sample = tot_time_per_sample[1:] # exclude warmup tot_token_time_per_token = tot_token_time_per_token[1:] print(f'Have {len(tot_time_per_sample)} samples') print(f'tot_time_per_sample: {tot_time_per_sample}') print(f'tot_token_time_per_token: {tot_token_time_per_token}') avg_time_per_sample = sum(tot_time_per_sample) / len(tot_time_per_sample) avg_time_per_token = sum(tot_token_time_per_token) / len(tot_token_time_per_token) data_dict["val/avg_time_per_sample"] = avg_time_per_sample data_dict["val/avg_time_per_token"] = avg_time_per_token data_dict["val/avg_nfe_cnt"] = avg_nfe_cnt rprint(f"Time per sample: avg (excluding warmup): {avg_time_per_sample} - {tot_time_per_sample} ") rprint(f"Time per token: avg (excluding warmup): {avg_time_per_token} - {tot_token_time_per_token} ") with open(Path(self.config.output_dir) / "times.txt", "a") as f: f.write(f"{avg_time_per_sample}, {avg_time_per_token}\n") f.write(f"{tot_time_per_sample}\n") f.write(f"{tot_token_time_per_token}\n") rprint(f"Logged time per sample and time per token to {Path(self.config.output_dir) / 'times.txt'}") else: if len(text_samples) > 0 and isinstance(text_samples[0], list): text_samples = [[item] for sublist in text_samples for item in sublist] else: text_samples = [[item] for item in text_samples] data_dict = { "samples": wandb.Table(columns=["Generated Samples"], data=text_samples), **self.get_step_metrics() } if compute_gen_ppl: data_dict["val/gen_ppl"] = self.gen_ppl_metric.compute() data_dict["val/gt_gen_ppl"] = self.gt_gen_ppl_metric.compute() self.gen_ppl_metric.reset() self.gt_gen_ppl_metric.reset() if compute_entropy: data_dict["val/val_entropy"] = sum(entropies) / len(entropies) if len(entropies) > 0 else 0 if compute_chameleon_perplexity: if getattr(self.config.eval, "max_chameleon_samples", False): all_images = all_images[:self.config.eval.max_chameleon_samples] all_samples = all_samples[:self.config.eval.max_chameleon_samples] pplxs = self.calculate_chameleon_perplexity(self.chameleon_model, self.chameleon_processor, images=all_images, prompts=all_samples) # take average of pplxs avg_pplx = sum(pplxs) / len(pplxs) data_dict["val/chameleon_ppl"] = avg_pplx if self.config.eval.compute_standalone_mauve and not getattr(self.config.eval, "global_disable_mauve", False): all_mauve_preds = gather_object(self.mauve_predictions) all_mauve_refs = gather_object(self.mauve_references) data_dict["val/mauve_score"] = self.get_mauve_score(all_mauve_preds, all_mauve_refs, "standalone") log(data_dict) # Note: the above function got a little complicated due to the use in scoring/speed evals, etc. so we use the below function # for both unconditional *and* conditional sampling. if ( ((self.get_every_n_evals(getattr(self.config.eval, "log_every_n_evals", 10)) and (self.image_model or self.config.trainer.multimodal_batches) and not getattr(self.config.model, "img_cond", False) and not should_eval_speed) or getattr(self.config.eval, "force_eval_uncond", False)) and not getattr(self.config.eval, "force_disable_eval_uncond", False) ): dprint("Generating samples") with try_except(write_error_to_file=True): has_label = getattr(self.config.model, "cond_label", False) sample_kwargs = dict() if has_label: label = torch.randint(0, self.config.model.label_vocab_size, (self.config.loader.eval_batch_size,)).to(device=self.device, dtype=torch.int64) sample_kwargs["label"] = label else: label = torch.randint(0, 1, (self.config.loader.eval_batch_size * 20,)) text_samples_list = [] img_samples_list = [] for j in range(getattr(self.config.eval, "num_uncond_sample_batches", 1)): if continuous_mode: data = self.sample_transfusion(batch_size_per_gpu=self.config.loader.eval_batch_size) text_samples = data.xt_ids[:, self.static_txt_sl] img_samples = data.xt_img_embed[:, self.static_img_sl] img_samples = decode_latents(self.config, self.get_vae(), img_samples) else: if getattr(self.config.eval, "eval_large_batch", None) is not None: data = combined_batches[j] data = self.update_batch(data) rprint(f"Taken slice {j} of {getattr(self.config.eval, 'eval_large_batch', None)}") else: data = example_batch _modality = data.get("modality", None) _bs = min(self.config.eval.perplexity_batch_size, self.config.loader.eval_batch_size) if _bs < _modality.shape[0]: _modality = _modality[:_bs] text_samples, img_samples = self._sample( text_only=False, num_steps=self.config.sampling.max_sampling_steps, batch_size_per_gpu=_bs, example_batch=data, sample_batch_idx=j, modality=_modality, sample_ids=data.get("sample_ids", None), allow_interleaved_conditional=True, **sample_kwargs ) num_text_tokens = self.config.model.txt_length if self.config.model.txt_length > 0 else 128 if text_samples is None: text_samples = [torch.zeros((self.config.loader.eval_batch_size, num_text_tokens), dtype=torch.int64, device=self.device)] elif isinstance(text_samples, list): new_text_samples = [] for text_sample in text_samples: text_samples_padded = torch.nn.functional.pad(text_sample, (0, num_text_tokens - text_sample.shape[-1]), value=self.tokenizer.pad_token_id) if text_sample.shape[-1] < num_text_tokens else text_sample[..., :num_text_tokens] new_text_samples.append(text_samples_padded) text_samples = new_text_samples else: text_samples = [torch.nn.functional.pad(text_samples, (0, num_text_tokens - text_samples.shape[-1]), value=self.tokenizer.pad_token_id) if text_samples.shape[-1] < num_text_tokens else text_samples[..., :num_text_tokens]] text_samples_list.extend(text_samples) if img_samples is not None: if isinstance(img_samples, list): img_samples_list.extend(img_samples) else: img_samples_list.append(img_samples) if len(text_samples_list) > 0 and any(text_samples is not None for text_samples in text_samples_list): text_samples = torch.cat(text_samples_list, dim=0) else: text_samples = None has_img = any(img_samples is not None for img_samples in img_samples_list) log_dict = {} try: if has_img: if isinstance(img_samples_list[0], Tensor): img_samples = torch.cat(img_samples_list, dim=0) if img_samples.ndim == 2: pred_img = decode_latents(self.config, self.get_vae(), img_samples) else: pred_img = img_samples log_dict.update({"val/gen_images": wandb.Image(pred_img)}) else: pred_img = img_samples_list for i, img in enumerate(img_samples_list): log_dict[f"val/gen_images_{i}"] = wandb.Image(img) else: pred_img = img_samples_list except Exception as e: rprint(f"Error during gather: {e}") pred_img = [None] * len(img_samples_list) has_img = False with try_except(write_error_to_file=True): if text_samples is not None: text_samples = gather(text_samples) pred_txt = wrapped_batch_decode(self.tokenizer, text_samples, clean_up_tokenization_spaces=True, skip_special_tokens=True, disable_mask_after_eos=self.config.data.disable_mask_after_eos) prefix = "class_cond" if has_label else ("cond" if self.config.trainer.interleaved else "uncond") if isinstance(pred_img, Tensor): pred_img = pred_img.float().cpu() pred_img = gather_object(pred_img) gen_table = wandb.Table(columns=[*([f"{prefix}_sampled_image"] if has_img else []), f"{prefix}_sampled_caption", *(["Label"] if has_label else [])]) for img, caption, label in zip(pred_img, pred_txt, label): gen_table.add_data(*([wandb.Image(img)] if has_img else []), caption, *([label] if has_label else [])) log_dict[f"{prefix}_sample_table"] = gen_table log({**log_dict, **self.get_step_metrics()}) if getattr(self.config.trainer, "print_llm_loss", False) and hasattr(self, 'histogram') and not should_eval_speed: avg_losses = {t: sum(l) / len(l) for t, l in self.histogram.items()} timesteps, avg_losses = zip(*sorted(avg_losses.items())) from io import BytesIO import matplotlib.pyplot as plt plt.plot(timesteps, avg_losses) plt.xlabel('Timesteps') plt.ylabel('Average Loss') plt.title('Loss over Time') plt.show() buf = BytesIO() plt.savefig(buf, format='png') plt.close() buf.seek(0) img = Image.open(buf) log({"loss_over_time": wandb.Image(img)}) rprint("Logged loss over time") if hasattr(self, "valid_txt_metrics"): self.valid_metrics.reset() self.valid_txt_metrics.reset() self.valid_img_metrics.reset() if (time.time() - getattr(self, "validation_start_time", time.time())) > 15: rprint(f"Validation took: {time.time() - self.validation_start_time} seconds") dprint("on_validation_epoch_end finished") def on_validation_epoch_cleanup(self): self.reset_validation_metrics() self.fid_eval = False self.saved_tokens = defaultdict(list) if hasattr(self, "inception_metrics"): del self.inception_metrics if "tokens" in self.config.data.train and hasattr(self, "vae"): del self.vae self.vae = None if is_main_process() and not getattr(self.config.eval, "disable_fid_cleanup", False): self.cleanup_fid_output() empty_device_cache() if getattr(self.config.trainer, "attach_oom_observer_eval", False): if hasattr(self, "gpu_memory_reserved") and self.gpu_memory_reserved is not None: cur_gpu_memory_reserved = torch.cuda.memory_reserved() if getattr(self.config.trainer, "force_save_eval_memory_profile", False) or (cur_gpu_memory_reserved - self.gpu_memory_reserved > 4 * 1024**3): # 4GB in bytes rprint(f"Warning: GPU memory usage increased by more than 4GB during validation. Initial: {self.gpu_memory_reserved / 1024**3:.2f}GB, Current: {cur_gpu_memory_reserved / 1024**3:.2f}GB") oom_dir = Path(self.config.output_dir) / "oom_profile" oom_dir.mkdir(parents=True, exist_ok=True) save_memory_profile(oom_dir) self.gpu_memory_reserved = None dprint("Disabled memory history") torch.cuda.memory._record_memory_history(enabled=None) dprint("on_validation_epoch_cleanup finished") def gather_tokens(self, tokens): tokens = torch.cat(tokens, dim=0).to(device=self.device, dtype=torch.int64) tokens = gather(tokens) return tokens @try_except(write_error_to_file=True, clear_cuda_cache=True) def get_top_k(self, batch, batch_idx): if batch_idx == 0: all_top_k = {1: [], 2: [], 5: []} for i in range(16): mod_input_ids = batch['input_ids'].clone() mod_input_ids[:, self.static_txt_sl] = mod_input_ids[i, self.static_txt_sl] mod_attention_mask = batch['attention_mask'].clone() mod_attention_mask[:, self.static_txt_sl] = mod_attention_mask[i, self.static_txt_sl] if getattr(self.config.eval, "cfg", None): cat_mod_input_ids = torch.cat([mod_input_ids, torch.where(batch['modality'] == 1, self.mask_index, mod_input_ids)], dim=0) cat_p_x0 = self.forward( cat_mod_input_ids, sigma=None, attention_mask=mod_attention_mask, batch=dict(modality=batch['modality']), modality=batch['modality'] ) logit_c, logit_u = cat_p_x0.chunk(2, dim=0) _w = getattr(self.config.eval, "cfg", None) model_output = (1 + _w) * logit_c - _w * logit_u else: model_output = self.forward(mod_input_ids, sigma=None, attention_mask=mod_attention_mask, batch=dict(modality=batch['modality']), modality=batch['modality']) log_p_theta = torch.gather(input=model_output, dim=-1, index=mod_input_ids[:, 1:, None]).squeeze(-1) mean_nll = (-log_p_theta * mod_attention_mask[:, 1:]).sum(dim=-1) / mod_attention_mask[:, 1:].sum(dim=-1) for k in [1, 2, 5]: topk_values, topk_indices = torch.topk(mean_nll, k, dim=0) all_top_k[k].append(0 in topk_indices.tolist()) for k in [1, 2, 5]: retrieval_rate = sum(all_top_k[k]) / len(all_top_k[k]) rprint(f"{retrieval_rate:.2%} retrieved in top {k}") log({f"val/top_{k}": retrieval_rate}) @try_except(write_error_to_file=True, clear_cuda_cache=True) def compute_clip_score(self, output_dir, prefix): from model_utils import calculate_clip_score caption_paths = [str(x.as_posix()) for x in Path(output_dir).glob('*.png') if x.is_file() and x.with_suffix('.json').exists()] captions_mapping = {str(x): json.load(Path(x).with_suffix('.json').open())['caption'] for x in caption_paths} clip_score = calculate_clip_score(caption_paths, captions_mapping=captions_mapping) clip_score *= 100 # For some reason people scale cosine sim rprint(f"{prefix} CLIP score: {clip_score}") log({f"val/{prefix}_clip_score": clip_score, **self.get_step_metrics()}) @try_except(write_error_to_file=True, clear_cuda_cache=True) def compute_inline_fid(self): rprint(f"FID Eval. We have {len(self.inception_metrics.fake_uncond_features)} batches.") try: if self.config.mode == "eval" and not self.config.trainer.image_mode == "continuous": output_dir = Path("eval_tokens").resolve() output_dir.mkdir(parents=True, exist_ok=True) dataset_size = sum(x[-1].shape[0] for x in self.computed_tokens) data = TensorDict( { "txt_input_ids": torch.cat([x[1] for x in self.computed_tokens]).to(device="cpu", dtype=torch.int32), "img_input_ids": torch.cat([x[2] for x in self.computed_tokens]).to(device="cpu", dtype=torch.int16), "gt_img_input_ids": torch.cat([x[3] for x in self.computed_tokens]).to(device="cpu", dtype=torch.int16), }, batch_size=[dataset_size], ) save_loc = str(output_dir / f"{get_rank()}") data.memmap(save_loc) gprint(f"Saved tokens to {save_loc}") rank = get_rank() output_folder = Path("fid_metrics") output_folder.mkdir(parents=True, exist_ok=True) torch.save(self.inception_metrics.fake_uncond_features, output_folder / f"rank_{rank}_fake_uncond_features.pt") torch.save(self.inception_metrics.fake_uncond_logits, output_folder / f"rank_{rank}_fake_uncond_logits.pt") torch.save(self.inception_metrics.real_features, output_folder / f"rank_{rank}_real_features.pt") rprint(f"Saved rank_{rank} tensors.") except Exception as e: gprint(f"Error during all_gather_object or saving tensors: {e}") with torch.autocast(device_type=self.device.type, enabled=False): metrics = self.inception_metrics.compute() # Gather is done internally rprint(f"Computed metrics: {metrics}") metrics = {f"val/{k}": v for k, v in metrics.items()} log({**metrics, "trainer/global_step": self.global_step}) output_folder = Path("fid_metrics") output_folder.mkdir(parents=True, exist_ok=True) with open(output_folder / f'metrics_{get_rank()}_{datetime.now().strftime("%Y%m%d_%H%M%S")}.txt', "w") as f: for k, v in metrics.items(): f.write(f"val/{k}: {v}\n") self.fid_eval = False del self.inception_metrics rprint("Finished FID eval") @try_except(write_error_to_file=True, clear_cuda_cache=True) def compute_clean_fid_eval(self): with try_except(write_error_to_file=True): images = [] for i, filename in enumerate(sorted(Path(self.fid_gen_dir).iterdir(), key=lambda x: random.random())): if i >= self.config.loader.eval_batch_size * get_world_size(): break if filename.is_file() and filename.suffix == ".png": for i in range(3): try: img = Image.open(filename) except Exception as e: time.sleep(0.1) rprint(f"Error opening image {filename}: {e}") images.append(np.array(img)) images = np.stack(images) log({"val/fid_gen_img_at_compute": wandb.Image(Im(images).torch)}) from cleanfid import fid kwargs = dict() if self.config.eval.clean_fid_use_precomputed_stats: kwargs.update(dict( dataset_name=self.config.eval.clean_fid_precomputed_name, dataset_res=self.config.eval.clean_fid_precomputed_res, dataset_split=self.config.eval.clean_fid_precomputed_split, )) else: kwargs.update(dict(fdir2=str(self.fid_gt_dir))) score = fid.compute_fid( fdir1=str(self.fid_gen_dir), use_dataparallel=False, **kwargs ) rprint(f"FID score: {score}") metrics = {"val/fid_unconditional": score, **self.get_step_metrics()} log(metrics) metrics = {f"val/{k}": v for k, v in metrics.items()} output_folder = Path("fid_metrics") output_folder.mkdir(parents=True, exist_ok=True) with open(output_folder / f'metrics_{get_rank()}_{datetime.now().strftime("%Y%m%d_%H%M%S")}.txt', "w") as f: for k, v in metrics.items(): f.write(f"{k}: {v}\n") self.fid_eval = False def sample_for_fid(self, batch, batch_idx, return_gt_img=False, return_gt_txt=False, img_to_txt_gen=False): """This function is also used for img -> txt generation.""" continuous_mode = self.config.trainer.image_mode == "continuous" sample_kwargs = self.get_cond_dict(batch) orig_modality, orig_input_ids = None, None if img_to_txt_gen: if self.config.parameterization == "ar": txt_first_sl = slice(None, self.config.model.txt_length) img_first_sl = slice(None, self.config.model.img_length) if (batch["modality"][:, txt_first_sl] == 0).all(): # Flip [txt, img] -> [img, txt] assert (batch["modality"][:, :self.config.model.txt_length] == 0).all() and (batch["modality"][:, self.config.model.txt_length:] == 1).all() flipped_batch = dict() img_slice = slice(-self.config.model.img_length, None) txt_slice = slice(None, self.config.model.txt_length) for key in ["modality", "attention_mask", "input_ids"]: flipped_batch[key] = torch.cat([batch[key][:, img_slice], batch[key][:, txt_slice]], dim=1) batch = flipped_batch else: assert (batch["modality"][:, img_first_sl] == 1).all() # We already have [img, txt] assert (batch["modality"][:, :self.config.model.img_length] == 1).all(), "Img tokens should be 0" else: assert (batch["modality"][:, :self.config.model.txt_length] == 0).all() # We already have [txt, img] sample_kwargs["sample_modality"] = batch["modality"] _x0_unmask = (batch["modality"] == 1) elif getattr(self.config.eval, "unconditional_fid", False): sample_kwargs["x0_unmask"] = None sample_kwargs["x0"] = None sample_kwargs["sample_modality"] = batch["modality"] elif self.config.trainer.ar_inpainting: assert getattr(self.config.eval, "txt_conditional_fid", False) min_val, max_val = getattr(self.config.eval, "ar_inpainting_min_val", 0.9), getattr(self.config.eval, "ar_inpainting_max_val", 1.0) n = batch["modality"].shape[0] _eps_t = torch.rand(n, device=self.device) t = (max_val - min_val) * _eps_t + min_val if getattr(self.config.eval, "ar_inpainting_force_val", None) is not None: t = torch.full_like(t, getattr(self.config.eval, "ar_inpainting_force_val"), dtype=t.dtype, device=t.device) if self.config.parameterization == "ar": orig_modality, orig_input_ids = batch["modality"].clone(), batch["input_ids"].clone() del batch["batch_contains_img"] batch.auto_batch_size_() batch = torch.cat([batch, batch], dim=1) x0 = batch["input_ids"] move_indices = torch.rand(*x0.shape, device=x0.device) < t[:, None] # Unmask so we switch sign compared to move_indices move_indices[:, x0.shape[1] // 2:] = False batch["input_ids"] = torch.where(move_indices, self.mask_index, x0) _x0_unmask = torch.zeros_like(batch["input_ids"], dtype=torch.bool) _x0_unmask[:, :batch["input_ids"].shape[1] // 2] = True else: _x0_unmask = torch.rand(*batch["modality"].shape, device=batch["modality"].device) > t[:, None] # Unmask so we switch sign compared to move_indices sample_kwargs["sample_modality"] = batch["modality"] sample_kwargs["x0_unmask"] = _x0_unmask sample_kwargs["x0"] = batch["input_ids"] elif getattr(self.config.eval, "class_conditional_fid", False) or getattr(self.config.eval, "txt_conditional_fid", False): sample_kwargs["x0"] = batch["input_ids"] if getattr(self.config.eval, "class_conditional_fid", False): sample_kwargs["sample_modality"] = torch.full_like(batch["modality"], 1) sample_kwargs["sample_modality"][:, 0] = 0 _x0_unmask = torch.zeros_like(batch["input_ids"], dtype=torch.bool) _x0_unmask[..., 0] = True elif getattr(self.config.eval, "txt_conditional_fid", False): assert ((batch["modality"] == 1).sum(dim=-1) > 0).all(), "No img samples provided" sample_kwargs["sample_modality"] = batch["modality"] _x0_unmask = (batch["modality"] == 0) sample_kwargs["x0_unmask"] = _x0_unmask if continuous_mode: data = self.sample_transfusion(batch_size_per_gpu=self.config.loader.eval_batch_size) gen_txt_tokens = data.xt_ids[:, self.static_txt_sl] gen_img_tokens = data.xt_img_embed[:, self.static_img_sl] gen_img = decode_latents(self.config, self.get_vae(), gen_img_tokens) else: gen_txt_tokens, gen_img_tokens = self._sample(text_only=False, **sample_kwargs) gen_img = decode_latents(self.config, self.get_vae(), gen_img_tokens) fid_rec_img, gt_img_tokens, gt_txt_tokens = None, None, None if return_gt_img: if "img" in batch: fid_rec_img = batch["img"] else: if orig_modality is None: orig_modality = batch.get("modality", None) if orig_input_ids is None: orig_input_ids = batch["input_ids"] _, gt_img_tokens = self.decode_batch(orig_input_ids, text_only=False, sample_modality=orig_modality) if gt_img_tokens.shape[0] == 0: rprint(f"{gt_img_tokens.shape} {batch['input_ids'].shape}") fid_rec_img = decode_latents(self.config, self.get_vae(), gt_img_tokens) if return_gt_txt: if orig_input_ids is None: orig_input_ids = batch["input_ids"] if orig_modality is None: orig_modality = batch.get("modality", None) gt_txt_tokens, _ = self.decode_batch(orig_input_ids, text_only=False, sample_modality=orig_modality) _prefix = "img_to_txt" if img_to_txt_gen else ("unconditional" if getattr(self.config.eval, "unconditional_fid", False) else "txt_to_img") self.saved_tokens[_prefix + "_gen_img_tokens"].append(gen_img_tokens.detach().cpu().to(torch.int32)) self.saved_tokens[_prefix + "_gen_txt_tokens"].append(gen_txt_tokens.detach().cpu().to(torch.int32)) if gt_img_tokens is not None: self.saved_tokens[_prefix + "_gt_img_tokens"].append(gt_img_tokens.detach().cpu().to(torch.int32)) if gt_txt_tokens is not None: self.saved_tokens[_prefix + "_gt_txt_tokens"].append(gt_txt_tokens.detach().cpu().to(torch.int32)) return gen_img, gen_txt_tokens, gt_img_tokens, gt_txt_tokens, gen_img_tokens, fid_rec_img def update_inline_fid(self, batch, batch_idx): gen_img, txt_tokens, gt_img_tokens, gt_txt_tokens, gen_img_tokens, fid_rec_img = self.sample_for_fid(batch, batch_idx, return_gt_img=True, return_gt_txt=True) if self.config.mode == "eval": self.computed_tokens.append((txt_tokens, gen_img_tokens, gt_img_tokens)) with torch.autocast(device_type=self.device.type, enabled=False): self.inception_metrics.update(remap_image_torch(fid_rec_img).to(self.device), None, image_type="real") self.inception_metrics.update(remap_image_torch(gen_img).to(self.device), None, image_type="unconditional") if batch_idx == 0: log({"val/fid_gen": wandb.Image(gen_img), "val/fid_gt": wandb.Image(fid_rec_img), **self.get_step_metrics()}) if batch_idx > 0 and batch_idx % 5 == 0 and self.config.mode == "eval": gprint(f"Saving rank_{get_rank()} tensors.") try: rank = get_rank() torch.save(self.inception_metrics.fake_uncond_features, f"{batch_idx}_rank_{rank}_fake_uncond_features.pt") torch.save(self.inception_metrics.fake_uncond_logits, f"{batch_idx}_rank_{rank}_fake_uncond_logits.pt") torch.save(self.inception_metrics.real_features, f"{batch_idx}_rank_{rank}_real_features.pt") gprint(f"Saved rank_{rank} tensors.") except Exception as e: gprint(f"Error during all_gather_object or saving tensors: {e}") def update_clean_fid(self, batch, batch_idx): assert hasattr(self, "fid_gen_dir") save_gt_img = not self.config.eval.clean_fid_use_precomputed_stats gen_img, txt_tokens, gt_img_tokens, gt_txt_tokens, img_samples, fid_rec_img = self.sample_for_fid(batch, batch_idx, return_gt_img=save_gt_img, return_gt_txt=True) if self.config.model.image_model_fid_eval: txt_samples = wrapped_batch_decode(self.tokenizer, txt_tokens, clean_up_tokenization_spaces=True, skip_special_tokens=True) gt_txt_samples = wrapped_batch_decode(self.tokenizer, gt_txt_tokens, clean_up_tokenization_spaces=True, skip_special_tokens=True) save_loc = Path(self.fid_gen_dir) save_loc.mkdir(parents=True, exist_ok=True) quantized_img = remap_image_torch(gen_img).permute(0, 2, 3, 1).cpu().numpy() if save_gt_img: gt_quantized_img = remap_image_torch(fid_rec_img).permute(0, 2, 3, 1).cpu().numpy() save_loc_gt = Path(self.fid_gt_dir) save_loc_gt.mkdir(parents=True, exist_ok=True) for i in range(gen_img.shape[0]): gen_img_pil = Image.fromarray(quantized_img[i]) suffix = ''.join(random.choices(string.ascii_lowercase + string.digits, k=4)) filename = f"{batch_idx}_{get_rank()}_{i}_{suffix}.png" out_file_path = save_loc / filename gen_img_pil.save(out_file_path) if self.config.eval.txt_conditional_fid: with open(out_file_path.with_suffix(".json"), 'w') as json_file: json.dump({"caption": txt_samples[i]}, json_file) if save_gt_img: gt_img_pil = Image.fromarray(gt_quantized_img[i]) gt_out_file_path = save_loc_gt / filename gt_img_pil.save(gt_out_file_path) if self.config.eval.txt_conditional_fid: with open(gt_out_file_path.with_suffix(".json"), 'w') as json_file: json.dump({"caption": gt_txt_samples[i]}, json_file) if batch_idx == 0: rprint(f"Logging at batch idx {batch_idx}") time.sleep(0.2) with try_except(write_error_to_file=True): images = [] for i, filename in enumerate(sorted(Path(self.fid_gen_dir).iterdir(), key=lambda x: random.random())): if i >= self.config.loader.eval_batch_size * get_world_size(): break if filename.is_file() and filename.suffix == ".png": img = Image.open(filename) images.append(np.array(img)) images = np.stack(images) log({"val/fid_gen_img": wandb.Image(Im(images).torch)}) rprint(f"FID Txt: {txt_samples[0]}") def update_img_to_txt_mauve_clip(self, batch, batch_idx): assert hasattr(self, "img_to_txt_mauve_gen_dir") save_gt_img = True empty_device_cache() gen_img, gen_txt_tokens, gt_img_tokens, gt_txt_tokens, gen_img_tokens, fid_rec_img = self.sample_for_fid(batch, batch_idx, return_gt_img=save_gt_img, return_gt_txt=True, img_to_txt_gen=True) gen_txt_samples = wrapped_batch_decode(self.tokenizer, gen_txt_tokens, clean_up_tokenization_spaces=True, skip_special_tokens=True) gt_txt_samples = wrapped_batch_decode(self.tokenizer, gt_txt_tokens, clean_up_tokenization_spaces=True, skip_special_tokens=True) save_loc = Path(self.img_to_txt_mauve_gen_dir) save_loc.mkdir(parents=True, exist_ok=True) quantized_img = remap_image_torch(gen_img).permute(0, 2, 3, 1).cpu().numpy() if save_gt_img: gt_quantized_img = remap_image_torch(fid_rec_img).permute(0, 2, 3, 1).cpu().numpy() save_loc_gt = Path(self.img_to_txt_mauve_gt_dir) save_loc_gt.mkdir(parents=True, exist_ok=True) for i in range(gen_img.shape[0]): gen_img_pil = Image.fromarray(quantized_img[i]) suffix = ''.join(random.choices(string.ascii_lowercase + string.digits, k=4)) filename = f"{batch_idx}_{get_rank()}_{i}_{suffix}.png" out_file_path = save_loc / filename gen_img_pil.save(out_file_path) with open(out_file_path.with_suffix(".json"), 'w') as json_file: json.dump({"caption": gen_txt_samples[i]}, json_file) if save_gt_img: gt_img_pil = Image.fromarray(gt_quantized_img[i]) gt_out_file_path = save_loc_gt / filename gt_img_pil.save(gt_out_file_path) with open(gt_out_file_path.with_suffix(".json"), 'w') as json_file: json.dump({"caption": gt_txt_samples[i]}, json_file) if batch_idx == 0: rprint(f"GT img -> txt mauve: {gt_txt_samples[0]}") rprint(f"Gen img -> txt mauve: {gen_txt_samples[0]}") def compute_mauve_entropy(self, img_to_txt_mauve_gen_dir, img_to_txt_mauve_gt_dir, gen_txt_tokens, gt_txt_tokens, prefix): gt_txt = [] gt_img = [] gt_dir = Path(img_to_txt_mauve_gt_dir) gen_dir = Path(img_to_txt_mauve_gen_dir) stems = [f.stem for f in gt_dir.iterdir() if f.suffix == '.json' and (gen_dir / f.name.replace("gt", "gen")).exists()] assert len(stems) > 0, f"No stems found in {gt_dir} and {gen_dir}" rprint(f"Found {len(stems)} unique stems") gt_img = [] gt_txt = [] gen_txt = [] gen_img = [] data_dict = {} for stem in stems: gt_img_path = gt_dir / f"{stem}.png" gt_img.append(Image.open(gt_img_path)) gen_img_path = gen_dir / f"{stem}.png" gen_img.append(Image.open(gen_img_path)) with open(gt_dir / f"{stem}.json", 'r') as f: gt_txt.append(json.load(f)["caption"]) with open(gen_dir / f"{stem}.json", 'r') as f: gen_txt.append(json.load(f)["caption"]) table = wandb.Table(columns=["GT Image", "GT Text", "Generated Image", "Generated Text"]) num_samples_to_display = min(20, len(stems)) for i in range(num_samples_to_display): table.add_data( wandb.Image(gt_img[i]), gt_txt[i], wandb.Image(gen_img[i]), gen_txt[i] ) data_dict[f"val/{prefix}_mauve_samples"] = table if not getattr(self.config.eval, "global_disable_mauve", False): data_dict[f"val/{prefix}_mauve_score"] = self.get_mauve_score(gen_txt, gt_txt, prefix) data_dict[f"val/{prefix}_gt_entropy"] = self.compute_entropy(gt_txt_tokens) data_dict[f"val/{prefix}_gen_entropy"] = self.compute_entropy(gen_txt_tokens) data_dict[f"val/{prefix}_percent_valid_txt_tokens"] = self.count_valid_tokens(gen_txt_tokens).float().mean(dim=-1) / gen_txt_tokens.shape[-1] log({**data_dict, **self.get_step_metrics()}) def count_valid_tokens(self, text_tokens): after_first_eos = torch.cumsum(text_tokens == self.tokenizer.eos_token_id, dim=1).bool() after_first_eos_mask = after_first_eos.cumsum(dim=1) > 1 return ~after_first_eos_mask def get_valid_seq(self, text_tokens): if self.tokenizer.bos_token_id == self.tokenizer.eos_token_id: assert False, "BOS and EOS are the same." eos_positions = (text_tokens == self.tokenizer.eos_token_id).nonzero(as_tuple=True)[0] if len(eos_positions) > 0: return text_tokens[..., :eos_positions[0] + 1] else: return text_tokens @try_except(write_error_to_file=True, clear_cuda_cache=True) def compute_entropy(self, text_tokens): """Compute the entropy of the generated text. Definition Pg 33 of https://arxiv.org/pdf/2409.02908 Args: text_tokens: Tensor of generated text tokens. (B, L) Returns: Entropy of the generated text. """ val_entropy = Entropy(sync_on_compute=False).to(self.device) B, L = text_tokens.shape K = self.tokenizer.vocab_size # Use the actual vocabulary size # Compute entropy for each sequence in the batch entropies = [] for seq in text_tokens: seq_length = seq.numel() token_frequencies = torch.bincount(self.get_valid_seq(seq), minlength=K) p_k = token_frequencies.float() / seq_length p_k = p_k.to(self.device) nll = -torch.sum(p_k * torch.log(p_k + 1e-10)) entropies.append(nll) # Calculate the average entropy across the batch avg_entropy = torch.mean(torch.tensor(entropies)) # Update the validation entropy metric val_entropy.update(avg_entropy, weight=B) return val_entropy.compute() @try_except(write_error_to_file=True, clear_cuda_cache=True) def get_mauve_score(self, pred, gt, prefix): from evaluate import load mauve = load('mauve') # We require a list of strings for pred, gt mauve_metric = MauveScore(sync_on_compute=False).to(self.device) rprint(f"Generated {len(pred)} MAUVE predictions") assert len(pred) >= self.config.eval.mauve_num_samples rprint(f'Before removing duplicates: {len(pred)}') pred_text = list(set(pred)) rprint(f'After removing duplicates: {len(pred_text)}') ref_text = list(set(gt)) store_path = os.path.join(self.config.output_dir, f"{prefix}_mauve_predictions.pkl") with open(store_path, "wb") as f: pickle.dump(pred_text, f) rprint(f"Stored {len(pred_text)} unique MAUVE predictions to {store_path}") min_len = min(len(pred_text), len(ref_text)) pred_text = pred_text[:min_len] ref_text = ref_text[:min_len] rprint(f"Computing img to txt MAUVE score for {len(pred_text)} unique predictions and {len(ref_text)} references") # compute mauve score device_id = 0 # this is main process mauve_divergence_curve_discretization_size = self.config.eval.mauve_divergence_curve_discretization_size mauve_scaling_factor = self.config.eval.mauve_scaling_factor avg_over_seed = self.config.eval.mauve_average_over_seeds # generate avg_over_seed number of seeds randomly random_seeds = [random.randint(0, 100000) for _ in range(avg_over_seed)] for seed in random_seeds: mauve_score = mauve.compute( references=ref_text, predictions=pred_text, device_id=device_id, divergence_curve_discretization_size=mauve_divergence_curve_discretization_size, mauve_scaling_factor=mauve_scaling_factor ) mauve_metric.update(mauve_score.mauve) rprint(f"MAUVE score for seed {seed}: {mauve_score.mauve}") store_path = os.path.join(self.config.output_dir, f"{prefix}_mauve_score_seed_{seed}.txt") with open(store_path, "w") as f: f.write(str(mauve_score)) rprint(f"Stored MAUVE score for seed {seed} to {store_path}") avg_mauve_score = mauve_metric.compute() return avg_mauve_score def _sample_prior(self, *batch_dims): return self.mask_index * torch.ones(*batch_dims, dtype=torch.int64) def get_cfg_weight(self, t): _cfg = self.config.eval.cfg if not getattr(self.config.eval, "force_cfg_value", False): if _cfg == -1: _cfg = torch.linspace(0, 10, t.shape[0]).to(t.device) if getattr(self.config.eval, "cfg_min_timestep", None) is not None and getattr(self.config.eval, "cfg_max_timestep", None) is not None: _w = (_cfg * ((t - getattr(self.config.eval, "cfg_max_timestep")) / (getattr(self.config.eval, "cfg_min_timestep") - getattr(self.config.eval, "cfg_max_timestep"))))[:, None] else: _w = (_cfg * (1 - t))[:, None] else: _w = _cfg if getattr(self.config.eval, "cfg_min_timestep", None) is not None: _w = torch.where(t > getattr(self.config.eval, "cfg_min_timestep", None), _w, torch.tensor(0.0)) if getattr(self.config.eval, "cfg_max_timestep", None) is not None: _w = torch.where(t < getattr(self.config.eval, "cfg_max_timestep", None), _w, torch.tensor(0.0)) if not isinstance(_w, torch.Tensor): _w = torch.tensor(_w) return _w def _ddpm_forward(self, x, t, sigma_t, x0=None, x0_unmask=None, force_cfg=None, **kwargs): _w = None if getattr(self.config.eval, "cfg", None) is not None and x0_unmask is not None and x0_unmask.sum() > 0: _w = self.get_cfg_weight(t) orig_modality, orig_sample_ids = None, None if _w is not None and (_w > 0).any(): x_uncond = x.clone() x_uncond[x0_unmask] = self.mask_index if getattr(self.config.eval, "split_cfg_batches", False): cat_p_x0 = torch.cat([ self.forward( x=x, sigma=sigma_t, return_logits=True, **kwargs ), self.forward( x=x_uncond, sigma=sigma_t, return_logits=True, **kwargs ) ], dim=0) else: orig_modality = kwargs.get("modality", None) if orig_modality is not None: orig_modality = orig_modality.clone() kwargs["modality"] = torch.cat([orig_modality, orig_modality], dim=0) orig_sample_ids = kwargs.get("sample_ids", None) if orig_sample_ids is not None: orig_sample_ids = orig_sample_ids.clone() kwargs["sample_ids"] = torch.cat([orig_sample_ids, orig_sample_ids], dim=0) if self.config.trainer.interleaved_training_flex_attention: assert 'sample_ids' in kwargs kwargs['block_mask'] = get_interleaved_block_mask(kwargs['sample_ids'], x.shape[0], x.shape[-1], self.device) cat_p_x0 = self.forward( x=torch.cat([x, x_uncond], dim=0), sigma=torch.cat([sigma_t, sigma_t], dim=0) if sigma_t is not None else None, return_logits=True, **kwargs ) kwargs["modality"] = orig_modality kwargs["sample_ids"] = orig_sample_ids logit_c, logit_u = cat_p_x0.chunk(2, dim=0) if isinstance(_w, torch.Tensor) and _w.ndim == 2 and logit_c.ndim == 3: _w = _w.unsqueeze(-1) output_logits = (1 + _w) * logit_c - _w * logit_u _modality = kwargs.get("modality", None) if self.config.trainer.ar_shift: _modality = _modality[:, 1:] p_x0 = self._subs_parameterization(output_logits, xt=None, batch=None, modality=_modality) p_x0 = p_x0.exp() del logit_c, logit_u, cat_p_x0, output_logits, orig_modality, orig_sample_ids, x, x_uncond else: p_x0 = self.forward(x=x, sigma=sigma_t, **kwargs) p_x0 = p_x0.exp() if self.config.trainer.force_bf16_eval: p_x0 = p_x0.to(torch.bfloat16) kwargs.pop("attention_caching", None) kwargs.pop("block_mask", None) if getattr(self.config.eval, "force_empty_cache", False): empty_device_cache() return p_x0 def sample_masking(self, batch, batch_idx): assert (self.config.loader.batch_size == self.config.loader.eval_batch_size) or self.config.mode == 'eval' # need for modality otherwise x and modality have different batch sizes if getattr(self.config.model, "img_cond", False): text_samples, img_samples = self._sample(text_only=False, **self.get_cond_dict(batch)) pred_img = decode_latents(self.config, self.get_vae(), img_samples) log({"val/gen_images_": wandb.Image(pred_img), "trainer/global_step": self.global_step}) orig_bs = batch["input_ids"].shape[0] bs = min(10, max(1, int(orig_bs // 2))) bs = getattr(self.config.eval, "masking_batch_size", bs) bs = min(bs, orig_bs) if getattr(self.config.eval, "num_random_masking", None) is not None: num_random_masking = getattr(self.config.eval, "num_random_masking", 1) bs = max(bs, num_random_masking) else: num_random_masking = max((x0.shape[0] + 1) // 4, 1) _attention_mask = (batch["attention_mask"] if "attention_mask" in batch else None)[:bs] _input_ids = (batch["input_ids"])[:bs] _x_modality = (batch["modality"])[:bs] if "modality" in batch else None if _x_modality.shape[0] != bs: _x_modality = _x_modality[[0]].repeat(bs, 1) (input_tokens, output_tokens, _attention_mask) = self._maybe_sub_sample(_input_ids, _attention_mask) x0 = input_tokens forward_kwargs = self.get_cond_dict(batch) forward_kwargs['is_sample_masking'] = True if "x_cond" in forward_kwargs: forward_kwargs["x_cond"] = forward_kwargs["x_cond"][:bs] assert output_tokens is None assert self.T == 0 and self.change_of_variables is False random_masking_ratio = getattr(self.config.eval, "random_masking_ratio", 0.95) t = random_masking_ratio + (1 - random_masking_ratio) * torch.rand(num_random_masking, device=x0.device) sigma, dsigma = self.noise(t) unet_conditioning = sigma[:, None] move_chance = 1 - torch.exp(-sigma[:, None]) unet_conditioning = torch.cat([unet_conditioning, unet_conditioning.new_full((bs - num_random_masking, 1), torch.nan)], dim=0) move_chance = torch.cat([move_chance, move_chance.new_full((bs - num_random_masking, move_chance.shape[1]), 1)], dim=0) uniform_mask = torch.full(x0.shape, True, device=x0.device, dtype=torch.bool) text_only_mask = uniform_mask.clone() text_only_mask = torch.where(_x_modality == 1, False, text_only_mask) image_only_mask = uniform_mask.clone() image_only_mask = torch.where(_x_modality == 0, False, image_only_mask) image_only_mask = torch.where(batch["batch_contains_img"][:bs, None], image_only_mask, True) mask_dict = dict(mask_all=uniform_mask, mask_text_only=text_only_mask, mask_image_only=image_only_mask) if getattr(self.config.eval, "mask_img_only", False): uniform_mask = torch.full(x0.shape, True, device=x0.device, dtype=torch.bool) image_only_mask = torch.where(_x_modality == 0, False, uniform_mask) move_chance = torch.ones_like(move_chance) mask_dict = dict(mask_image_only=image_only_mask) elif getattr(self.config.eval, "mask_img_only_keep_partial", False): mask_dict = dict(mask_image_only=image_only_mask) elif getattr(self.config.eval, "mask_all_only", False): mask_dict = dict(mask_all=uniform_mask) only_uniform_mask = getattr(self.config.eval, "only_uniform_mask", False) table_dict = dict() for mask_name, allow_move_mask in mask_dict.items(): if mask_name == "mask_all" and not only_uniform_mask: _move_chance = 0.5 + (1 - 0.5) * torch.rand_like(move_chance) elif mask_name == "mask_text_only": _move_chance = torch.zeros_like(move_chance) else: _move_chance = move_chance xt = self.q_xt( x0, _move_chance, allow_move_mask, mask_image_square=(mask_name != "mask_text_only") and not only_uniform_mask, mask_text_region=(mask_name != 'mask_image_only') and not only_uniform_mask ) if getattr(self.config.eval, "single_step_denoising", False): forward_kwargs.pop("is_sample_masking", None) model_output = self.forward(xt, unet_conditioning, **forward_kwargs) if not self.is_compiled: utils.print_nans(model_output, "model_output") model_output = model_output.exp() pred_tokens = model_output.argmax(dim=-1) pred_tokens = torch.where(xt == self.mask_index, pred_tokens, xt) pred_text, pred_img = self.decode_batch(pred_tokens, text_only=False, sample_modality=_x_modality) pred_img = decode_latents(self.config, self.get_vae(), pred_img) pred_txt = wrapped_batch_decode(self.tokenizer, pred_text, clean_up_tokenization_spaces=True, skip_special_tokens=True, disable_mask_after_eos=self.config.data.disable_mask_after_eos) else: xt_unmasked = xt != self.mask_index pred_txt, pred_img = self.sample(x0=xt, x0_unmask=xt_unmasked, sample_modality=_x_modality, **forward_kwargs) gen_table = wandb.Table(columns=["GT Img", "GT Caption", "Masked Img", "Masked Caption", "Pred Img", "Pred Caption", "Move chance"]) masked_txt, masked_img, mask_text_mask, mask_img_mask = self.decode_batch( xt, text_only=False, return_masks=True, allow_mask_index=True, sample_modality=_x_modality ) downscale_ratio = self.config.model.downscale_ratio latent_dim = self.config.data.resolution // downscale_ratio img_mask = einops.repeat( einops.rearrange(mask_img_mask[:, self.static_img_sl], "b (h w) -> b h w", h=latent_dim, w=latent_dim), "b h w -> b (h na) (w nb)", na=downscale_ratio, nb=downscale_ratio, ) gt_txt, gt_img = self.decode_batch(_input_ids, text_only=False, sample_modality=_x_modality) gt_txt = wrapped_batch_decode(self.tokenizer, gt_txt, clean_up_tokenization_spaces=True, skip_special_tokens=True, disable_mask_after_eos=self.config.data.disable_mask_after_eos) gt_img = decode_latents(self.config, self.get_vae(), gt_img) masked_txt = wrapped_batch_decode(self.tokenizer, masked_txt, clean_up_tokenization_spaces=True, skip_special_tokens=True, disable_mask_after_eos=self.config.data.disable_mask_after_eos) masked_img = gt_img.clone().permute(0, 2, 3, 1) masked_img[img_mask] = torch.tensor([0.5, 0.5, 0.5], dtype=masked_img.dtype, device=masked_img.device) masked_img = masked_img.permute(0, 3, 1, 2) for _gt_img, _gt_txt, _masked_img, _masked_txt, _pred_img, _pred_txt, _move_chance in zip( gt_img, gt_txt, masked_img, masked_txt, pred_img, pred_txt, move_chance ): gen_table.add_data( wandb.Image(_gt_img), _gt_txt, wandb.Image(_masked_img), _masked_txt, wandb.Image(_pred_img), _pred_txt, _move_chance ) table_suffix = f"_{batch_idx}" table_dict[f"{mask_name}_sample_table{table_suffix}"] = gen_table log({**table_dict, "trainer/global_step": self.global_step}) def log_flops(self, batch, batch_idx): use_torch_tnt = False use_native_torch = True use_fvcore = False with torch.enable_grad(): with torch.autocast(self.device.type, dtype=self.dtype): new_batch_idxs = batch["input_ids"].new_ones((self.config.loader.batch_size, self.config.model.length)) if use_fvcore: # Broken due to some issue with triton from fvcore.nn import (ActivationCountAnalysis, FlopCountAnalysis, flop_count_str, flop_count_table) example_input = (new_batch_idxs, None) fca = FlopCountAnalysis(self.accelerator.unwrap_model(self.backbone), example_input) aca = ActivationCountAnalysis(self.accelerator.unwrap_model(self.backbone), example_input) print(flop_count_table(fca, max_depth=1)) print(flop_count_str(fca)) print(fca.total()) if use_torch_tnt: from torchtnt.utils.module_summary import get_module_summary module_summary = get_module_summary(self.backbone, module_args=(new_batch_idxs, None), module_kwargs={}) rprint(module_summary) rprint(f"TorchTNT Forward FLOPs: {module_summary.flops_forward / 1e12:.2f} FLOPs") rprint(f"TorchTNT Backward FLOPs: {module_summary.flops_backward / 1e12:.2f} FLOPs") rprint(f"TorchTNT Total FLOPs: {(module_summary.flops_forward + module_summary.flops_backward) / 1e12:.2f} FLOPs") if use_native_torch: from torch.utils.flop_counter import FlopCounterMode flop_counter = FlopCounterMode(self.backbone, display=True, depth=3) with flop_counter: fake_batch = {} fake_batch["input_ids"] = new_batch_idxs fake_batch['attention_mask'] = batch['attention_mask'].new_ones(new_batch_idxs.shape) if 'modality' in batch: fake_batch['modality'] = batch['modality'].new_ones(new_batch_idxs.shape) fake_batch['x0'] = fake_batch["input_ids"] t = self._sample_t(fake_batch['x0'].shape[0], fake_batch['x0'].device) sigma, dsigma = self.noise(t) move_chance = 1 - torch.exp(-sigma[:, None]) xt = self.q_xt(fake_batch['x0'], move_chance) fake_batch['xt'] = xt if self.config.trainer.image_mode == "continuous": B, T = fake_batch["input_ids"].shape indices = fake_batch["input_ids"].to(batch['text_tokens'].dtype) fake_sigma = torch.ones(B, T, device=self.device).long() fake_x_img_emb = torch.randn(B, T, 4 * (self.config.model.patching_downscale ** 2), device=self.device) fake_modality = torch.zeros(B, T, device=self.device, dtype=torch.long) fake_modality[:, self.config.model.txt_length:] = True logits = self.backbone(indices=indices, sigma=fake_sigma, continuous_mode=True, x_img_emb=fake_x_img_emb, modality=fake_modality) # todo remove hardcoding 4 else: logits = self.backbone(fake_batch["input_ids"], sigma=None, modality=fake_batch.get("modality", None)) from transformers.modeling_outputs import \ CausalLMOutputWithPast if isinstance(logits, torch.Tensor): logits = logits elif isinstance(logits, tuple): logits = logits[0] elif isinstance(logits, CausalLMOutputWithPast): logits = logits.logits loss = logits.mean().to(torch.float32) loss.backward() total_flops = flop_counter.get_total_flops() rprint(f"Total FLOPs Per Sample Fwd+Bwd: {(total_flops / self.config.loader.batch_size) / 1e12:.2f} TFLOPs") rprint(f"Total FLOPs Per Fwd+Bwd: {total_flops / 1e12:.2f} TFLOPs") rprint(f"Total FLOPs Per Global Step: {(total_flops / 1e12) * self.world_size * self.gradient_accumulation_steps:.2f} TFLOPs") rprint(f"GPU available FLOP/s: {get_available_flops(new_batch_idxs.device, self.dtype) / 1e12:.2f} TFLOP/s") rprint(f"Total available FLOP/s: {(get_available_flops(new_batch_idxs.device, self.dtype) / 1e12) * self.world_size * self.gradient_accumulation_steps:.2f} TFLOP/s") rprint(f"Used Batch Size: {self.config.loader.batch_size} for FLOP Calculations") @torch.inference_mode() def _ddpm_update(self, x, t, dt, **kwargs): sigma_t, _ = self.noise(t) sigma_s, _ = self.noise(t - dt) if sigma_t.ndim > 1: sigma_t = sigma_t.squeeze(-1) if sigma_s.ndim > 1: sigma_s = sigma_s.squeeze(-1) assert sigma_t.ndim == 1, sigma_t.shape assert sigma_s.ndim == 1, sigma_s.shape move_chance_t = 1 - torch.exp(-sigma_t) move_chance_s = 1 - torch.exp(-sigma_s) move_chance_t = move_chance_t[:, None, None] move_chance_s = move_chance_s[:, None, None] nfe_cnt = 0 _sigma = None if getattr(self.config.trainer, "force_null_sigma", False) else sigma_t p_x0 = self._ddpm_forward(x, t, _sigma, **kwargs) nfe_cnt += 1 assert move_chance_t.ndim == p_x0.ndim # Technically, this isn't q_xs since there's a division # term that is missing. This division term doesn't affect # the samples. q_xs = p_x0 * (move_chance_t - move_chance_s) q_xs[:, :, self.mask_index] = move_chance_s[:, :, 0] _x = _sample_categorical(q_xs) copy_flag = (x != self.mask_index).to(x.dtype) del p_x0, q_xs, move_chance_t, move_chance_s return copy_flag * x + (1 - copy_flag) * _x, nfe_cnt @torch.inference_mode() def _ddpm_caching_update(self, x, t, dt, p_x0=None, x0=None, x0_unmask=None, modality=None,**kwargs): assert self.config.noise.type == "loglinear" sigma_t, _ = self.noise(t) if t.ndim > 1: t = t.squeeze(-1) nfe_cnt = 0 assert t.ndim == 1 move_chance_t = t[:, None, None] move_chance_s = (t - dt)[:, None, None] assert move_chance_t.ndim == 3, move_chance_t.shape if p_x0 is None: _sigma = None if getattr(self.config.trainer, "force_null_sigma", False) else sigma_t p_x0 = self._ddpm_forward(x, t, _sigma, x0=x0, x0_unmask=x0_unmask, modality=modality, **kwargs) nfe_cnt += 1 assert move_chance_t.ndim == p_x0.ndim if self.config.trainer.force_bf16_eval: empty_device_cache() q_xs = p_x0 * (move_chance_t - move_chance_s) q_xs[:, :, self.mask_index] = move_chance_s[:, :, 0] _x = _sample_categorical(q_xs) copy_flag = (x != self.mask_index).to(x.dtype) if self.config.trainer.force_bf16_eval: empty_device_cache() if self.config.trainer.ar_shift: if x0 is not None: _x = torch.cat([x0[:, [0]], _x], dim=1) else: _x = torch.cat([torch.full_like(_x[..., :1], fill_value=self.tokenizer.pad_token_id), _x], dim=1) del q_xs, move_chance_t, move_chance_s return p_x0, copy_flag * x + (1 - copy_flag) * _x, nfe_cnt @try_except(write_error_to_file=True, clear_cuda_cache=True) @torch.inference_mode() def _sample( self, num_steps=None, eps=1e-5, text_only=True, x0=None, x0_unmask=None, batch_size_per_gpu=None, example_batch=None, sample_batch_idx=None, sample_modality=None, sample_ids=None, return_raw_data=False, **kwargs, ): """Generate samples from the model.""" if not (x0 is None) == (x0_unmask is None): breakpoint() assert (x0 is None) == (x0_unmask is None), f"x0: {x0} x0_unmask: {x0_unmask}" batch_size_per_gpu = (x0.shape[0] if x0 is not None else self.config.loader.eval_batch_size) if batch_size_per_gpu is None else batch_size_per_gpu sample_modality = kwargs.get("modality", None) if sample_modality is None else sample_modality kwargs['modality'] = sample_modality kwargs['sample_ids'] = sample_ids return_nfe = kwargs.pop('return_nfe', False) is_sample_masking = kwargs.pop('is_sample_masking', False) allow_interleaved_conditional = kwargs.pop('allow_interleaved_conditional', False) nfe_cnt = 0 assert batch_size_per_gpu > 0 if num_steps is None: num_steps = self.config.sampling.steps if getattr(self.config.eval, "test_eval_speed", False) and getattr(self.config.eval, 'eval_at_ratio_length', False): num_steps = self.config.model.length if getattr(self.config.eval, "num_steps_ratio", None) is not None: num_steps = int(num_steps * self.config.eval.num_steps_ratio) decode_kwargs = dict(sample_modality=sample_modality, return_raw_data=return_raw_data, is_sample_masking=is_sample_masking) if x0 is not None and x0_unmask is not None: x = self._sample_prior(batch_size_per_gpu, x0.shape[1]).to(self.device) decode_kwargs['x0_unmask'] = x0_unmask if getattr(self.config.eval, "visualize_sample", False): x_viz = x.clone() x_viz = torch.where(x0_unmask, x0, x) _mask_id = self.tokenizer("mask")['input_ids'] assert len(_mask_id) == 3 x_viz[x_viz == self.mask_index] = _mask_id[1] ret_txt, ret_img = self.decode_sampling(x_viz, text_only, **kwargs, **decode_kwargs, image_save_postfix="_masked_input") print(ret_txt) elif (self.config.trainer.interleaved and not self.config.backbone == "chameleon") and allow_interleaved_conditional: assert self.config.trainer.interleaved_training_flex_attention x0 = example_batch['input_ids'].to(self.device) total_samples = getattr(self.config.eval, "num_uncond_sample_batches", 1) - 1 half_uncond = getattr(self.config.eval, "half_uncond", False) if not half_uncond or sample_batch_idx >= total_samples // 2: unmask_modality = getattr(self.config.eval, "unmask_modality", sample_batch_idx % 2) x0_unmask = sample_modality == unmask_modality if x0_unmask.sum() == x0.numel(): unmask_modality = 1 - unmask_modality x0_unmask = sample_modality == unmask_modality if x0.shape != sample_modality.shape: breakpoint() if unmask_modality == 1: x0_unmask = torch.zeros_like(x0_unmask) for i in range(x0.shape[0]): eos_pos = (x0[i] == self.tokenizer.eos_token_id).nonzero(as_tuple=True)[0] if len(eos_pos) > 0: idx = random.randint(0, len(eos_pos) - 2) x0_unmask[i, :] = True if len(eos_pos) >= idx + 1: _sl = slice(eos_pos[idx], None) else: _sl = slice(eos_pos[idx] + 2, eos_pos[idx+1] - 1) x0_unmask[i, _sl] = (sample_modality[i, _sl] == 1) # Set first sentence to be unmasked for i in range(x0.shape[0]): eos_pos = (x0[i] == self.tokenizer.eos_token_id).nonzero(as_tuple=True)[0] if len(eos_pos) > 0: assert (eos_pos[0] < 48) or (sample_modality[i].sum() == 0), f"eos_pos: {eos_pos}" x0_unmask[i, :eos_pos[0]+1] = True if unmask_modality == 1 and x0_unmask.sum() == 0: x0_unmask = torch.ones_like(x0_unmask) print(f"Found no umasked tokens, unmasking random sequences") for i in range(x0.shape[0]): seq_len = (x0[i] != self.tokenizer.pad_token_id).sum() if seq_len == 0: continue start_pos = random.randint(0, seq_len-1) max_len = min(seq_len - start_pos, 200) unmask_len = random.randint(1, max_len) x0_unmask[i, start_pos:start_pos+unmask_len] = False gprint(f"Unmasking modality: {unmask_modality}, Unmasking {(x0_unmask.sum() / x0_unmask.numel()):.2%} of image tokens. Txt tokens: {(sample_modality == 0).sum()}, Img tokens: {(sample_modality == 1).sum()}") x0_unmask[~example_batch['attention_mask']] = True x = self._sample_prior(batch_size_per_gpu, self.config.model.length).to(self.device) decode_kwargs['x0_unmask'] = x0_unmask x = torch.where(x0_unmask, x0, x) if getattr(self.config.eval, "visualize_sample", False): x_viz = x.clone() _mask_id = self.tokenizer("mask")['input_ids'] assert len(_mask_id) == 3 _mask_id = _mask_id[1] x_viz[x == self.mask_index] = _mask_id self.decode_sampling(x_viz, text_only, **kwargs, **decode_kwargs, image_save_postfix="_x0_unmasked") if self.parameterization == "ar" or getattr(self.config.eval, "eval_large_batch", None) is not None: rprint(f"Masking all tokens by default.") x0_unmask = torch.zeros(*x0.shape, device=x0.device).to(torch.bool) else: rprint(f"Hit chamelon sample") if sample_batch_idx == getattr(self.config.eval, "num_uncond_sample_batches", 1) - 1: x0_unmask = torch.zeros(*x0.shape, device=x0.device, dtype=torch.bool) x0_unmask[..., -20:] = True rprint(f"Unmasking first {x0_unmask.shape[-1] // 2} tokens") else: x0_unmask = torch.rand(*x0.shape, device=x0.device) < (sample_batch_idx / 60) rprint(f"Unmasking {(sample_batch_idx / 60)} of image_tokens, {x0_unmask.sum()}") x = self._sample_prior(batch_size_per_gpu, x0.shape[1]).to(self.device) _img_indices = torch.isin(x0, torch.tensor(list(image_indices), device=self.device)) if getattr(self.config.eval, "unmask_chameleon_txt", False): rprint(f"Unmasking all text tokens") x0_unmask |= _img_indices x0_unmask[:, :4] = True rprint(f"All tokens: {x0_unmask.tolist()}") # assert sample_modality is None # decode_kwargs['sample_modality'] = torch.isin(x0, torch.tensor(list(image_indices), device=self.device)).to(torch.long) else: x0_unmask |= (~_img_indices) kwargs['forward_attention_mask'] = attention_mask decode_kwargs['image_indices'] = image_indices decode_kwargs['x0_unmask'] = x0_unmask rprint(f"Unmasking: {torch.sum(x0_unmask)}") else: x = self._sample_prior(batch_size_per_gpu, self.config.model.length).to(self.device) decode_kwargs['x0_unmask'] = x0_unmask if self.config.trainer.interleaved_training_flex_attention: assert 'sample_ids' in kwargs kwargs['block_mask'] = get_interleaved_block_mask(kwargs['sample_ids'], x.shape[0], x.shape[-1], self.device) if num_steps > (~x0_unmask).sum(dim=-1).min(): rprint(f"num_steps {num_steps} > sequence length {(~x0_unmask).sum(dim=-1).min()}, setting num_steps to sequence length") num_steps = (~x0_unmask).sum(dim=-1).min() if self.parameterization == "ar": with show_memory_usage(empty_cache=True): out, nfe_cnt = self._ar_sampler(batch_size_per_gpu, x0=x0, x0_unmask=x0_unmask, **kwargs) res = self.decode_sampling(out, text_only, **kwargs, **decode_kwargs) if return_nfe: return res, nfe_cnt return res if x0 is not None and x0_unmask is not None: x = torch.where(x0_unmask, x0, x) if self.sampler == "maskgit" or self.sampler == "first_hitting" or self.sampler == "maskgit_nucleus": sampling_schedule = 'arccos' if self.sampler in ['maskgit', 'maskgit_nucleus'] else 'linear' # v1 # schedule = adap_sche(num_steps, mode=sampling_schedule, seq_len=x.shape[-1], leave=False) # v2 # make seq length equal to max number of masked tokens in any sample in the batch # Calculate the number of masked tokens for each sample in the batch # num_masked = (x == self.mask_index).sum(dim=-1) # Get the maximum number of masked tokens across all samples # min_masked = num_masked.min().item() # schedule = adap_sche(num_steps, mode=sampling_schedule, seq_len=min_masked, leave=False) # v3 - use x shape schedule = adap_sche(x=x, step=num_steps, mask_index=self.mask_index, mode=sampling_schedule) print(f"schedule: {schedule}") timesteps = torch.linspace(1, eps, num_steps + 1, device=self.device) dt = (1 - eps) / num_steps p_x0_cache = None is_x_sliced = False attention_caching = self.config.eval.attention_caching attention_caching_txt_to_img_ratio = getattr(self.config.eval, "attention_caching_txt_to_img_ratio", 10) if attention_caching: backbone = self.accelerator.unwrap_model(self.backbone) backbone.set_flex_attention_cache(x.shape[0], x.shape[1], self.device, self.dtype) full_data = dict() x_next = None # At the beginning of _sample method, after initializing variables if getattr(self.config.eval, "visualize_denoising", False): denoising_steps = [x.clone()] for i in range(num_steps): t = timesteps[i] * torch.ones(x.shape[0], 1, device=self.device, dtype=self.dtype if self.config.trainer.force_bf16_eval else torch.float32) if attention_caching: if i % attention_caching_txt_to_img_ratio == 0: if is_x_sliced: def replace_new_data(_key, _new_data): if full_data[_key] is not None: full_data[_key][:,self.static_txt_sl] = _new_data return full_data[_key] x = replace_new_data("x", x) x0 = replace_new_data("x0", x0) x0_unmask = replace_new_data("x0_unmask", x0_unmask) p_x0_cache = replace_new_data("p_x0_cache", p_x0_cache) kwargs["modality"] = replace_new_data("modality", kwargs.get("modality", None)) del full_data full_data = dict() is_x_sliced = False update_cache_slice = None block_mask = True elif (i - 1) % attention_caching_txt_to_img_ratio == 0: update_cache_slice = slice(0, x.shape[1]) block_mask = get_block_mask( txt_batch_attn_dropout=torch.zeros(x.shape[0], dtype=torch.bool, device=x.device), img_batch_attn_dropout=torch.ones(x.shape[0], dtype=torch.bool, device=x.device), txt_length=self.config.model.txt_length, batch_size=x.shape[0], seq_len=x.shape[1], device=x.device ) else: update_cache_slice = self.static_txt_sl block_mask = True if not is_x_sliced: is_x_sliced = True def clone_if_valid(_data): if _data is not None: return _data.clone() else: return None def sl_if_valid(_data): if _data is not None: return _data[:, self.static_txt_sl] else: return None full_data.update(x=clone_if_valid(x), x0=clone_if_valid(x0), x0_unmask=clone_if_valid(x0_unmask), modality=clone_if_valid(kwargs.get("modality", None)), p_x0_cache=clone_if_valid(p_x0_cache)) x = sl_if_valid(x) x0 = sl_if_valid(x0) x0_unmask = sl_if_valid(x0_unmask) x_next = sl_if_valid(x_next) p_x0_cache = sl_if_valid(p_x0_cache) kwargs["modality"] = sl_if_valid(kwargs.get("modality", None)) kwargs["update_cache_slice"] = update_cache_slice kwargs["block_mask"] = block_mask if self.sampler == "maskgit": x, nfe_step_cnt = self._maskgit_update(x, t, dt, x0=x0, x0_unmask=x0_unmask, schedule=schedule, step=i, **kwargs) elif self.sampler == "maskgit_nucleus": x, nfe_step_cnt = self._maskgit_nucleus_update(x, t, dt, x0=x0, x0_unmask=x0_unmask, schedule=schedule, step=i, **kwargs) elif self.sampler == "first_hitting": x, nfe_step_cnt = self._first_hitting_update(x, t, dt, x0=x0, x0_unmask=x0_unmask, schedule=schedule, step=i, **kwargs) elif self.sampler == "ddpm": x, nfe_step_cnt = self._ddpm_update(x, t, dt, x0=x0, x0_unmask=x0_unmask, **kwargs) elif self.sampler == "ddpm_tweedie": assert not return_nfe, "Tweedie sampler does not support return_nfe" x = self._ddpm_update_finetune_controlled_tweedie(x, t, dt, sampling_step=i, **kwargs) nfe_step_cnt = 0 elif self.sampler == "ddpm_cache": p_x0_cache, x_next, nfe_step_cnt = self._ddpm_caching_update(x, t, dt, p_x0=p_x0_cache, x0=x0, x0_unmask=x0_unmask, **kwargs) if not torch.allclose(x_next, x) or self.time_conditioning: p_x0_cache = None # Disable caching x = x_next else: x, nfe_step_cnt = self._analytic_update(x, t, dt) nfe_cnt += nfe_step_cnt if self.tokenizer.eos_token_id in x and getattr(self.config.trainer, "force_after_eos_padding", False) and (self.tokenizer.eos_token_id != self.tokenizer.bos_token_id) and not attention_caching: after_first_eos = torch.cumsum(x == self.tokenizer.eos_token_id, dim=1).bool() after_first_eos_mask = after_first_eos.cumsum(dim=1) > 1 to_mask = ((after_first_eos_mask & (sample_modality == 0)) & (x != self.tokenizer.pad_token_id)) & (x != self.mask_index) x[to_mask] = self.tokenizer.pad_token_id if to_mask.sum() > 0: rprint(f"Masked an avg of {torch.sum(to_mask, dim=1).float().mean()} tokens due to EOS.") if x0 is not None and x0_unmask is not None: x = torch.where(x0_unmask, x0, x) # Add capture of current state for visualization if getattr(self.config.eval, "visualize_denoising", False) and i % getattr(self.config.eval, "visualize_step_interval", max(1, num_steps // 10)) == 0: denoising_steps.append(x.clone()) clear_gpu_memory_if_needed() if getattr(self.config.eval, "visualize_denoising", False) and denoising_steps: if denoising_steps[-1] is not x: denoising_steps.append(x.clone()) step_images = [] for step_x in denoising_steps: _, step_res = self.decode_sampling(step_x, text_only=False, bypass_return_interleaved_modalities_split=True, **kwargs, **decode_kwargs) if not isinstance(step_res, Image.Image): step_res = step_res[0] step_images.append(step_res) timestamp = datetime.now().strftime("%Y%m%d_%H%M%S") date_folder = datetime.now().strftime("%Y-%m-%d") save_dir = Path("/dev/shm") / os.getenv("USER", 'user') / "denoise_vis" / date_folder / f"{timestamp}.png" save_dir.parent.mkdir(parents=True, exist_ok=True) Im.concat_horizontal(step_images).save(save_dir) rprint(f"Saved denoising visualization to {save_dir}") if is_x_sliced: def replace_new_data(_key, _new_data): if full_data[_key] is not None: full_data[_key][:,self.static_txt_sl] = _new_data return full_data[_key] x = replace_new_data("x", x) x0 = replace_new_data("x0", x0) x0_unmask = replace_new_data("x0_unmask", x0_unmask) p_x0_cache = replace_new_data("p_x0_cache", p_x0_cache) kwargs["modality"] = replace_new_data("modality", kwargs.get("modality", None)) del full_data full_data = dict() is_x_sliced = False if self.config.sampling.noise_removal: t = timesteps[-1] * torch.ones(x.shape[0], 1, device=self.device) if self.sampler == "analytic": x = self._denoiser_update(x, t) else: unet_conditioning = self.noise(t)[0] x = self.forward(x=x, sigma=unet_conditioning, **kwargs).argmax(dim=-1) if x0 is not None and x0_unmask is not None: x = torch.where(x0_unmask, x0, x) res = self.decode_sampling(x, text_only, **kwargs, **decode_kwargs) if return_nfe: return res, nfe_cnt return res def decode_sampling(self, x, text_only, is_sample_masking=False, bypass_return_interleaved_modalities_split=False, **kwargs): if self.config.trainer.interleaved and getattr(self.config.eval, "return_interleaved_modalities_split", False) and not bypass_return_interleaved_modalities_split: decoded_data = self.decode_batch({"input_ids": x, **kwargs}, text_only=False) image_save_postfix = kwargs.get("image_save_postfix", None) assert len(decoded_data) == 1 all_imgs = [] all_txt = [] for i in range(min(len(decoded_data), 64)): sample_data, sample_modalities = decoded_data[i].to_list() ret = self.get_interleaved_image(sample_data, sample_modalities, image_save_postfix=image_save_postfix) all_txt_in_sample = [] all_img_in_sample = [] for j in range(len(sample_data)): if sample_modalities[j] == 0: text_samples = sample_data[j] pred_txt = wrapped_batch_decode( self.tokenizer, text_samples[None], clean_up_tokenization_spaces=False, skip_special_tokens=False, disable_mask_after_eos=True ) all_txt_in_sample.extend(pred_txt) else: img_samples = sample_data[j] pred_img = decode_latents(self.config, self.get_vae(), img_samples[None]) all_img_in_sample.extend([Im(x).pil for x in pred_img]) # in case we have text..... This causes [" text...", ""], which we merge below. if len(all_txt_in_sample) >= 2 and all_txt_in_sample[-1] == self.tokenizer.eos_token: all_txt_in_sample[-2] += all_txt_in_sample[-1] all_txt_in_sample.pop() all_txt.extend(all_txt_in_sample) all_imgs.extend(all_img_in_sample) print(f"Returning... all_txt: {all_txt}, all_imgs: {all_imgs}") for i in range(len(all_imgs)): filename = f"img_{get_rank()}_{str(time.time()).replace('.', '__')}.png" Im(all_imgs[i]).save(filename) return all_txt, all_imgs elif (self.config.trainer.interleaved and not is_sample_masking) or getattr(self.config.eval, "fake_interleaved", False): image_save_postfix = kwargs.get("image_save_postfix", None) decoded_data = self.decode_batch({"input_ids": x, **kwargs}, text_only=False) all_imgs = [] all_txt_ids = [] num_text_tokens = self.config.model.txt_length for i in range(min(len(decoded_data), 64)): sample_data, sample_modalities = decoded_data[i].to_list() all_imgs.append(self.get_interleaved_image(sample_data, sample_modalities, image_save_postfix=image_save_postfix)) all_txt_ids_in_sample = [] for j in range(len(sample_data)): if sample_modalities[j] == 0: text_samples = sample_data[j] if text_samples.shape[-1] < num_text_tokens: text_samples = torch.nn.functional.pad( text_samples, (0, num_text_tokens - text_samples.shape[-1]), value=self.tokenizer.pad_token_id ) else: text_samples = text_samples[..., :num_text_tokens] all_txt_ids_in_sample.append(text_samples) if len(all_txt_ids_in_sample) == 0: all_txt_ids_in_sample.append(torch.zeros((num_text_tokens), dtype=torch.long, device=self.device)) all_txt_ids.append(torch.cat(all_txt_ids_in_sample, dim=0)) if kwargs.get("return_raw_data", False): return all_txt_ids, all_imgs, x return all_txt_ids, all_imgs else: ret = self.decode_batch(x, text_only=text_only, **kwargs) if getattr(self.config.eval, "visualize_sample", False): self.save_image_text_pair(ret[1], ret[0][:, self.static_txt_sl]) return ret @tensorclass class InputData: # x0: Float[Tensor, "b c h w"] xt_ids: Integer[Tensor, "b h w c"] # x0_emb: Optional[Float[Tensor, "b h w 2"]] = None xt_img_embed: Optional[Float[Tensor, "b h w 2"]] = None modality: Bool[Tensor, "b h w"] = False sigma: Optional[Float[Tensor, "b"]] = None @torch.no_grad() def sample_transfusion( self, batch_size_per_gpu=None, text_only=False, # todo maybe make default True ): """Generate samples from the model in autoregressive discrete mode for text and diffusion for image.""" # x0 = example_batch["input_ids"] # (for img tokens?) # x0_emb = batch["img_emb"] B = batch_size_per_gpu if batch_size_per_gpu is not None else self.config.loader.eval_batch_size T = self.config.model.length C = self.config.model.downscale_ratio # = vae_latent_dim * (patching_downscale ** 2) # num_pred_tokens = T - 1 num_img_tokens = self.config.model.img_length num_img_diffusion_steps = self.config.sampling.steps # TODO @sid This should be what we want? but for interleaved, we should prob add eos after text and before start img. xt_ids = torch.full((B, T), fill_value=self.tokenizer.pad_token_id, dtype=torch.long, device=self.device) xt_ids[:, 0] = self.tokenizer.bos_token_id xt_img_embed = torch.zeros((B, T, C), device=self.device) modality = torch.zeros((B, T), dtype=torch.long, device=self.device) # assuming everything is text initially sigma = torch.zeros((B, T), dtype=self.dtype, device=self.device) data = InputData(xt_ids=xt_ids, xt_img_embed=xt_img_embed, modality=modality, sigma=sigma, batch_size=[B]) noise = torch.distributions.Gumbel(0, 1).sample((data.shape[0], T, self.vocab_size)).to(self.device) img_start_token_id = self.tokenizer.eos_token_id i = 1 # since we already have continuous_diffusion_mode = False while i < T: if continuous_diffusion_mode: # Diffusing mode img_sl = slice(i, i+num_img_tokens) data.modality[:, img_sl] = 1 data.xt_img_embed[:, img_sl] = self.sample_continuous_image(data, img_sl=img_sl, num_steps=num_img_diffusion_steps, return_embeddings=True) # (b, n_img, latent_dim * 4) i += num_img_tokens continuous_diffusion_mode = False break else: # autoregressive mode ar_sl = slice(None, i) if self.use_kv_cache: start_pos = i - 1 kv_sl = slice(start_pos, i) else: kv_sl = ar_sl start_pos=None pred_logits, pred_noise = self.forward(x=data.xt_ids[:, kv_sl], sigma=data.sigma[:, ar_sl], modality=data.modality[:, ar_sl], x_img_emb=data.xt_img_embed[:, ar_sl], disable_ar_shift=True, continuous_mode=True, start_pos=start_pos) pred_logits = pred_logits[:, -1] y = (pred_logits + noise[:, i]).argmax(-1) # y = (pred_logits).argmax(-1) data.xt_ids[:, i] = y # data.xt_ids[:, i + 1] = y i += 1 if not text_only and (i == self.config.model.txt_length-1 or torch.all(y == img_start_token_id)): # todo make variable continuous_diffusion_mode = True if self.config.model.use_kv_cache: backbone = self.accelerator.unwrap_model(self.backbone) backbone.reset_kv_cache(batch_size=self.config.model.inference_max_batch_size, seq_len=self.config.model.inference_max_seq_len, dtype=self.dtype, device=self.device) return data def sample_continuous_image(self, data: InputData, img_sl, num_steps=None, return_embeddings=False): if num_steps is None: num_steps = self.config.sampling.steps B = data.xt_img_embed.shape[0] noise_scheduler = self.vae.scheduler noise_scheduler.set_timesteps(num_steps, device=self.device) timesteps = noise_scheduler.timesteps data.xt_img_embed[:, img_sl] = torch.randn_like(data.xt_img_embed[:, img_sl]) visible_sl = slice(None, img_sl.stop) for i in range(num_steps+1): data.sigma[:, img_sl] = (timesteps[i] * torch.ones(B, device=self.device)).unsqueeze(-1) pred_logits, pred_noise = self.forward( x=data.xt_ids[:, visible_sl], sigma=data.sigma[:, visible_sl], x_img_emb=data.xt_img_embed[:, visible_sl], modality=data.modality[:, visible_sl], disable_ar_shift=True, continuous_mode=True ) # exp not needed since we predict noise (b,n,c) in latent space directly, not a probability distribution data.xt_img_embed[:, img_sl] = noise_scheduler.step(pred_noise[:, img_sl], timesteps[i], data.xt_img_embed[:, img_sl]).prev_sample if return_embeddings: return data.xt_img_embed[:, img_sl] # (b, n_img, latent_dim * 4) # x = x.transpose(1, 2) # data.xt_img_embed[:, img_sl] = data.xt_img_embed[:, img_sl].transpose(1, 2) text_tokens, img_tokens = self.decode_batch(data.xt_ids[:, img_sl], text_only=False) return text_tokens, img_tokens def cfg(config, t, cat_p_x0): logit_c, logit_u = cat_p_x0.chunk(2, dim=0) _cfg = config.eval.cfg if not getattr(config.eval, "force_cfg_value", False): if _cfg == -1: _cfg = torch.linspace(0, 10, t.shape[0]).to(t.device) _w = (_cfg * (1 - t))[:, None, None] else: _w = _cfg return (1 + _w) * logit_c - _w * logit_u def nucleus_sampling_batch(logits, top_p=0.9, temperature=1.0): """ Perform nucleus (top-p) sampling on batched and sequenced logits. Args: logits (torch.Tensor): A tensor of shape (B, N, C) where B is the batch size, N is the sequence length, and C is the number of classes. top_p (float): The cumulative probability threshold for nucleus sampling. temperature (float): Temperature value for scaling logits. Returns: torch.Tensor: Indices sampled from the filtered distribution for each position, with shape (B, N). """ B, N, C = logits.shape # Apply softmax to get probabilities # probs = torch.nn.functional.softmax(logits / temperature, dim=-1) # Shape: (B, N, C) probs = logits / temperature # Sort the probabilities in descending order sorted_probs, sorted_indices = torch.sort(probs, descending=True, dim=-1) # Both shape: (B, N, C) # Compute the cumulative sum of probabilities cumulative_probs = torch.cumsum(sorted_probs, dim=-1) # Shape: (B, N, C) # Create a mask for top-p mask = cumulative_probs <= top_p # Shape: (B, N, C) # Ensure at least one token is included mask[:, :, 0] = True # Apply the mask to the sorted probabilities filtered_probs = sorted_probs * mask.float() # Shape: (B, N, C) # Renormalize the probabilities filtered_probs /= filtered_probs.sum(dim=-1, keepdim=True) # Shape: (B, N, C) # Sample from the renormalized distribution sampled_indices = torch.multinomial(filtered_probs.view(-1, C), num_samples=1).squeeze(-1) # Shape: (B*N) # Reshape sampled_indices to (B, N) sampled_indices = sampled_indices.view(B, N) # Gather the original indices based on sorted_indices final_indices = torch.gather(sorted_indices, -1, sampled_indices.unsqueeze(-1)).squeeze(-1) # Shape: (B, N) return final_indices def nucleus_sampling(logits, top_p=0.9, temperature=1.0): """ Perform nucleus (top-p) sampling on the given logits. Args: logits (torch.Tensor): A tensor of shape (B, C) where B is the batch size and C is the number of classes. top_p (float): The cumulative probability threshold for nucleus sampling. Returns: torch.Tensor: Indices sampled from the filtered distribution. """ # Apply softmax to get probabilities probs = torch.nn.functional.softmax(logits / temperature, dim=-1) # Sort the probabilities in descending order and get the sorted indices sorted_probs, sorted_indices = torch.sort(probs, descending=True, dim=-1) # Compute the cumulative sum of probabilities along the last dimension cumulative_probs = torch.cumsum(sorted_probs, dim=-1) # Create a mask to filter out probabilities that contribute to top_p mass mask = cumulative_probs <= top_p # Ensure at least one token is always included mask[..., 0] = True # Always include the most probable token # Zero out probabilities that are not part of the top-p mass filtered_probs = sorted_probs * mask.float() # Renormalize the filtered probabilities filtered_probs /= (filtered_probs.sum(dim=-1, keepdim=True)) # Sample from the renormalized distribution sampled_indices = torch.multinomial(filtered_probs, num_samples=1)[:, 0] # Map back to original indices final_indices = sorted_indices.gather(dim=-1, index=sampled_indices.unsqueeze(-1)).squeeze(-1) return final_indices def clear_gpu_memory_if_needed(): if torch.cuda.is_available(): current_memory = torch.cuda.memory_reserved() / torch.cuda.get_device_properties(0).total_memory if current_memory >= 0.50: torch.cuda.empty_cache() def _ar_sampler(self, B, x0=None, x0_unmask=None, modality=None, **kwargs): assert B > 0 assert (x0 is None) == (x0_unmask is None), f"x0: {x0} x0_unmask: {x0_unmask}" num_pred_tokens = self.config.model.length - 1 x = torch.zeros((B, num_pred_tokens + 1), dtype=torch.long, device=self.device) x[:, 0] = self.tokenizer.bos_token_id if x0 is not None: x = torch.where(x0_unmask, x0, x) split_cfg_batches = getattr(self.config.eval, "split_cfg_batches", False) and not self.config.model.use_kv_cache effective_bs = B * 2 if ((self.config.eval.cfg is not None and x0 is not None) and split_cfg_batches is False) else B top_p = getattr(self.config.eval, "top_p", None) temperature = getattr(self.config.eval, "temperature", 1.0) if self.config.model.use_kv_cache: assert getattr(self.config.model, "inference_max_batch_size", None) is None assert getattr(self.config.model, "inference_max_seq_len", None) is None self.accelerator.unwrap_model(self.backbone).reset_kv_cache( batch_size=effective_bs, seq_len=num_pred_tokens, dtype=self.dtype, device=self.device ) _x, _modality = None, None if self.config.eval.cfg is not None and x0 is not None: if split_cfg_batches is False: _x = torch.cat([x, torch.where(x0_unmask, self.mask_index, x)], dim=0) _modality = torch.cat([modality, modality], dim=0) nfe_cnt = 0 noise = torch.distributions.Gumbel(0, 1).sample((B, num_pred_tokens, self.vocab_size)).to(self.device) # precompute noise for i in range(num_pred_tokens): start_pos = i if self.use_kv_cache else None ar_sl = slice(start_pos, i+1) if self.config.eval.cfg is not None and x0 is not None: if split_cfg_batches: logit_c = self.forward( x=x[:, ar_sl], sigma=None, modality=modality[:, ar_sl], start_pos=start_pos, disable_ar_shift=True )[:, -1] logit_u = self.forward( x=torch.where(x0_unmask, self.mask_index, x)[:, ar_sl], sigma=None, modality=modality[:, ar_sl], start_pos=start_pos, disable_ar_shift=True )[:, -1] else: _x[:B] = x _x[B:] = torch.where(x0_unmask, self.mask_index, x) next_logits = self.forward(x=_x[:, ar_sl], sigma=None, modality=_modality[:, ar_sl], start_pos=start_pos, disable_ar_shift=True)[:, -1] logit_c, logit_u = next_logits.chunk(2, dim=0) _w = self.get_cfg_weight(1 - (i / num_pred_tokens)) next_logits = (1 + _w) * logit_c - _w * logit_u else: next_logits = self.forward(x=x[:, ar_sl], sigma=None, modality=modality[:, ar_sl], start_pos=start_pos, disable_ar_shift=True)[:, -1] if getattr(self.config.model, "force_argmax_valid_indices", False): # start_pos = i next_sl = slice(i + 1, i + 2) try: next_logits[..., self.text_vocab_size:] = torch.where((modality[:, next_sl] == 0), torch.finfo(next_logits.dtype).min, next_logits[..., self.text_vocab_size:]) next_logits[..., :self.text_vocab_size] = torch.where((modality[:, next_sl] == 1), torch.finfo(next_logits.dtype).min, next_logits[..., :self.text_vocab_size]) except: breakpoint() if top_p is not None: # do nucleus sampling y = nucleus_sampling(next_logits, top_p=top_p, temperature=temperature) else: next_logits = next_logits + noise[:, i] nfe_cnt += 1 y = (next_logits).argmax(-1) x[:, i + 1] = y if x0 is not None: x = torch.where(x0_unmask, x0, x) if not self.config.model.use_kv_cache: empty_device_cache() if getattr(self.config.eval, "force_empty_cache", False): empty_device_cache() if self.config.model.use_kv_cache: # TODO: PyTorch must have a b del noise, next_logits, _x, _modality self.accelerator.unwrap_model(self.backbone).reset_kv_cache( batch_size=effective_bs, seq_len=num_pred_tokens, dtype=self.dtype, device=self.device, set_to_none=True ) return x, nfe_cnt def handle_interleaved_decode(self, sample, allow_mask_index=False, new_mask_index=None, **kwargs): batch = sample sample_modality = sample.get("modality", None) sample = sample.get("input_ids", None) text_tokens = torch.where(sample_modality == 0, sample, self.tokenizer.pad_token_id) img_tokens = torch.where((sample_modality == 1), sample, self.mask_index) invalid_text_mask = (text_tokens >= self.text_vocab_size) & (sample_modality == 0) invalid_img_mask = (img_tokens < self.text_vocab_size) & (sample_modality == 1) mask_img_mask = (img_tokens == self.mask_index) & (sample_modality == 1) if invalid_text_mask.sum() > 0: assert allow_mask_index or self.config.model.force_argmax_valid_indices is False or self.config.sampling.predictor == "ddpm_tweedie" or self.config.parameterization == "ar", f"invalid_text_mask.sum(): {invalid_text_mask.sum()}, {invalid_text_mask.nonzero()[:4]}" text_tokens[invalid_text_mask] = self.mask_index if new_mask_index is not None: img_invalid_mask_v2 = ((img_tokens < self.text_vocab_size) & (img_tokens != self.mask_index)) sample = torch.where(sample_modality == 1, img_tokens - self.text_vocab_size, text_tokens) if invalid_img_mask.sum() > 0 or mask_img_mask.sum() > 0: if new_mask_index is not None: assert img_invalid_mask_v2.sum().item() == 0 sample[mask_img_mask] = new_mask_index else: sample[mask_img_mask] = 0 sample[invalid_img_mask] = 0 new_batch = {**batch, "input_ids": sample} new_batch = InterleavedBatch.custom_from_dict(new_batch) new_batch = new_batch.to_elements() return new_batch def decode_batch(self, sample, text_only=True, return_masks: bool = False, allow_mask_index: bool = False, new_mask_index=None, sample_modality=None, **kwargs ): if isinstance(sample, dict) or isinstance(sample, TensorDict): if self.config.trainer.interleaved or getattr(self.config.eval, "fake_interleaved", False): return handle_interleaved_decode(self, sample, allow_mask_index=allow_mask_index, new_mask_index=new_mask_index, **kwargs) else: sample_modality = sample.get("modality", None) sample = sample.get("input_ids", None) img_tokens = None continuous_mode = self.config.trainer.image_mode == "continuous" if continuous_mode: text_tokens, img_tokens = sample[..., self.static_txt_sl], sample[..., self.static_img_sl] elif self.unified_model and self.config.trainer.multimodal_batches and sample_modality is not None: if (sample_modality == 0).all(dim=-1).sum() > 0: text_tokens = torch.where(sample_modality == 0, sample, self.tokenizer.pad_token_id) img_tokens = torch.where((sample_modality == 1)[:, self.static_img_sl], sample[:, self.static_img_sl], self.mask_index) else: text_tokens = torch.where(sample_modality == 0, sample, self.tokenizer.pad_token_id) img_tokens = torch.where((sample_modality == 1), sample, self.mask_index) invalid_text_mask = text_tokens >= self.text_vocab_size if getattr(self.config.model, "add_labels", None) is not None: invalid_img_mask = (img_tokens < self.text_vocab_size) | (img_tokens >= (self.vocab_size - self.config.model.add_labels)) else: invalid_img_mask = (img_tokens < self.text_vocab_size) mask_text_mask = text_tokens == self.mask_index mask_img_mask = img_tokens == self.mask_index if invalid_text_mask.sum() > 0: assert allow_mask_index or self.config.model.force_argmax_valid_indices is False or self.config.sampling.predictor == "ddpm_tweedie" or self.config.parameterization == "ar", f"invalid_text_mask.sum(): {invalid_text_mask.sum()}, {invalid_text_mask.nonzero()[:4]}" text_tokens[invalid_text_mask] = self.mask_index if new_mask_index is not None: img_invalid_mask_v2 = ((img_tokens < self.text_vocab_size) & (img_tokens != self.mask_index)) img_tokens = img_tokens - self.text_vocab_size if invalid_img_mask.sum() > 0 or mask_img_mask.sum() > 0: if new_mask_index is not None: assert img_invalid_mask_v2.sum().item() == 0 img_tokens[mask_img_mask] = new_mask_index else: img_tokens[mask_img_mask] = 0 img_tokens[invalid_img_mask] = 0 if img_tokens.shape[-1] != self.config.model.img_length: if (sample_modality[:, -self.config.model.img_length:].sum(dim=-1) == self.config.model.img_length).all(): img_tokens = img_tokens[:, -self.config.model.img_length:] elif (sample_modality[:, :self.config.model.img_length].sum(dim=-1) == self.config.model.img_length).all(): img_tokens = img_tokens[:, :self.config.model.img_length] elif self.unified_model: text_tokens, img_tokens = sample[..., self.static_txt_sl], sample[..., self.static_img_sl] invalid_text_mask = text_tokens >= self.text_vocab_size invalid_img_mask = img_tokens < self.text_vocab_size mask_text_mask = text_tokens == self.mask_index mask_img_mask = img_tokens == self.mask_index if invalid_text_mask.sum() > 0: assert allow_mask_index or self.config.model.force_argmax_valid_indices is False or self.config.sampling.predictor == "ddpm_tweedie" or self.config.parameterization == "ar", f"invalid_text_mask.sum(): {invalid_text_mask.sum()}" text_tokens[invalid_text_mask] = self.mask_index if new_mask_index is not None: img_invalid_mask_v2 = ((img_tokens < self.text_vocab_size) & (img_tokens != self.mask_index)) img_tokens = img_tokens - self.text_vocab_size if invalid_img_mask.sum() > 0 or mask_img_mask.sum() > 0: assert allow_mask_index or self.config.model.force_argmax_valid_indices is False or self.config.sampling.predictor == "ddpm_tweedie" or self.config.parameterization == "ar", f"invalid_img_mask.sum(): {invalid_img_mask.sum()}" if new_mask_index is not None: assert img_invalid_mask_v2.sum().item() == 0 img_tokens[mask_img_mask] = new_mask_index else: img_tokens[mask_img_mask] = 0 img_tokens[invalid_img_mask] = 0 try: assert img_tokens.shape[-1] == self.config.model.img_length, f"img_tokens.shape[-1]: {img_tokens.shape[-1]}, config.model.img_length: {self.config.model.img_length}, sample_modality: {sample_modality}" except: breakpoint() elif self.image_model: text_tokens, img_tokens = None, sample else: text_tokens, img_tokens = sample, None if text_only: return text_tokens else: if return_masks: return text_tokens, img_tokens, mask_text_mask, mask_img_mask else: return text_tokens, img_tokens def optional_add_bos(self, _x, x0): if self.config.trainer.ar_shift: if x0 is not None: _x = torch.cat([x0[:, [0]], _x], dim=1) else: _x = torch.cat([torch.full_like(_x[..., :1], fill_value=self.tokenizer.pad_token_id), _x], dim=1) return _x def adap_sche(x, step, mask_index, mode="arccos"): """ Create a 2D sampling scheduler :param x -> torch.Tensor: input tensor with shape (B, seq_len) step -> int: number of prediction steps during inference mode -> str: the rate of value to unmask leave -> bool: tqdm arg on either to keep the bar or not :return scheduler -> torch.LongTensor(): 2D tensor of shape (B, max_seq_len) with schedules for each sample """ num_masked = (x == mask_index).sum(dim=-1).to(x.device) r = torch.linspace(1, 0, step) if mode == "root": val_to_mask = 1 - (r ** .5) elif mode == "linear": val_to_mask = 1 - r elif mode == "square": val_to_mask = 1 - (r ** 2) elif mode == "cosine": val_to_mask = torch.cos(r * math.pi * 0.5) elif mode == "arccos": val_to_mask = torch.arccos(r) / (math.pi * 0.5) else: return None val_to_mask = val_to_mask.to(x.device) schedules = [] for seq_len in num_masked: print(f"seq_len: {seq_len}") sche = (val_to_mask / val_to_mask.sum()) * seq_len sche = sche.round() sche[sche == 0] = 1 sche[-1] += seq_len - sche.sum() sche[-1] = max(sche[-1], 0) schedules.append(sche.int()) return torch.stack(schedules, dim=0) @torch.no_grad() def _first_hitting_update(self, x, t, dt, schedule=None, step=None, **kwargs): sigma_t, _ = self.noise(t) sigma_s, _ = self.noise(t - dt) if sigma_t.ndim > 1: sigma_t = sigma_t.squeeze(-1) if sigma_s.ndim > 1: sigma_s = sigma_s.squeeze(-1) assert sigma_t.ndim == 1, sigma_t.shape assert sigma_s.ndim == 1, sigma_s.shape move_chance_t = 1 - torch.exp(-sigma_t) move_chance_s = 1 - torch.exp(-sigma_s) move_chance_t = move_chance_t[:, None, None] move_chance_s = move_chance_s[:, None, None] _sigma = None if getattr(self.config.trainer, "force_null_sigma", False) else sigma_t nfe_cnt = 0 p_x0 = self._ddpm_forward(x, t, _sigma, **kwargs) nfe_cnt += 1 copy_flag = (x != self.mask_index) # [B, N] # TODO: inefficient that we sample all tokens even if we only want to unmask a few _x = _sample_categorical(p_x0) num_unmask = schedule[:, step] num_unmask = torch.minimum(num_unmask, (~copy_flag).sum(dim=-1)) if torch.all(num_unmask <= 0): return x, nfe_cnt random_values = torch.rand_like(copy_flag, dtype=torch.float32) random_values = torch.where(~copy_flag, random_values, -1) _, indices = torch.sort(random_values, dim=-1, descending=True) range_tensor = torch.arange(copy_flag.shape[-1], device=copy_flag.device).expand(copy_flag.shape) final_mask = range_tensor < num_unmask[:, None] result = torch.zeros_like(copy_flag) result.scatter_(-1, indices, final_mask) return torch.where(result, _x, x), nfe_cnt @torch.no_grad() def _maskgit_update(self, x, t, dt, schedule=None, step=None, **kwargs): sigma_t, _ = self.noise(t) sigma_s, _ = self.noise(t - dt) if sigma_t.ndim > 1: sigma_t = sigma_t.squeeze(-1) if sigma_s.ndim > 1: sigma_s = sigma_s.squeeze(-1) assert sigma_t.ndim == 1, sigma_t.shape assert sigma_s.ndim == 1, sigma_s.shape move_chance_t = 1 - torch.exp(-sigma_t) move_chance_s = 1 - torch.exp(-sigma_s) move_chance_t = move_chance_t[:, None, None] move_chance_s = move_chance_s[:, None, None] nfe_cnt = 0 _sigma = None if getattr(self.config.trainer, "force_null_sigma", False) else sigma_t copy_flag = (x != self.mask_index) r_temp = getattr(self.config.eval, 'maskgit_r_temp', 10) num_unmask = schedule[:, step] # rprint(f"num_unmask: {num_unmask}, (~copy_flag).sum(dim=-1).max().item(): {(~copy_flag).sum(dim=-1).max().item()}") num_unmask = torch.minimum(num_unmask, (~copy_flag).sum(dim=-1)) if torch.all(num_unmask <= 0): return x, nfe_cnt p_x0 = self._ddpm_forward(x, t, _sigma, **kwargs) nfe_cnt += 1 pred_code = torch.multinomial(p_x0.view(-1, p_x0.shape[-1]), 1)[:, 0].view(p_x0.shape[:-1]) conf = torch.gather(p_x0, -1, pred_code.unsqueeze(-1)).squeeze(-1) rand = r_temp * torch.from_numpy(np.random.gumbel(size=pred_code.shape)).to(self.device) * t conf = torch.log(conf.squeeze()) + rand if self.config.trainer.ar_shift: copy_flag = copy_flag[:, 1:] # do not predict on already predicted tokens conf = torch.where(copy_flag, -torch.inf, conf) # Choose the predicted tokens with the highest confidence # Get the maximum num_unmask across the batch for top k max_num_unmask = num_unmask.max().item() # Use top k to get the highest confidence tokens tresh_conf, indice_mask = torch.topk(conf, k=max_num_unmask, dim=-1) # tresh_conf is [B, max_num_unmask] # for each sample i, we want to get num_unmask[i] highest confidence tokens # handle the case where num_unmask is 0 by setting the threshold to inf gather_indices = torch.clamp(num_unmask - 1, min=0)[:, None] tresh_conf = tresh_conf.gather(-1, gather_indices) tresh_conf = torch.where((num_unmask <= 0)[:, None], torch.inf, tresh_conf) # replace the chosen tokens conf = (conf >= tresh_conf.expand_as(conf)) if self.config.trainer.ar_shift: out = torch.where(conf, pred_code, x[:, 1:]) out = optional_add_bos(self, out, x0=kwargs.get("x0", None)) else: out = torch.where(conf, pred_code, x) if getattr(self.config.eval, "allow_token_updates", False): out = torch.where(copy_flag, p_x0.argmax(dim=-1), out) del conf, indice_mask, gather_indices, tresh_conf, pred_code, p_x0 if getattr(self.config.eval, "force_empty_cache", False): empty_device_cache() return out, nfe_cnt @torch.no_grad() def _maskgit_nucleus_update(self, x, t, dt, schedule=None, step=None, **kwargs): nfe_cnt = 0 _sigma = None # sigma useless for non time-conditioned models like us copy_flag = (x != self.mask_index) if self.config.trainer.ar_shift: copy_flag = copy_flag[:, 1:] assert getattr(self.config.eval, 'maskgit_r_temp', None) != None r_temp = getattr(self.config.eval, "maskgit_r_temp", 10) num_unmask = schedule[:, step] num_unmask = torch.minimum(num_unmask, (~copy_flag).sum(dim=-1)) if num_unmask <= 0: return x, nfe_cnt p_x0 = self._ddpm_forward(x, t, _sigma, **kwargs) nfe_cnt += 1 top_p = getattr(self.config.eval, "top_p", 0.95) temperature = getattr(self.config.eval, "temperature", 0.9) if top_p is not None: pred_code = nucleus_sampling_batch(p_x0, top_p=top_p, temperature=temperature) else: pred_code = torch.multinomial(p_x0.view(-1, p_x0.shape[-1]), 1)[:, 0].view(p_x0.shape[:-1]) # pred tokens? conf = torch.gather(p_x0, -1, pred_code.unsqueeze(-1)).squeeze(-1) rand = r_temp * torch.from_numpy(np.random.gumbel(size=pred_code.shape)).to(self.device) * t conf = torch.log(conf.squeeze()) + rand # do not predict on already predicted tokens conf = torch.where(copy_flag, -torch.inf, conf) # chose the predicted token with the highest confidence # get the maximum num_unmask across the batch for top k max_num_unmask = num_unmask.max().item() tresh_conf, indice_mask = torch.topk(conf, k=max_num_unmask, dim=-1) # for each sample i, we want to get num_unmask[i] highest confidence tokens # handle the case where num_unmask is 0 by setting the threshold to inf gather_indices = torch.clamp(num_unmask - 1, min=0)[:, None] tresh_conf = tresh_conf.gather(-1, gather_indices.long()) tresh_conf = torch.where((num_unmask <= 0)[:, None], torch.inf, tresh_conf) # replace the chosen tokens conf = (conf >= tresh_conf) if self.config.trainer.ar_shift: out = torch.where(conf, pred_code, x[:, 1:]) out = optional_add_bos(self, out, x0=kwargs.get("x0", None)) else: out = torch.where(conf, pred_code, x) return out, nfe_cnt @torch.no_grad() def _ddpm_update_finetune_controlled_tweedie(self, x, t, dt, reward_model=None, repeats=10, sampling_step=None, **kwargs): sigma_t, _ = self.noise(t) sigma_s, _ = self.noise(t - dt) if sigma_t.ndim > 1: sigma_t = sigma_t.squeeze(-1) if sigma_s.ndim > 1: sigma_s = sigma_s.squeeze(-1) assert sigma_t.ndim == 1, sigma_t.shape assert sigma_s.ndim == 1, sigma_s.shape move_chance_t = 1 - torch.exp(-sigma_t) move_chance_s = 1 - torch.exp(-sigma_s) move_chance_t = move_chance_t[:, None, None] move_chance_s = move_chance_s[:, None, None] _sigma = None if getattr(self.config.trainer, "force_null_sigma", False) else sigma_t p_x0 = self._ddpm_forward(x, t, _sigma, **kwargs) assert move_chance_t.ndim == p_x0.ndim if self.config.trainer.force_bf16_eval: empty_device_cache() q_xs = p_x0 * (move_chance_t - move_chance_s) q_xs[:, :, self.mask_index] = move_chance_s[:, :, 0] copy_flag = (x != self.mask_index).to(x.dtype) del p_x0, move_chance_t, move_chance_s resample_interval = getattr(self.config.eval, "tweedie_resample_interval", None) return_single_sample = False _repeats = repeats if resample_interval is not None and sampling_step % resample_interval != 0: _repeats = 1 return_single_sample = True # Generate 10 samples for each position samples = [copy_flag * x + (1 - copy_flag) * optional_add_bos(self, _sample_categorical(q_xs), x0=kwargs.get("x0", None)) for _ in range(_repeats)] if return_single_sample: return samples[0] if not hasattr(self, "reward_model"): from unidisc.tokenizers.laion_aesthetic_v2 import get_predictor_func self.reward_model = get_predictor_func(self.device) rprint("Using reward model. Should delete this after eval.") # TODO: Make this more general (e.g., support interleaved text/image) # Get scores for each sample scores = [] expected_x0_args = [] for i in range(repeats): # Use Tweedie's formula. Aim to calcuate r(E[x_0|x_t]) expected_x0 = self._ddpm_forward(samples[i], t, sigma_s, **kwargs) # Calcualte E[x_0|x_t] if getattr(self.config.eval, "use_generic_tweedie_rewards", False): assert self.config.trainer.interleaved expected_x0_arg = torch.argmax(expected_x0, dim=-1) expected_x0_args.append(expected_x0_arg) assert samples[0].shape[0] == 1 else: expected_x0[..., :self.text_vocab_size] = 0 expected_x0[..., self.mask_index] = 0 expected_x0[..., self.text_vocab_size:] = expected_x0[..., self.text_vocab_size:] + 1e-6 expected_x0_arg = torch.argmax(expected_x0, dim=-1) expected_x0_arg = expected_x0_arg - self.text_vocab_size expected_x0_img_pred = decode_latents(self.config, self.get_vae(), expected_x0_arg[:, self.static_img_sl]) scorer = self.reward_model(expected_x0_img_pred) # [B] scorer = scorer.squeeze() if scorer.ndim == 0: scorer = scorer[None] scores.append(torch.from_numpy(scorer)) if getattr(self.config.eval, "use_generic_tweedie_rewards", False): orig_modality = kwargs.get("modality", None) if orig_modality is not None: orig_modality = orig_modality.clone() kwargs["modality"] = orig_modality.repeat(len(expected_x0_args), 1) orig_sample_ids = kwargs.get("sample_ids", None) if orig_sample_ids is not None: orig_sample_ids = orig_sample_ids.clone() kwargs["sample_ids"] = orig_sample_ids.repeat(len(expected_x0_args), 1) decoded_data = self.decode_batch({"input_ids": torch.cat(expected_x0_args, dim=0), **kwargs}, text_only=False) kwargs["modality"] = orig_modality kwargs["sample_ids"] = orig_sample_ids all_imgs = [] all_txt_ids = [] for i in range(len(decoded_data)): sample_data, sample_modalities = decoded_data[i].to_list() assert len(sample_data) == 2 assert sample_modalities == [0, 1] sample_text = wrapped_batch_decode( self.tokenizer, sample_data[0][None], clean_up_tokenization_spaces=True, skip_special_tokens=False, disable_mask_after_eos=True ) assert len(sample_text) == 1 all_txt_ids.append(sample_text[0]) all_imgs.append(self.get_interleaved_image(sample_data, sample_modalities, single_image_only=True, disable_img_save=True)) all_imgs = torch.cat(all_imgs, dim=0) reward_config = getattr(self.config.eval, "tweedie_reward_config") scores = self.get_rewards(reward_config, all_imgs, all_txt_ids).float().cpu() scores = torch.softmax(scores, dim=0)[None] else: scores = torch.stack(scores, dim=1) scores = torch.softmax(scores, dim=1) # Convert scores to probabilities for each batch # Sample from the weighted categorical distribution formed by scores # Select the index of the highest score for each batch final_sample_indices = torch.argmax(scores, dim=1) # Shape [batch_size] final_samples = [samples[final_sample_indices[j]][j,:] for j in range(x.size(0))] # Select the chosen samples using gathered indices final_samples = torch.stack(final_samples, dim=0) return final_samples @try_except(write_error_to_file=True, clear_cuda_cache=True) def visualize_samples(self, batch, batch_idx, split='val'): split = split.removesuffix("/") gt_txt = None step_metrics = self.get_step_metrics() step_metrics["trainer/global_step"] = (batch_idx if self.config.eval.visualize_data_only else self.global_step) rprint('[IMPORTANT] Visualizing ground truth samples, verify tokenization') if getattr(self.config.eval, "disable_visualization", False): return if self.config.trainer.interleaved: decoded_data = self.decode_batch(batch, text_only=False) all_imgs = [] max_num = 10000 if getattr(self.config.eval, "visualize_data_only", False) else 32 for i in range(min(len(decoded_data), max_num)): sample_data, sample_modalities = decoded_data[i].to_list() all_imgs.append(self.get_interleaved_image(sample_data, sample_modalities)) if not getattr(self.config.eval, "visualize_data_only", False): log({f"{split}/rec_img": wandb.Image(Im.concat_horizontal(*all_imgs).pil), **step_metrics}) else: gt_txt, gt_img = self.decode_batch(batch["input_ids"], text_only=False, sample_modality=batch.get("modality", None)) if gt_img is not None: rec_img = decode_latents(self.config, self.get_vae(), gt_img) log({f"{split}/rec_img": wandb.Image(rec_img), **step_metrics}) gt_txt = gt_txt[:4] if self.config.trainer.multimodal_batches: txt_batch = batch["input_ids"][~self.img_txt_pair_batch_mask(batch)] if txt_batch.shape[0] > 0: rprint(f"Txt Only (GT): {wrapped_batch_decode(self.tokenizer, txt_batch[:4], clean_up_tokenization_spaces=True, skip_special_tokens=True)}") else: rprint(f"GT Captions: {wrapped_batch_decode(self.tokenizer, gt_txt, clean_up_tokenization_spaces=True, skip_special_tokens=True)}") else: if gt_txt is not None: rprint(f"GT Captions: {wrapped_batch_decode(self.tokenizer, gt_txt, clean_up_tokenization_spaces=True, skip_special_tokens=True)}") if getattr(self.config.eval, "visualize_data_only", False): exit() if split == "train": if hasattr(self, "vae"): del self.vae empty_device_cache() @try_except(write_error_to_file=True, clear_cuda_cache=True) def mauve_store_references(self, dataloader): total_batches = len(dataloader) sample_batch = next(iter(dataloader)) batch_size = sample_batch["input_ids"].shape[0] # only execute on rank 0 N = self.config.eval.mauve_num_samples if not is_main_process(): return if N is None or N <= 0 or batch_size * total_batches < N: rprint(f"[WARNING] Skipping Mauve reference storage. N: {N}, batch_size: {batch_size}, total_batches: {total_batches}") return # need to get N samples from dataloader, which has a batch size of batch_size # we need to get ceil(N / batch_size) batches num_batches = math.ceil(N / batch_size) # store in self.mauve_references for i, batch in tqdm(enumerate(dataloader), total=num_batches, desc="Mauve storing references"): #, disable=not is_main_process()): if i >= num_batches: break reference_txt_tokens, _ = self.decode_batch(batch["input_ids"], text_only=False, sample_modality=batch.get("modality", None)) reference_txt = wrapped_batch_decode(self.tokenizer, reference_txt_tokens, clean_up_tokenization_spaces=True, skip_special_tokens=True) self.mauve_references.extend(reference_txt) assert len(self.mauve_references) >= N, f"len(self.mauve_references) ({len(self.mauve_references)}) < N ({N})" self.mauve_references = self.mauve_references[:N] save_path = os.path.join(self.config.output_dir, f'mauve_references_{N}.pkl') with open(save_path, 'wb') as f: pickle.dump(self.mauve_references, f) rprint(f"[MAUVE] Stored {N} references in {save_path}") @try_except(write_error_to_file=True) def cleanup_fid_output(self): if getattr(self.config.eval, "force_fid_output_dir", None) is not None: return if hasattr(self, "fid_gen_dir"): fid_output_dir_path = Path(self.fid_gen_dir) if fid_output_dir_path.exists() and fid_output_dir_path.is_dir(): rprint(f"Removing fid output dir: {fid_output_dir_path}") shutil.rmtree(fid_output_dir_path) if hasattr(self, "fid_gt_dir"): fid_gt_dir_path = Path(self.fid_gt_dir) if fid_gt_dir_path.exists() and fid_gt_dir_path.is_dir(): rprint(f"Removing fid gt dir: {fid_gt_dir_path}") shutil.rmtree(fid_gt_dir_path) if hasattr(self, "img_to_txt_mauve_gen_dir"): img_to_txt_mauve_gen_dir_path = Path(self.img_to_txt_mauve_gen_dir) if img_to_txt_mauve_gen_dir_path.exists() and img_to_txt_mauve_gen_dir_path.is_dir(): rprint(f"Removing img to txt mauve gen dir: {img_to_txt_mauve_gen_dir_path}") shutil.rmtree(img_to_txt_mauve_gen_dir_path) if hasattr(self, "img_to_txt_mauve_gt_dir"): img_to_txt_mauve_gt_dir_path = Path(self.img_to_txt_mauve_gt_dir) if img_to_txt_mauve_gt_dir_path.exists() and img_to_txt_mauve_gt_dir_path.is_dir(): rprint(f"Removing img to txt mauve gt dir: {img_to_txt_mauve_gt_dir_path}") shutil.rmtree(img_to_txt_mauve_gt_dir_path) def compute_val_metrics_standalone(self): rprint("Computing validation metrics standalone") self.reset_validation_metrics() num_samples = 0 for i, batch in tqdm(enumerate(self.validation_dataloader), desc="Standalone validation steps", disable=not is_main_process(), leave=False): batch = self.update_batch(batch) num_samples += batch["input_ids"].shape[0] self.compute_loss(batch, prefix="val", batch_idx=i) if i >= self.config.eval.num_val_metrics_standalone_batches_per_device: break log({**self.get_step_metrics(), "num_samples": num_samples * get_world_size()}) rprint(f"Finished computing validation metrics standalone.") def compute_val_metrics_constant_per_batch(self): rprint("Computing validation metrics standalone") self.reset_validation_metrics() if self.config.eval.num_val_metrics_standalone_batches_per_device is None or self.config.eval.num_val_metrics_standalone_batches_per_device <= 0: return num_samples = 0 for i, batch in tqdm(enumerate(self.validation_dataloader), desc="Standalone validation steps", disable=not is_main_process(), leave=False): batch = self.update_batch(batch) num_samples += batch["input_ids"].shape[0] self.compute_loss(batch, prefix="val", batch_idx=i) if i >= self.config.eval.num_val_metrics_standalone_batches_per_device: break log({**self.get_step_metrics(), "num_samples": num_samples * get_world_size()}) rprint(f"Finished computing validation metrics standalone.") def get_interleaved_image(self, sample_data, sample_modalities, single_image_only=False, disable_img_save=False, image_save_postfix=None): all_sample_imgs = [] single_image_only = self.config.eval.auto_enhance or single_image_only or getattr(self.config.eval, "fake_interleaved", False) if getattr(self.config.eval, "disable_shm_save", False): disable_img_save = True if not disable_img_save: date_folder = datetime.now().strftime("%Y-%m-%d") save_dir = Path("/dev/shm") / os.getenv("USER", 'user') / "imgs" / date_folder save_dir.mkdir(exist_ok=True, parents=True) for j in range(len(sample_data)): if sample_modalities[j] == 0 and not single_image_only: sample_text = wrapped_batch_decode( self.tokenizer, sample_data[j][None], clean_up_tokenization_spaces=True, skip_special_tokens=False, disable_mask_after_eos=True ) txt_image = create_text_image(text=sample_text[0], desired_width=self.config.data.resolution) all_sample_imgs.append(txt_image) elif sample_modalities[j] == 1: sample_img = decode_latents(self.config, self.get_vae(), sample_data[j][None]) all_sample_imgs.append(sample_img) if not disable_img_save: image_save_postfix = image_save_postfix or "" filename = f"img_{get_rank()}_{str(time.time()).replace('.', '__')}"[:100] + f"{image_save_postfix}.png" save_path = save_dir / filename if single_image_only: if not disable_img_save: gprint(Im(all_sample_imgs[0]).save(save_path)) assert len(all_sample_imgs) == 1, "Expected single image only" return all_sample_imgs[0] else: img = Im.concat_vertical(*all_sample_imgs).pil if not disable_img_save: gprint(Im(img).save(save_path)) return img def get_hpsv2_score( self, images, prompts ): from unidisc.tokenizers.hpsv2_img_score import score, initialize_model if not hasattr(self, "hpsv2_model_dict"): self.hpsv2_model_dict = initialize_model(self.device, "v2.1") if isinstance(images, Tensor): images = [Im(x).pil for x in images] with torch.inference_mode(mode=False), torch.no_grad(): scores = [] for img, prompt in zip(images, prompts): scores.append(score(self.hpsv2_model_dict, img, prompt)[0].item()) return torch.tensor(scores) def get_dfn_score( self, images, prompts ): if isinstance(images, Tensor): images = [Im(x).pil for x in images] from open_clip import create_model_from_pretrained, get_tokenizer if not hasattr(self, "dfn_model"): self.dfn_model, self.dfn_preprocess = create_model_from_pretrained('hf-hub:apple/DFN5B-CLIP-ViT-H-14-384') self.dfn_tokenizer = get_tokenizer('ViT-H-14') self.dfn_model.to(str(self.device)) assert len(images) == len(prompts), "Expected same number of images and prompts" images = torch.stack([self.dfn_preprocess(x) for x in images]) text = self.dfn_tokenizer(prompts, context_length=self.dfn_model.context_length) dfn_dtype = next(iter(self.dfn_model.parameters())).dtype with torch.no_grad(), torch.cuda.amp.autocast(): image_features = self.dfn_model.encode_image(images.to(device=self.device, dtype=dfn_dtype)) text_features = self.dfn_model.encode_text(text.to(device=self.device)) image_features = F.normalize(image_features, dim=-1) text_features = F.normalize(text_features, dim=-1) sim = (image_features * text_features).sum(dim=-1) return sim def get_clip_score( self, images, prompts ): if isinstance(images, Tensor): images = [Im(x).pil for x in images] from transformers import ( CLIPTokenizer, CLIPTextModelWithProjection, CLIPVisionModelWithProjection, CLIPImageProcessor, ) if not hasattr(self, "clip_tokenizer"): clip_id = "openai/clip-vit-large-patch14" self.clip_tokenizer = CLIPTokenizer.from_pretrained(clip_id) self.clip_text_encoder = CLIPTextModelWithProjection.from_pretrained(clip_id).to(self.device) self.clip_image_processor = CLIPImageProcessor.from_pretrained(clip_id) self.clip_image_encoder = CLIPVisionModelWithProjection.from_pretrained(clip_id).to(self.device) assert len(images) == len(prompts), "Expected same number of images and prompts" with torch.no_grad(), torch.cuda.amp.autocast(): preprocessed_images = self.clip_image_processor(images, return_tensors="pt")["pixel_values"] image_features = self.clip_image_encoder(pixel_values=preprocessed_images.to(self.device)).image_embeds image_features = image_features / image_features.norm(dim=1, keepdim=True) tokenized_text = self.clip_tokenizer( prompts, max_length=self.clip_tokenizer.model_max_length, padding="max_length", truncation=True, return_tensors="pt" ) text_features = self.clip_text_encoder(input_ids=tokenized_text.input_ids.to(self.device)).text_embeds text_features = text_features / text_features.norm(dim=1, keepdim=True) sim = (image_features * text_features).sum(dim=-1) return sim def get_laion_aesthetic_score( self, images, prompts ): from unidisc.tokenizers.laion_aesthetic_v2 import get_predictor_func if not hasattr(self, "laion_aesthetic_model"): self.laion_aesthetic_model = get_predictor_func(self.device) return torch.from_numpy(self.laion_aesthetic_model(images)).squeeze(-1) def get_model_likelihood_score(self, batch, num_timesteps=100, return_unweighed=True): class_log_probs = [] unweighed_class_log_probs = [] effective_batch_size = batch['modality'].shape[0] empty_device_cache() times = torch.linspace(0, 1, steps=num_timesteps + 2)[1:-1].to(self.device).to(torch.float32) attention_mask = batch['attention_mask'] for i in range(num_timesteps): empty_device_cache() t = times[i] t = t.expand(effective_batch_size) sigma, dsigma = self.noise(t) unet_conditioning = None # sigma[:, None] -> This causes CUDA OOM move_chance = 1 - torch.exp(-sigma[:, None]) x0 = batch['input_ids'] xt = self.q_xt(x0, move_chance) model_output = self.forward( xt, unet_conditioning, return_additional_loss=True, batch=batch, modality=batch['modality'] ) log_p_theta = torch.gather(input=model_output, dim=-1, index=x0[:, :, None]).squeeze(-1) log_p_theta = torch.where(attention_mask, log_p_theta, 0) std_weighting = (dsigma / torch.expm1(sigma))[:, None] unweighed_log_p_theta = -log_p_theta loss = -log_p_theta * std_weighting log_probs = loss.sum(dim=-1) / attention_mask.sum(dim=-1) unweighed_log_probs = unweighed_log_p_theta.sum(dim=-1) / attention_mask.sum(dim=-1) # print(f'Weighed loss: {log_probs.mean()} | Log P Theta: {-log_p_theta.mean()} | Std Weighting: {std_weighting.mean()}') class_log_probs.append(log_probs) unweighed_class_log_probs.append(unweighed_log_probs) overall_time_log_probs = torch.stack(class_log_probs) # (num_time, B) unweighed_overall_time_log_probs = torch.stack(unweighed_class_log_probs) # (num_time, B) if return_unweighed: return unweighed_overall_time_log_probs.mean(dim=0) # (B) return overall_time_log_probs.mean(dim=0) # (B) def get_chameleon_score(self, images, prompts): return torch.tensor(self.calculate_chameleon_perplexity(None, None, prompts, images)) def get_text_likelihood_score(self, images, prompts): return self.compute_generative_perplexity(prompts, return_raw_score=True) @torch.inference_mode() def get_text_reward_model_score( self, images, prompts ): if not hasattr(self, "text_reward_model"): from transformers import AutoModelForSequenceClassification, AutoTokenizer model_name = "Skywork/Skywork-Reward-Llama-3.1-8B" self.text_reward_model = AutoModelForSequenceClassification.from_pretrained( model_name, torch_dtype=torch.bfloat16, device_map=self.device, num_labels=1, ) self.text_reward_tokenizer = AutoTokenizer.from_pretrained(model_name) prompt = "Please generate a realistic caption for a text-to-image generator. The caption should have proper grammar and describe a realistic scene that a user might ask for. The caption should not be non-sensical. The caption does not need to be elaborate, but should be descriptive and realistic. Penalize improper grammar and spelling." batch_size = 4 formatted_conversations = [] for resp in prompts: conv = [{"role": "user", "content": prompt}, {"role": "assistant", "content": resp}] formatted = self.text_reward_tokenizer.apply_chat_template(conv, tokenize=False) formatted_conversations.append(formatted) all_scores = [] for i in range(0, len(formatted_conversations), batch_size): batch_texts = formatted_conversations[i : i + batch_size] batch_inputs = self.text_reward_tokenizer( batch_texts, return_tensors="pt", padding=True, truncation=True ).to(self.device) with torch.no_grad(): batch_logits = self.text_reward_model(**batch_inputs).logits.squeeze(-1) all_scores.extend(batch_logits.cpu().tolist()) return torch.tensor(all_scores).to(self.device) def get_rewards(self, reward_config, images, prompts, batch=None, return_raw_rewards=False): assert isinstance(images, Tensor) and isinstance(prompts, list), "Expected images to be a Tensor and prompts to be a list" assert images.ndim == 4 and 0 <= images.min() and images.max() <= 1, "Expected images to be in [0, 1]" assert len(prompts) == images.shape[0], "Expected same number of images and prompts" reward_name_to_fn = dict( dfn_score=self.get_dfn_score, clip_score=self.get_clip_score, hpsv2_score=self.get_hpsv2_score, laion_aesthetic_score=self.get_laion_aesthetic_score, model_likelihood_score=self.get_model_likelihood_score, chameleon_score=self.get_chameleon_score, text_likelihood_score=self.get_text_likelihood_score, text_reward_model_score=self.get_text_reward_model_score ) rewards = [] raw_rewards = dict() for reward_name, reward_weight in reward_config.items(): start_time = time.time() assert reward_name in reward_name_to_fn, f"Invalid reward name: {reward_name}" reward_fn = reward_name_to_fn[reward_name] if reward_name == "model_likelihood_score" or reward_name == "chameleon_score" or reward_name == "text_likelihood_score": assert batch is not None, "Expected batch to be provided for model likelihood score" if reward_name == "chameleon_score" or reward_name == "text_likelihood_score": reward = reward_fn(images, prompts).cpu() else: reward = reward_fn(batch=batch).cpu() raw_rewards[reward_name] = reward rprint(f"Orig {reward_name}: {reward}") reward = -reward reward = (reward - reward.min()) / (reward.max() - reward.min()) rprint(f"Normalized {reward_name}: {reward}") else: reward = reward_fn(images, prompts).cpu() raw_rewards[reward_name] = reward # reward = reward.softmax(dim=-1) reward = (reward - reward.min()) / (reward.max() - reward.min()) reward = torch.nan_to_num(reward, nan=0.0) rewards.append(reward * reward_weight) print(f"Processed {reward_name} in {time.time() - start_time:.2f} seconds") rewards = torch.stack(rewards, dim=-1).sum(dim=-1) if return_raw_rewards: return rewards, raw_rewards return rewards def clear_reward_models(self): if hasattr(self, "laion_aesthetic_model"): del self.laion_aesthetic_model if hasattr(self, "dfn_model"): del self.dfn_model if hasattr(self, "dfn_tokenizer"): del self.dfn_tokenizer if hasattr(self, "clip_tokenizer"): del self.clip_tokenizer if hasattr(self, "clip_text_encoder"): del self.clip_text_encoder if hasattr(self, "clip_image_processor"): del self.clip_image_processor if hasattr(self, "clip_image_encoder"): del self.clip_image_encoder if hasattr(self, "text_reward_model"): del self.text_reward_model if hasattr(self, "text_reward_tokenizer"): del self.text_reward_tokenizer if hasattr(self, "hpsv2_model_dict"): del self.hpsv2_model_dict def auto_enhance(self, batch): gprint(f"Auto enhancing") from dataloader import tokenize_text assert isinstance(batch, TensorDict), "Expected batch to be a TensorDict" batch = batch.squeeze(1) assert batch['input_ids'].ndim == 2, "Expected batch to be 2D" # from datasets import load_dataset # dataset = load_dataset("nateraw/parti-prompts", split='train') # dataset = dataset.filter(lambda x: x["Category"] == "Artifacts") x0 = batch["input_ids"].clone() add_object = getattr(self.config.eval, "auto_enhance_add_object", False) if add_object: img_tokens = x0[:, self.static_img_sl] - self.text_vocab_size assert 0 <= img_tokens.min() and img_tokens.max() <= self.image_vocab_size, "Expected img tokens to be in [0, img_vocab_size]" orig_imgs = decode_latents(self.config, self.get_vae(), img_tokens) orig_imgs = [Im(img).pil for img in orig_imgs] aug_imgs = [augment_image_with_random_object_coco(img, str(UNIDISC_DIR / "archive" / "objects")) for img in orig_imgs] gprint(f"Augmented {len(aug_imgs)} images") aug_imgs = torch.stack([Im(img).torch for img in aug_imgs]).to(self.device) image_ids = get_image_batch(self.config, self.get_vae(), {"img": aug_imgs}, self.device) x0[:, self.static_img_sl] = image_ids + self.text_vocab_size gen_batch = batch.clone() if 'interleaved_metadata' in gen_batch: del gen_batch['interleaved_metadata'] gen_batch.auto_batch_size_() orig_caption = wrapped_batch_decode(self.tokenizer, batch['input_ids'][:, self.static_txt_sl], clean_up_tokenization_spaces=True, skip_special_tokens=True, disable_mask_after_eos=True) max_num_augmentations = getattr(self.config.eval, "max_num_auto_enhance_augmentations", 10) llm_func = get_llm(llm_model_type="") llm_augmented_captions = [llm_func(cap, fake_openai_failure=False)[0] for cap in orig_caption] _augmented_captions = [] for caps in llm_augmented_captions: _shuf = deepcopy(caps) random.shuffle(_shuf) assert len(_shuf) >= max_num_augmentations, "Expected at least max_num_augmentations augmentations" _augmented_captions.append(_shuf[:max_num_augmentations]) gprint(f"Augmented {len(_augmented_captions)} captions") _orig_imgs = Im(decode_latents(self.config, self.get_vae(), x0[:, self.static_img_sl] - self.text_vocab_size)).pil if not isinstance(_orig_imgs, list): _orig_imgs = [_orig_imgs] num_iter_per_sample = self.config.eval.num_auto_enhance_iter num_iter = num_iter_per_sample * max_num_augmentations bs = 1 n = num_iter * bs * len(_augmented_captions) _gen_batch = [] for i in range(len(_augmented_captions)): for j in range(num_iter): _gen_batch.append(gen_batch[[i]]) gen_batch = torch.cat(_gen_batch, dim=0) txt_data = [tokenize_text(self.tokenizer, self.config.data.block_size, caps) for caps in _augmented_captions] txt_sl = slice(None, self.config.data.block_size) real_captions = [] augmented_captions = [] orig_images = [] gprint(f"Generating {num_iter} samples, gen_batch shape: {gen_batch.shape}") for j in range(len(_augmented_captions)): for k in range(max_num_augmentations): sl = slice(j * max_num_augmentations + k * num_iter_per_sample, j * max_num_augmentations + (k + 1) * num_iter_per_sample) gen_batch[sl]['input_ids'][:, txt_sl] = txt_data[j]['input_ids'][k] gen_batch[sl]['attention_mask'][:, txt_sl] = txt_data[j]['attention_mask'][k] augmented_captions.extend([_augmented_captions[j][k]] * num_iter_per_sample) real_captions.extend([orig_caption[j]] * num_iter_per_sample) orig_images.extend([_orig_imgs[j]] * num_iter_per_sample) # min_val, max_val = 0.94, 0.98 # _eps_t = torch.rand(n, device=self.device) # offset = torch.arange(n, device=self.device) / n # _eps_t = (_eps_t / n + offset) % 1 # t = (max_val - min_val) * _eps_t + min_val if getattr(self.config.eval, "auto_enhance_use_low_masking", False): mean_txt, std_txt = 0.85, 0.2 / 0.8416 # First half mean_img, std_img = 0.75, 0.04 / 1.645 # Second half - higher mean = more masking else: mean_txt, std_txt = 0.85, 0.2 / 0.8416 # First half mean_img, std_img = 0.95, 0.04 / 1.645 # Second half - higher mean = more masking def slice_len(_sl, _seq_len): # TODO: This is super incorrect assert _sl.step is None if _sl.start is not None and _sl.start < 0: assert _sl.stop is None return -_sl.start else: return (_sl.stop if _sl.stop is not None else _seq_len) - (_sl.start if _sl.start is not None else 0) seq_len = x0.shape[1] t = torch.zeros((n,), device=self.device) t = t.to(torch.float32) t_txt = torch.normal(mean=mean_txt, std=std_txt, size=(n,), device=self.device) t_img = torch.normal(mean=mean_img, std=std_img, size=(n,), device=self.device) t_txt = torch.clamp(t_txt, max=1.0) t_img = torch.clamp(t_img, max=1.0) move_indices = torch.zeros(n, seq_len, device=self.device, dtype=torch.bool) move_indices[:, self.static_txt_sl] = torch.rand(move_indices.shape[0], slice_len(self.static_txt_sl, seq_len), device=self.device) < t_txt.unsqueeze(1) move_indices[:, self.static_img_sl] = torch.rand(move_indices.shape[0], slice_len(self.static_img_sl, seq_len), device=self.device) < t_img.unsqueeze(1) x0_unmask = ~move_indices rprint(f"Text masking ratio: {move_indices[:, self.static_txt_sl].sum() / move_indices[:, self.static_txt_sl].numel():.3f}") rprint(f"Image masking ratio: {move_indices[:, self.static_img_sl].sum() / move_indices[:, self.static_img_sl].numel():.3f}") rprint(f"Num unmasked: {x0_unmask.sum(dim=-1).float().mean():.1f}") text_samples_list = [] img_samples_list = [] x0 = x0.to(self.device) x0_unmask = x0_unmask.to(self.device) idx = 0 for i in range(len(_augmented_captions)): for j in range(num_iter_per_sample): _modality = gen_batch[[idx]].get("modality", None) _sample_ids = gen_batch[[idx]].get("sample_ids", None) if _modality is not None: _modality = _modality.to(self.device) if _sample_ids is not None: _sample_ids = _sample_ids.to(self.device) else: _sample_ids = torch.zeros_like(_modality) text_samples, img_samples, x = self._sample( text_only=False, num_steps=self.config.sampling.max_sampling_steps, batch_size_per_gpu=bs, modality=_modality, sample_ids=_sample_ids, x0=gen_batch["input_ids"][[idx]].to(self.device), x0_unmask=x0_unmask[[idx]].to(self.device), return_raw_data=True, allow_interleaved_conditional=True ) gen_batch[[idx]]['input_ids'] = x text_samples_list.extend(text_samples) img_samples_list.extend(img_samples) rprint(f"Sampled {j + 1} / {num_iter}") idx += 1 # gen_batch = torch.cat([gen_batch, orig_batch], dim=0) # for i in range(orig_batch.shape[0]): # _modality = orig_batch[[i]].get("modality", None) # _sample_ids = orig_batch[[i]].get("sample_ids", None) # if _modality is not None: # _modality = _modality.to(self.device) # if _sample_ids is not None: # _sample_ids = _sample_ids.to(self.device) # else: # _sample_ids = torch.zeros_like(_modality) # res = self.decode_sampling( # orig_batch[[i]]["input_ids"].to(self.device), # text_only=False, # modality=_modality, # sample_ids=_sample_ids # ) # text_samples_list.extend(res[0]) # img_samples_list.extend(res[1]) # augmented_captions.append(orig_caption[i]) # real_captions.append(orig_caption[i]) # orig_images.append(orig_imgs[i]) text_samples_list = wrapped_batch_decode( self.tokenizer, torch.stack(text_samples_list, dim=0), clean_up_tokenization_spaces=True, skip_special_tokens=True, disable_mask_after_eos=True ) # for i in range(len(text_samples_list) - orig_batch.shape[0], len(text_samples_list)): # text_samples_list[i] = "Original: " + text_samples_list[i] img_samples_list = torch.cat(img_samples_list, dim=0) reward_config = self.config.eval.auto_enhance_reward_config rewards, raw_rewards = self.get_rewards(reward_config, img_samples_list, text_samples_list, batch=gen_batch, return_raw_rewards=True) gprint(f"Avg Rewards: {rewards}") sorted_indices = torch.argsort(rewards, descending=True).tolist() sorted_text_samples = [text_samples_list[i] for i in sorted_indices] sorted_augmented_captions = [augmented_captions[i] for i in sorted_indices] sorted_real_captions = [real_captions[i] for i in sorted_indices] sorted_img_samples = [img_samples_list[i] for i in sorted_indices] sorted_orig_images = [orig_images[i] for i in sorted_indices] sorted_avg_rewards = [rewards[i] for i in sorted_indices] sorted_raw_rewards = {k: [raw_rewards[k][i] for i in sorted_indices] for k in raw_rewards} text_samples_list = sorted_text_samples real_captions = sorted_real_captions augmented_captions = sorted_augmented_captions img_samples_list = sorted_img_samples orig_images = sorted_orig_images raw_rewards = sorted_raw_rewards # clear all reward models self.clear_reward_models() log_dict = {} with try_except(write_error_to_file=True): if text_samples_list is not None: gprint(f"Gathering {len(text_samples_list)} text samples") text_samples_list = gather_object(text_samples_list) real_captions = gather_object(real_captions) augmented_captions = gather_object(augmented_captions) prefix = "auto_enhance" if isinstance(img_samples_list, Tensor): img_samples_list = img_samples_list.float().cpu() img_samples_list = [Im(img).pil for img in img_samples_list] img_samples_list = gather_object(img_samples_list) orig_images = gather_object(orig_images) dprint(f"Gathered {len(text_samples_list)} text samples") new_sorted_avg_rewards = gather_object(sorted_avg_rewards) sorted_avg_rewards = new_sorted_avg_rewards new_raw_rewards = {k: gather_object(v) for k, v in raw_rewards.items()} raw_rewards = new_raw_rewards rprint(f"Finished gathering, length: {len(orig_images)}") gen_table = wandb.Table(columns=[f"real_caption", f"original_image", f"augmented_caption", f"sampled_caption", f"sampled_image", f"avg_reward", *reward_config.keys()]) assert len(img_samples_list) == len(text_samples_list) == len(augmented_captions) == len(real_captions) == len(sorted_avg_rewards) for real_caption, orig_img, augmented_caption, sampled_caption, sampled_img, avg_reward, *rewards in zip(real_captions, orig_images, augmented_captions, text_samples_list, img_samples_list, sorted_avg_rewards, *raw_rewards.values()): gen_table.add_data(real_caption, wandb.Image(Im(orig_img).pil), augmented_caption, sampled_caption, wandb.Image(Im(sampled_img).pil), avg_reward, *rewards) log_dict[f"{prefix}_sample_table"] = gen_table log({**log_dict, **self.get_step_metrics()}) def save_image_text_pair(self, image_tensor, text_tensor, single_image_only=False, disable_img_save=False, image_save_postfix=None): """ Take separate image and text tensors and save them as paired visualizations. Args: image_tensor: Tensor [B, N] of image tokens text_tensor: Tensor [B, M] of text tokens single_image_only: If True, only return the image without text visualization disable_img_save: If True, don't save to disk image_save_postfix: Optional postfix for the saved image filename Returns: PIL Image or tensor of concatenated images and text visualizations """ batch_size = image_tensor.shape[0] assert batch_size == text_tensor.shape[0], "Batch sizes must match between image and text tensors" all_paired_imgs = [] # Check config settings for single_image_only if hasattr(self, 'config') and hasattr(self.config, 'eval'): single_image_only = self.config.eval.auto_enhance or single_image_only or getattr(self.config.eval, "fake_interleaved", False) if hasattr(self, 'config') and hasattr(self.config.eval, "disable_shm_save"): disable_img_save = disable_img_save or getattr(self.config.eval, "disable_shm_save", False) # Create save directory if needed if not disable_img_save: date_folder = datetime.now().strftime("%Y-%m-%d") save_dir = Path("/dev/shm") / os.getenv("USER", 'user') / "paired_imgs" / date_folder save_dir.mkdir(exist_ok=True, parents=True) for i in range(batch_size): pair_imgs = [] # Process text (if not in single_image_only mode) if not single_image_only: sample_text = wrapped_batch_decode( self.tokenizer, text_tensor[i:i+1], clean_up_tokenization_spaces=True, skip_special_tokens=False, disable_mask_after_eos=True ) txt_image = create_text_image(text=sample_text[0], desired_width=self.config.data.resolution) pair_imgs.append(txt_image) # Process image img_tokens = image_tensor[i:i+1] sample_img = decode_latents(self.config, self.get_vae(), img_tokens) pair_imgs.append(sample_img) # Combine text and image for this pair if single_image_only: all_paired_imgs.append(pair_imgs[0]) else: paired_img = Im.concat_vertical(*pair_imgs).pil all_paired_imgs.append(paired_img) # Save images if needed if not disable_img_save: image_save_postfix = image_save_postfix or "" for i, img in enumerate(all_paired_imgs): filename = f"pair_{get_rank()}_{i}_{str(time.time()).replace('.', '__')}"[:100] + f"{image_save_postfix}.png" save_path = save_dir / filename gprint(Im(img).save(save_path)) # Return either a single image or all as list if batch_size == 1: return all_paired_imgs[0] else: return all_paired_imgs