import functools import itertools import os import signal import subprocess import sys import time import typing from functools import partial from pathlib import Path from types import FrameType from contextlib import nullcontext import transformers from constants import HF_TOKEN, HF_CACHE_DIR, UNIDISC_DIR import hydra import hydra.utils import torch import torch.utils.checkpoint from accelerate.utils import gather, gather_object from omegaconf import open_dict, read_write from safetensors.torch import load_file import models.noise_schedule as noise_schedule import utils import wandb from decoupled_utils import (barrier, dprint, get_slurm_job_id, get_world_size, gprint, is_local_main_process, is_main_process, is_torch_cuda_available, is_torch_xla_available, module_hash, parameter_hash, print_memory, rank_zero_fn, rprint, save_memory_profile, show_memory_usage, try_except, use_dist) from unidisc.tokenizers.image_tokenizers import get_vae as tokenizer_get_vae from unidisc.utils.xla_utils import (tpu_spmd_dataloader, wrap_xla_fsdp) from model_utils import BPD, NLL, Perplexity, empty_device_cache, log, CIDErScore, Accuracy from unidisc.utils.trainer_utils import (TrainingState, check_every_n_epochs, check_every_n_steps, handle_checkpointing_dirs, count_parameters) from utils import compile_model, grad_norm is_xla_available = is_torch_xla_available() if is_xla_available: rprint("Using standalone torchmetrics on XLA") from unidisc.utils.standalone_metrics import MetricCollection else: from torchmetrics import MetricCollection def init(self, config, tokenizer, device): import models import models.elm_custom as elm_custom self.global_step = 0 self.current_run_global_step = 0 self.current_run_fwd_bwd_pass = 0 self.num_evals = 0 self.config = config self.device = device self.image_model = False self.unified_model = False self.dtype = ( torch.float32 if ("fp32" in self.config.trainer.precision or "no" in self.config.trainer.precision) else (torch.bfloat16 if "bf16" in self.config.trainer.precision else torch.float16) ) rprint(f"Set compute dtype in model: {self.dtype}") if getattr(self.config.model, "image_model", False): self.image_model = True if "tokens" not in self.config.data.train: self.vae = self.get_vae() if self.config.data.cond_resolution is not None: self.cond_vae = self.get_cond_vae() else: self.vae = None self.cond_vae = None if getattr(self.config.model, "unified_model", False): self.unified_model = True self.tokenizer = tokenizer self.sampler = self.config.sampling.predictor self.gen_ppl_eval_model_name_or_path = self.config.eval.gen_ppl_eval_model_name_or_path self.antithetic_sampling = self.config.trainer.antithetic_sampling self.importance_sampling = self.config.trainer.importance_sampling self.change_of_variables = self.config.trainer.change_of_variables if getattr(self.config.trainer, "add_label", False): assert self.image_model and self.unified_model if self.image_model is False or self.unified_model: self.vocab_size = len(self.tokenizer) if getattr(self.config.model, "force_text_vocab_size", None) is not None: self.vocab_size = self.config.model.force_text_vocab_size if not hasattr(self.tokenizer, "mask_token") or self.tokenizer.mask_token is None: self.mask_index = self.vocab_size self.vocab_size += 1 else: self.mask_index = self.tokenizer.mask_token_id if self.image_model: if self.unified_model: self.text_vocab_size = self.vocab_size self.vocab_size += self.config.model.image_vocab_size self.image_vocab_size = self.config.model.image_vocab_size if getattr(self.config.model, "add_labels", None) is not None: rprint(f"Adding labels: {self.config.model.add_labels}") self.vocab_size += self.config.model.add_labels rprint(f"Text vocab size: {self.text_vocab_size}, Image vocab size: {self.image_vocab_size}") else: self.vocab_size = self.config.model.image_vocab_size + 1 self.mask_index = self.vocab_size - 1 self.text_vocab_size = 0 else: self.text_vocab_size = self.vocab_size rprint(f"Vocab size: {self.vocab_size}, Mask index: {self.mask_index}") rprint(f"Image Model: {self.image_model}, Unified Model: {self.unified_model}") self.parameterization = self.config.parameterization tf_kwargs = dict(device_map=self.device, use_auth_token=HF_TOKEN, torch_dtype=self.dtype if (self.config.model.use_lora or self.config.trainer.low_precision_params) else torch.float32, trust_remote_code=True, cache_dir=HF_CACHE_DIR) tf_kwargs['attn_implementation'] = 'sdpa' if is_xla_available else 'flash_attention_2' force_sdpa_attention = os.environ.get("UNIDISC_FORCE_CHAMELEON_SDPA_ATTENTION", "0") == "1" force_eager_attention = os.environ.get("UNIDISC_FORCE_EAGER_ATTENTION", "0") == "1" if force_sdpa_attention: tf_kwargs['attn_implementation'] = 'sdpa' rprint("WARNING!!!! Forcing SDPA Attention") if force_eager_attention: tf_kwargs['attn_implementation'] = 'eager' rprint("WARNING!!!! Forcing Eager Attention") if is_xla_available: del tf_kwargs['cache_dir'] rprint(f"Using cache dir: {HF_CACHE_DIR}") if self.config.backbone == "dit": dit_kwargs = dict(mask_index=self.mask_index) if getattr(self.config.trainer, "use_orig_unidisc_dit", False): from accelerate.utils import set_seed; set_seed(42) if self.config.model.full_attention: import models.dit_orig _backbone_cls = models.dit_orig.DIT rprint("WARNING!!!! Using original DIT") dit_kwargs.pop('mask_index') else: import models.autoregressive_orig _backbone_cls = models.autoregressive_orig.AR dit_kwargs['causal'] = not self.config.model.full_attention rprint(f"WARNING!!!! Using original AR DIT, {dit_kwargs}") else: import models.dit _backbone_cls = models.dit.DIT dit_kwargs['text_vocab_size'] = self.text_vocab_size dit_kwargs['autocast_dtype'] = self.dtype dit_kwargs['device'] = self.device dit_kwargs['static_img_sl'] = self.static_img_sl dit_kwargs['static_txt_sl'] = self.static_txt_sl self.backbone = _backbone_cls( config=self.config, vocab_size=self.vocab_size, **dit_kwargs ) utils.print_trainable_parameters(self.backbone) if self.config.model.mup: self.get_base_shapes_for_mup(self.backbone) elif self.config.backbone == "elm": del tf_kwargs['attn_implementation'] config = transformers.AutoConfig.from_pretrained(self.config.model.model_id, **tf_kwargs) config.extra_tokens = self.vocab_size - config.vocab_size config.full_attention = self.config.model.full_attention config.is_compiled = self.is_compiled _cls = elm_custom.OpenELMForCausalLM if self.config.trainer.scratch else partial(elm_custom.OpenELMForCausalLM.from_pretrained, pretrained_model_name_or_path=self.config.model.model_id) self.backbone = _cls( config=config, ) if self.config.model.use_lora: from peft import LoraConfig, get_peft_model lora_config = LoraConfig( r=16, lora_alpha=32, target_modules=["qkv_proj"], lora_dropout=0.05, bias="none", task_type="CAUSAL_LM", ) self.backbone = get_peft_model(self.backbone, lora_config) self.backbone.model.transformer.token_embeddings_extra.requires_grad_(True) if hasattr(self.backbone.model, "lm_extra"): self.backbone.model.lm_extra.requires_grad_(True) else: self.backbone.requires_grad_(True) self.backbone.train() rprint("Using Full ELM") if getattr(self.config.trainer, "scratch", False): rprint("Training from scratch") self.backbone.apply(self.backbone._init_weights) if getattr(self.config.trainer, "use_gradient_checkpointing", False): self.backbone.gradient_checkpointing_enable() utils.print_trainable_parameters(self.backbone) elif self.config.backbone == "ar": self.backbone = models.autoregressive.AR(self.config, vocab_size=self.vocab_size, mask_index=self.mask_index) else: raise ValueError(f"Unknown backbone: {self.config.backbone}") self.T = self.config.T self.subs_masking = self.config.subs_masking self.softplus = torch.nn.Softplus() if getattr(self.config.trainer, "disable_torchmetrics", False) is False: # metrics are automatically reset at end of epoch metrics = MetricCollection( { "nll": NLL(sync_on_compute=False), "bpd": BPD(sync_on_compute=False), "ppl": Perplexity(sync_on_compute=False), }, compute_groups=(not is_torch_xla_available() and not getattr(self.config.trainer, "disable_distributed_torchmetrics", False)) ) metrics.set_dtype(torch.float64) self.train_metrics = metrics.clone(prefix="train/") self.valid_metrics = metrics.clone(prefix="val/") self.test_metrics = metrics.clone(prefix="test/") if getattr(self.config.trainer, "log_seperate_modal_losses", False): self.txt_metrics = metrics.clone(prefix="train/") self.img_metrics = metrics.clone(prefix="train/") if getattr(self.config.eval, "compute_chameleon_perplexity", False) or getattr(self.config.eval, "wino_chameleon", False): rprint("[INFO] Loading Big Chameleon Model") # pip install 'git+ssh://git@github.com/alexanderswerdlow/image_utils.git@wip_v1' --force-reinstall from image_utils import Im from transformers import (ChameleonForConditionalGeneration, ChameleonProcessor) self.chameleon_model = ChameleonForConditionalGeneration.from_pretrained("leloy/Anole-7b-v0.1-hf", torch_dtype=torch.bfloat16).to("cuda") self.chameleon_processor = ChameleonProcessor.from_pretrained("leloy/Anole-7b-v0.1-hf") if self.config.mode == "zero-shot-eval": # flickr cider self.cider_score = CIDErScore(sync_on_compute=False) # winoground self.win_text_accuracy = Accuracy(sync_on_compute=False) self.win_image_accuracy = Accuracy(sync_on_compute=False) self.win_group_accuracy = Accuracy(sync_on_compute=False) self.datacomp_img_acc = Accuracy(sync_on_compute=False) self.datacomp_txt_acc = Accuracy(sync_on_compute=False) self.eval_model_tokenizer = transformers.AutoTokenizer.from_pretrained(self.gen_ppl_eval_model_name_or_path) if self.eval_model_tokenizer.pad_token is None: self.eval_model_tokenizer.pad_token = self.eval_model_tokenizer.eos_token self.eval_model_tokenizer.pad_token_id = self.eval_model_tokenizer.eos_token_id self.noise = noise_schedule.get_noise(self.config, dtype=self.dtype) if self.config.trainer.ema > 0: if self.config.trainer.use_custom_ema: from copy import deepcopy self.ema = deepcopy(self.backbone).eval() self.ema.to(self.device) else: self.ema = models.ema.EMAModel(self.get_params(), decay=self.config.trainer.ema) rprint(f"Using EMA with decay {self.config.trainer.ema}") else: self.ema = None self.lr = self.config.optim.lr self.sampling_eps = self.config.trainer.sampling_eps self.time_conditioning = self.config.time_conditioning self.neg_infinity = -1000000.0 self.fast_forward_epochs = None self.fast_forward_batches = None self._validate_configuration() self.fid_eval = False if ((self.config.slurm or self.config.trainer.restart_on_failure) and not self.config.trainer.force_disable_signal_handler) and self.config.mode == 'train': self.register_signal_handler() if getattr(self.config.model, "image_model_fid_eval", False) or getattr(self.config.trainer, "disable_strict_load", False): self.strict_loading = False if self.config.backbone != 'dit' and self.config.backbone != 'chameleon': assert self.config.model.force_argmax_valid_indices is False if self.config.parameterization == "ar": assert self.config.trainer.ar_shift self.trainable_params = sum(p.numel() for p in self.backbone.parameters() if p.requires_grad) self.frozen_params = sum(p.numel() for p in self.backbone.parameters() if not p.requires_grad) self.non_embedding_params = count_parameters(self.backbone) rprint(f"Total trainable parameters (excluding embeddings): {self.non_embedding_params:,}, Total trainable parameters: {self.trainable_params:,}, Total frozen parameters: {self.frozen_params:,}") self._validate_configuration() if not self.config.trainer.low_precision_params: for name, param in self.backbone.named_parameters(): if param.requires_grad and param.dtype != torch.float32: raise ValueError(f"Parameter {name} is not in fp32. It is in {param.dtype}") if self.config.eval.test_eval_speed: rprint("WARNING!!!! Running eval speed test") self.use_kv_cache = getattr(self.config.model, "use_kv_cache", False) if not getattr(self.config.eval, 'enable_gen_pplx_cleanup', True): assert self.config.mode == 'eval' # shouldn't really be on in train mode rprint(f"WARNING!!!! Disabling gen pplx cleanup, having eval model {self.gen_ppl_eval_model_name_or_path} in memory always!!!!") self.gen_pplx_eval_model = transformers.AutoModelForCausalLM.from_pretrained(self.gen_ppl_eval_model_name_or_path).eval() if self.config.eval.compute_standalone_mauve and not getattr(self.config.eval, "global_disable_mauve", False): self.mauve_predictions = [] self.mauve_references = [] if self.config.mode == "zero-shot-eval": self.cider_score_metric = CiderScorer() if self.config.mode == "eval": self.backbone.eval() self.backbone.requires_grad_(False) if self.config.trainer.awr: breakpoint() config = transformers.AutoConfig.from_pretrained("HuggingFaceTB/SmolLM-135M", **tf_kwargs) config.vocab_size = self.vocab_size config.full_attention = True self.awr_policy = llama_custom.LlamaForCausalLM( config=config, ) def to(self, device): self.device = device self.backbone.to(device) self.train_metrics.to(device) self.test_metrics.to(device) if hasattr(self, "txt_metrics"): self.txt_metrics.to(device) if hasattr(self, "img_metrics"): self.img_metrics.to(device) if self.ema is not None: self.ema.to(device) def reset_validation_metrics(self): metrics = MetricCollection( { "nll": NLL(sync_on_compute=False), "bpd": BPD(sync_on_compute=False), "ppl": Perplexity(sync_on_compute=False), }, compute_groups=(not is_torch_xla_available() and not getattr(self.config.trainer, "disable_distributed_torchmetrics", False)) ) metrics.set_dtype(torch.float64) if getattr(self.config.trainer, "disable_torchmetrics", False) is False or hasattr(self, "valid_metrics"): self.valid_metrics = metrics.clone(prefix="val/").to(self.device) if getattr(self.config.trainer, "log_seperate_modal_losses", False): self.valid_txt_metrics = metrics.clone(prefix="val/").to(self.device) self.valid_img_metrics = metrics.clone(prefix="val/").to(self.device) self.gen_ppl_metric = Perplexity(sync_on_compute=False).to(self.device) self.gt_gen_ppl_metric = Perplexity(sync_on_compute=False).to(self.device) def get_params(self): return itertools.chain(self.backbone.parameters()) def get_vae(self): if getattr(self, "vae", None) is not None: return self.vae empty_device_cache() self.vae = tokenizer_get_vae(self.config, self.device) return self.vae def get_cond_vae(self): if getattr(self, "cond_vae", None) is not None: return self.cond_vae torch.cuda.empty_cache() self.cond_vae = get_vae(self.config, self.device, use_cond=True) return self.cond_vae def configure_optimizers(self): # TODO(yair): Lightning currently giving this warning when using `fp16`: # "Detected call of `lr_scheduler.step()` before `optimizer.step()`. " # Not clear if this is a problem or not. # See: https://github.com/Lightning-AI/pytorch-lightning/issues/5558 kwargs = dict( betas=(self.config.optim.beta1, self.config.optim.beta2), eps=self.config.optim.eps, weight_decay=self.config.optim.weight_decay, ) if getattr(self.config.trainer, "adafactor", False): optim_cls = Adafactor kwargs = dict() kwargs.update({"scale_parameter": False, "relative_step": False}) rprint("Using Adafactor") if getattr(self.config.trainer, "ademamix", False): from unidisc.utils.ademamix import AdEMAMix optim_cls = AdEMAMix rprint("Using AdEMAMix") elif is_xla_available: from torch_xla.amp.syncfree import AdamW optim_cls = AdamW rprint("Using XLA AdamW") elif getattr(self.config.trainer, "is_deepspeed", False): import deepspeed optim_cls = deepspeed.ops.adam.FusedAdam kwargs["set_grad_none"] = True else: optim_cls = torch.optim.AdamW kwargs["fused"] = self.config.optim.fused if self.config.model.mup: from mup import MuAdam optim_cls = partial(MuAdam, impl=optim_cls) optimizer = optim_cls( self.get_params(), lr=self.config.optim.lr, **kwargs, ) scheduler = hydra.utils.instantiate(self.config.lr_scheduler, optimizer=optimizer) scheduler_dict = { "scheduler": scheduler, "interval": "step", "monitor": "val/loss", "name": "trainer/lr", } return [optimizer], [scheduler_dict] def _validate_configuration(self): assert not (self.change_of_variables and self.importance_sampling) if self.parameterization == "sedd": assert not self.importance_sampling assert not self.change_of_variables if self.parameterization == "d3pm": assert self.T > 0 if self.T > 0: assert self.parameterization in {"d3pm", "subs"} if self.subs_masking: assert self.parameterization == "d3pm" if hasattr(self.config.model, "text_vocab_size"): assert self.config.model.text_vocab_size == self.text_vocab_size, f"text_vocab_size {self.config.model.text_vocab_size} != {self.text_vocab_size}" if getattr(self.config.trainer, "first_token_dropout", None) is not None: assert self.config.data.allow_label is True assert self.config.trainer.add_label is True assert self.config.model.add_labels > 0 assert self.config.trainer.joint_ar_nar_prob is None assert self.config.trainer.mask_entire_modality is None if getattr(self.config.eval, "class_conditional_fid", False): assert self.config.eval.fid_mode == "inline" assert getattr(self.config.model, "mask_entire_modality", None) is None if self.config.trainer.interleaved and not getattr(self.config.eval, "auto_enhance", False) and not getattr(self.config.trainer, "bypass_interleaved_check", False): assert self.config.data.use_packing_collate or self.config.mode == 'eval' assert self.config.data.dynamic_packing_lengths assert self.config.data.require_sample_ids assert self.config.trainer.interleaved_training_flex_attention assert self.config.data.use_slow_tokenizer and self.config.data.add_image_token assert not getattr(self.config.trainer, "force_full_attention_mask_loss_only", False) assert self.config.sampling.steps == self.config.sampling.max_sampling_steps def register_signal_handler(self): def _handler(sig, frame: FrameType | None, prior_handler=None): rprint(f"Called sig handler with {sig=} {self.global_step=}") if sig == signal.SIGUSR1: signal.signal(sig, signal.SIG_IGN) checkpoint_path = Path(self.config.output_dir) / "checkpoints" timeout_minutes = self.config.trainer.ckpt_recent_timeout_minutes # Don't re-save checkpoint within this interval to avoid unecessary re-writing. # If we checkpoint on SIGUSR2, we don't need to do it on SIGTERM recent_ckpt_exists = checkpoint_path.exists() and any( (time.time() - p.stat().st_mtime) < (timeout_minutes * 60) for p in checkpoint_path.iterdir() if p.is_dir() ) if (self.current_run_global_step > 100 and recent_ckpt_exists is False) or self.config.trainer.skip_early_checkpointing is False: rprint(f"Saving checkpoint due to {sig}") self.checkpoint() rprint(f"Finished saving checkpoint due to {sig}") else: rprint(f"Checkpoint already saved within {timeout_minutes} minutes, called by {sig}. Current run global step: {self.current_run_global_step}") job_str = get_slurm_job_id() if is_main_process(): if sig == signal.SIGTERM: if self.current_run_global_step > 100 and self.config.devices >= 4: wandb.alert(title="Terminated", text=f"Terminated by SIGTERM at {self.global_step}") rprint("Marking experiment as preempting") wandb.mark_preempting() rprint(f"Prior handler on rank: {prior_handler}") is_custom_sbatch_launcher = os.environ.get("CUSTOM_SBATCH_LAUNCHER", "0") == "1" if is_custom_sbatch_launcher: rprint("Using custom sbatch launcher, requeueing job manually") subprocess.check_call(["scontrol", "requeue", job_str]) rprint("Finished requeueing job") elif prior_handler is not None and callable(prior_handler): rprint("Calling prior signal handler") prior_handler(sig, frame, exit_on_requeue=False) rprint(f"Returned from prior signal handler") else: # TODO: For some unknown reason, sometimes the main process [and a few others] hangs doesn't properly receive the signal. # Generally, we want to let the main process checkpoint/exit but if it fails, we let any rank re-queue. if self.config.slurm: time.sleep(180) rprint(f"WARNING: Not on rank zero! Timed out waiting for main process to exit...Requeuing job...") rprint(f"WARNING: Not on rank zero! Using prior signal handler: {prior_handler}. ") else: time.sleep(5) try: if prior_handler is not None and callable(prior_handler): rprint("WARNING: Not on rank zero! Returning to prior handler") prior_handler(sig, frame, exit_on_requeue=False) rprint(f"WARNING: Not on rank zero! Returned from prior handler") except: rprint(f"WARNING: Not on rank zero! Failed to return to prior handler") if self.config.slurm: time.sleep(5) # Should be enough time for SLURM to send a SIGTERM to all ranks. If not, we resort to manual requeueing. rprint(f"WARNING: Not on rank zero! Failed to requeue using prior handler, requeuing job ourselves... {job_str}") subprocess.check_call(["scontrol", "requeue", job_str]) rprint(f"WARNING: Not on rank zero! Requeued job: {job_str}") if self.config.slurm: if torch.distributed.is_initialized(): rprint(f"Destroying process group...") torch.distributed.destroy_process_group() return sys.exit(0) else: rprint(f"Not on SLURM, not exiting") prior_sigterm_handler = signal.getsignal(signal.SIGTERM) prior_sigusr1_handler = signal.getsignal(signal.SIGUSR1) prior_sigusr2_handler = signal.getsignal(signal.SIGUSR2) rprint(f"Found Prior SIGTERM handler: {prior_sigterm_handler}, type: {type(prior_sigterm_handler)}") rprint(f"Found Prior SIGUSR1 handler: {prior_sigusr1_handler}, type: {type(prior_sigusr1_handler)}") rprint(f"Found Prior SIGUSR2 handler: {prior_sigusr2_handler}, type: {type(prior_sigusr2_handler)}") signal.signal(signal.SIGTERM, functools.partial(_handler, prior_handler=prior_sigterm_handler)) signal.signal(signal.SIGUSR2, functools.partial(_handler, prior_handler=prior_sigusr2_handler)) signal.signal(signal.SIGUSR1, functools.partial(_handler, prior_handler=prior_sigusr1_handler)) def on_train_start(self): gprint(f"Starting train at step: {self.global_step}") if is_main_process() and getattr(self.config.trainer, "compile", None) is None and getattr(self.config.trainer, "watch_gradients", True): wandb.watch( self.backbone, log=("all" if getattr(self.config.trainer, "watch_all", False) else "gradients"), log_freq=getattr(self.config.trainer, "watch_gradients_freq", 500), ) if getattr(self.config.trainer, "attach_oom_observer_train", False): from torchtnt.utils.oom import attach_oom_observer attach_oom_observer(output_dir=str(self.config.output_dir), trace_max_entries=500000) gprint(f"Attached OOM observer to {self.config.output_dir}") if self.config.trainer.nvtx_profile and self.is_compiled is False: torch.cuda.cudart().cudaProfilerStart() # TODO: Make sure we don't need the code below with the new accelerate code. return def optimizer_step(self, *args, **kwargs): super().optimizer_step(*args, **kwargs) if self.ema is not None: self.ema.update(self.get_params()) def init_dataloader(self, train_dataloader, val_dataloader): rprint("Creating train_dataset + self.train_dataloader") self.train_dataloader = train_dataloader self.validation_dataloader = val_dataloader if not self.config.data.iterable and not self.config.data.webdataset_indexed: assert len(self.validation_dataloader) > 0 def init_optimizer_lr_scheduler(self): [optimizer], [scheduler_dict] = self.configure_optimizers() self.optimizer = optimizer self.lr_scheduler = scheduler_dict["scheduler"] def set_accelerator(self, accelerator, ckpt_path=None): if ckpt_path is not None: rprint(f"Set accelerator with ckpt path {ckpt_path}") self.accelerator = accelerator self.device = accelerator.device self.dtype = getattr(torch, self.config.trainer.dtype.split(".")[-1]) def _load(obj, path, update_fn=None, key="model"): _ckpt_path = Path(path) if not _ckpt_path.is_absolute() and not _ckpt_path.exists(): potential_path = UNIDISC_DIR / _ckpt_path rprint(f"Relative path '{_ckpt_path}' not found. Trying path relative to script directory: '{potential_path}'") _ckpt_path = potential_path if _ckpt_path.is_dir() and (_ckpt_path / "model.safetensors").exists(): _ckpt_path = _ckpt_path / "model.safetensors" path = str(_ckpt_path) print(f"Loading from {_ckpt_path}, {_ckpt_path.suffix}, {_ckpt_path.is_dir()}") if _ckpt_path.suffix == ".safetensors": state_dict = load_file(path) elif _ckpt_path.is_dir(): if getattr(self.config.trainer, 'dynamic_convert_to_normal_state_dict', False): gprint(f"Converting distributed checkpoint to normal state dict") from torch.distributed.checkpoint.format_utils import dcp_to_torch_save import hashlib ckpt_hash = hashlib.md5(str(path).encode()).hexdigest()[:8] + "_" + Path(path).stem new_path = str(Path("/dev/shm") / os.getenv("USER", "aswerdlo") / f"tmp_ckpt_{ckpt_hash}.pth") dcp_to_torch_save(path, new_path) gprint(f"Converted distributed checkpoint to normal state dict at {new_path}") state_dict = torch.load(new_path) gprint(f"Loaded state dict from {path}") else: gprint(f"Loading from distributed checkpoint directory {path}") import torch.distributed.checkpoint as dcp state_dict = { key: obj.state_dict(), } if getattr(self.config.trainer, 'ignore_chameleon_embed', False): for k in list(state_dict[key].keys()): if "embed_tokens" in k: state_dict[key].pop(k) gprint(f"Ignoring {k}") dcp.load( state_dict=state_dict, checkpoint_id=path, ) gprint(f"Loaded state dict from {path}") # obj.load_state_dict(state_dict[key]) else: state_dict = torch.load(_ckpt_path) if 'model' in state_dict and len(state_dict) < 10: state_dict = state_dict['model'] state_dict = {k.replace("_orig_module.", ""): v for k, v in state_dict.items()} state_dict = {k.replace("_orig_mod.", ""): v for k, v in state_dict.items()} state_dict = {k.replace("module.", ""): v for k, v in state_dict.items()} if self.config.backbone == 'llama' and "lm_head.weight" in state_dict and "model.embed_tokens.weight" not in state_dict: # LLaMa ties weights state_dict["model.embed_tokens.weight"] = state_dict["lm_head.weight"].clone() if update_fn is not None: state_dict = update_fn(state_dict) elif getattr(self.config.trainer, 'use_orig_unidisc_dit', False): # loading from the original .ckpt files from unidisc repo state_dict = state_dict['state_dict'] state_dict = {k.replace("backbone.", ""): v for k, v in state_dict.items()} try: kwargs = {} kwargs['strict'] = self.config.trainer.disable_strict_load if '.bin' in str(path): kwargs = {} obj.load_state_dict(state_dict, **kwargs) except Exception as e: rprint(f"Failed to load state dict: {e}") rprint(f"State dict keys: {state_dict.keys()}") rprint(f"Model state dict keys: {obj.state_dict().keys()}") raise e if self.config.mode != 'eval': self.init_optimizer_lr_scheduler() if getattr(self.config.trainer, "bypass_load_from_state_dicts_if_resuming", False) and ckpt_path is not None: rprint(f"Skipping load from state dicts since we are resuming from: {ckpt_path}") else: if self.config.trainer.load_from_state_dict is not None: rprint(f"Loading model state dict from {self.config.trainer.load_from_state_dict}") _load(self.backbone, self.config.trainer.load_from_state_dict) rprint(f"Loaded model state dict from {self.config.trainer.load_from_state_dict}") if getattr(self.config.trainer, "load_from_optimizer_state_dict", None) is not None: # TODO: Optimizer.bin from accelerate is the wrong format here. Look into this. The keys/are different and need to be mapped. def update_param_group(state_dict): rprint(f"len(self.optimizer.param_groups): {len(self.optimizer.param_groups[0]['params'])}, len(state_dict['param_groups']): {len(state_dict['param_groups'][0]['params'])}") rprint(f"self.optimizer.param_groups: {self.optimizer.param_groups[0]['params']}") rprint(f"state_dict['param_groups']: {state_dict['param_groups'][0]['params']}") state_dict["param_groups"] = self.optimizer.param_groups return state_dict _load(self.optimizer, self.config.trainer.load_from_optimizer_state_dict, update_fn=update_param_group, key="optim") rprint(f"Loaded optimizer state dict from {self.config.trainer.load_from_optimizer_state_dict}") if self.config.mode == 'eval': rprint(f"Moving model to {self.device}") self.backbone.to(self.device) if getattr(self.config.trainer, 'force_bf16_eval', False) and self.config.mode == 'eval': self.backbone.to(torch.bfloat16) # Model needs to be wrapped before optimizer is created for fsdp if self.config.trainer.xla_spmd and is_xla_available: self.backbone = wrap_xla_fsdp(self.config, self.backbone) self.backbone, self.ema = self.accelerator.prepare(self.backbone, self.ema) if self.config.trainer.compile and not is_xla_available: rprint("Compiling entire model...") self.backbone = compile_model(self.config, self.backbone) if getattr(self.config.trainer, 'mup_coord_plot', False): self.get_coord_plot() if self.config.mode == 'eval': return if not self.config.data.iterable and not self.config.data.webdataset_indexed and self.train_dataloader is not None and self.config.data.wrap_dataloaders: rprint(f"Before prepare: Train len: {len(self.train_dataloader)}, Validation len: {len(self.validation_dataloader)}") if getattr(self.config.eval, 'test_eval_speed', False): self.optimizer, self.lr_scheduler = None, None else: if getattr(self.config.trainer, 'force_disable_wrap_optimizer', False) is False and self.config.mode != 'eval': self.optimizer, self.lr_scheduler = self.accelerator.prepare( self.optimizer, self.lr_scheduler ) elif self.config.mode != 'eval': rprint("WARNING: Not wrapping optimizer with accelerator.prepare()") if self.config.data.webdataset_iterable is False and self.config.data.wrap_dataloaders: self.train_dataloader, self.validation_dataloader = self.accelerator.prepare(self.train_dataloader, self.validation_dataloader) else: rprint("WARNING: Not wrapping dataloaders with accelerator.prepare()") if is_xla_available and self.config.trainer.fsdp: self.train_dataloader = tpu_spmd_dataloader(self.train_dataloader, self.device) self.validation_dataloader = tpu_spmd_dataloader(self.validation_dataloader, self.device) if not self.config.data.iterable and not self.config.data.webdataset_indexed and self.train_dataloader is not None: rprint(f"After prepare: Train len: {len(self.train_dataloader)}, Validation len: {len(self.validation_dataloader)}") if (self.config.trainer.use_spmd_distributed_checkpointing or self.config.trainer.use_simple_spmd_distributed_checkpointing) and is_xla_available: gprint("Initializing distributed process group") import torch.distributed as dist import torch_xla.distributed.xla_backend import torch_xla.runtime as xr dist.init_process_group('gloo', init_method='xla://') gprint("Distributed process group initialized, before creating checkpoint manager") if (self.config.trainer.use_spmd_distributed_checkpointing and self.config.trainer.disable_all_checkpointing is False) and is_xla_available: gprint("Initializing checkpoint manager") from torch_xla.experimental.distributed_checkpoint import CheckpointManager, prime_optimizer self.chkpt_mgr = CheckpointManager(self.config.checkpointing.save_dir, self.config.trainer.ckpt_steps) gprint(f"Checkpoint manager created") if getattr(self.config.trainer, "force_from_ckpt", None) is not None: ckpt_path = getattr(self.config.trainer, "force_from_ckpt") if ckpt_path == "": ckpt_path = None if ckpt_path is not None and Path(ckpt_path).exists(): rprint(f"Loading checkpoint {ckpt_path}") if self.config.trainer.use_spmd_distributed_checkpointing and self.config.trainer.disable_all_checkpointing is False: gprint("Loading checkpoint for XLA") from torch_xla.experimental.distributed_checkpoint import CheckpointManager, prime_optimizer tracked_steps = self.chkpt_mgr.all_steps() if tracked_steps: rprint(f"Found tracked steps: {tracked_steps}") best_step = max(tracked_steps) # Choose the highest step prime_optimizer(self.optimizer) # Before restoring the checkpoint, the optimizer state must be primed to allow state to be loaded into it. state_dict = {'model': self.accelerator.unwrap_model(self.backbone).state_dict(), 'optim': self.optimizer.state_dict()} self.chkpt_mgr.restore(best_step, state_dict) self.backbone.load_state_dict(state_dict['model']) self.optimizer.load_state_dict(state_dict['optim']) else: import os folder_contents = os.listdir(ckpt_path) gprint(f"Contents of the folder {ckpt_path}: {folder_contents}") self.accelerator.load_state(ckpt_path, strict=self.config.trainer.disable_strict_load is False) elif ckpt_path is not None: rprint(f"WARNING: Checkpoint {ckpt_path} does not exist") if getattr(self.config.trainer, "reset_lr_scheduler_step", False): with open_dict(self.config): with read_write(self.config): rprint(f"Resetting lr scheduler") if getattr(self.config.trainer, "global_num_warmup_steps", None) is not None: self.config.lr_scheduler.num_warmup_steps = self.config.trainer.global_num_warmup_steps rprint(f"Set num_warmup_steps to {self.config.lr_scheduler.num_warmup_steps}") if getattr(self.config.trainer, "global_num_training_steps", None) is not None: self.config.lr_scheduler.num_training_steps = self.config.trainer.global_num_training_steps rprint(f"Set num_training_steps to {self.config.lr_scheduler.num_training_steps}") if not self.config.trainer.disable_adjust_num_warmup_steps: _world_size = 1 if (is_xla_available and self.config.trainer.xla_spmd) else self.world_size rprint(f"Warmup steps was {self.config.lr_scheduler.num_warmup_steps}") self.config.lr_scheduler.num_warmup_steps = self.config.lr_scheduler.num_warmup_steps * _world_size rprint(f"Warmup steps is now {self.config.lr_scheduler.num_warmup_steps}, world size is {_world_size}") if hasattr(self.config.lr_scheduler, "num_training_steps"): rprint(f"num_training_steps was: {self.config.lr_scheduler.num_training_steps}. Applying to num_training_steps") self.config.lr_scheduler.num_training_steps = self.config.trainer.global_num_training_steps * _world_size rprint(f"Set num_warmup_steps to {self.config.lr_scheduler.num_warmup_steps}") if getattr(self.config.trainer, "global_num_training_steps", None) is not None: rprint(f"Set num_training_steps to {self.config.lr_scheduler.num_training_steps}") self.lr_scheduler.scheduler = hydra.utils.instantiate(self.config.lr_scheduler, optimizer=self.lr_scheduler.scheduler.optimizer) rprint(self.lr_scheduler.scheduler.__dict__) rprint(self.lr_scheduler.scheduler.state_dict()) rprint("WARNING!!! Resetting lr scheduler") elif getattr(self.config.trainer, "force_reset_optimizer_lr_scheduler", False): self.init_optimizer_lr_scheduler() self.lr_scheduler, self.optimizer = self.accelerator.prepare(self.lr_scheduler, self.optimizer) def set_callbacks(self): from torchtnt.framework._callback_handler import CallbackHandler from unidisc.utils.throughput_monitor import ThroughputMonitor precomputed_flops_per_sample = {} _flops_per_sample = precomputed_flops_per_sample.get(self.config.model.name, 0) if _flops_per_sample == 0 or self.config.backbone != 'dit': # Assume approx 6ND for decoder transformer model _flops_per_sample = 6 * self.config.model.length * self.non_embedding_params if self.config.trainer.xla_spmd and is_xla_available: _flops_per_sample /= self.world_size callbacks = [] callbacks.append( ThroughputMonitor( batch_size_fn=None, length_fn=None, log_every_n_steps=50, window_size=2, separator="_", world_size=1 if self.config.trainer.xla_spmd else self.world_size, device=self.device, dtype=self.dtype, flops_per_sample=_flops_per_sample ) ) self.cb_handler = CallbackHandler(callbacks) @try_except(write_error_to_file=True) def checkpoint(self, state: TrainingState = None): if is_torch_xla_available(): gprint("Saving checkpoint on XLA...") self.on_train_resume() # In case we start checkpointing in the middle of validation checkpoint_all_ranks = self.config.trainer.checkpoint_all_ranks if (not is_main_process()) and checkpoint_all_ranks is False: return if self.current_run_global_step < 200 and self.config.trainer.skip_early_checkpointing: rprint("Skipping checkpointing for the first 200 steps...") return if self.config.trainer.disable_all_checkpointing: rprint("Disabled all checkpointing...") return start_time = time.time() if self.config.trainer.use_simple_spmd_distributed_checkpointing and is_xla_available: import torch.distributed.checkpoint as dist_cp import torch_xla.experimental.distributed_checkpoint as xc gprint("Saving checkpoint...0") import torch_xla.core.xla_model as xm xm.mark_step() gprint("Saving checkpoint...1") xm.wait_device_ops() gprint("Saving checkpoint...2") CHECKPOINT_DIR = Path(self.config.checkpointing.save_dir) / f"checkpoint_{self.global_step}" gprint("Saving checkpoint...4") if is_main_process(): gprint(f"Clearing old checkpoints") handle_checkpointing_dirs(self.config, prefix="checkpoint") gprint(f"Finished clearing old checkpoints") state_dict = { "model": self.backbone.state_dict(), } if not self.config.trainer.ckpt_model_only: gprint("Saving optimizer state dict") state_dict["optim"] = self.optimizer.state_dict() gprint(f"Saving checkpoint...5 to {CHECKPOINT_DIR}") dist_cp.save( state_dict=state_dict, storage_writer=dist_cp.FileSystemWriter(CHECKPOINT_DIR), planner=xc.SPMDSavePlanner(), ) if is_main_process(): from main import save_config_to_ckpt save_config_to_ckpt(self.config, CHECKPOINT_DIR, self) gprint("Saving checkpoint...6") elif self.config.checkpointing.use_automatic_naming: rprint("Saving checkpoint...") self.accelerator.save_state() rprint("Saved checkpoint...") else: rprint(f"Saving checkpoint...") prefix = "checkpoint" Path(self.config.checkpointing.save_dir).mkdir(exist_ok=True, parents=True) if is_main_process(): handle_checkpointing_dirs(self.config, prefix="checkpoint") save_path = Path(self.config.checkpointing.save_dir) / f"{prefix}_{self.global_step}" save_path.mkdir(exist_ok=True, parents=True) if checkpoint_all_ranks: barrier() if self.config.trainer.ckpt_model_only: from safetensors.torch import save_file, save_model try: self.accelerator.save_model(self.backbone, save_path) except Exception as e: rprint(f"Failed to save model with 'save_file': {e}") if getattr(self.config.trainer, 'finetuning_mode', False): rprint("Fallback to 'save_model' instead") if is_main_process(): save_model(self.backbone, save_path / "model.safetensors") else: try: self.accelerator.save_state(save_path) except Exception as e: from traceback import print_exc print_exc() gprint(f"Failed to save state: {e}, saving model instead") self.accelerator.save_model(self.backbone, save_path) gprint("Saved model instead") if checkpoint_all_ranks: barrier() rprint(f"Saved checkpoint to: {save_path}") with try_except(write_error_to_file=True, clear_cuda_cache=True): self.print_hashes() rprint(f"Checkpointing took: {time.time() - start_time} seconds") def print_hashes(self): if self.config.trainer.fsdp: rprint('Skipping module hash for FSDP') return rprint(f"Module hash: {module_hash(self.backbone)}") if self.ema is not None: if self.config.trainer.use_custom_ema: rprint(f"EMA hash: {module_hash(self.ema)}") else: rprint(f"EMA hash: {parameter_hash(self.ema.state_dict()['shadow_params'])}") @try_except(write_error_to_file=True) def on_train_step_end(self, state: TrainingState): self.cb_handler.on_train_step_end(state=state, unit=self) del state.batch tr = self.config.trainer if check_every_n_steps( state, tr.val_check_interval, run_first=tr.eval_on_start, all_processes=True, decay_steps=tr.eval_decay_steps ) or check_every_n_epochs(state, tr.eval_epochs, all_processes=True): rprint(f"Starting validation at {state.global_step}...") with show_memory_usage(): with try_except(write_error_to_file=True, clear_cuda_cache=True): with nullcontext() if is_xla_available else (torch.no_grad() if getattr(self.config.trainer, "force_disable_inference_mode", False) else torch.inference_mode()): self.validate(state) self.on_validation_epoch_cleanup() self.num_evals += 1 self.on_train_resume() dprint("All processes finished validation") xla_spmd = self.config.trainer.use_spmd_distributed_checkpointing if xla_spmd and self.config.trainer.disable_all_checkpointing is False and self.global_step > 10: # Call every step, but only runs after n steps internally gprint("Might save async checkpoint...") if getattr(self.config.checkpointing, "save_optimizer_state", True): state_dict = {'model': self.backbone.state_dict(), 'optim': self.optimizer.state_dict()} else: gprint("[WARNING] Not saving optimizer state") state_dict = {'model': self.backbone.state_dict()} if self.chkpt_mgr.save_async(self.global_step, state_dict): gprint(f'Checkpoint taken at step {self.global_step}') current_time = time.time() if not hasattr(self, "last_checkpoint_time"): self.last_checkpoint_time = current_time checkpoint_due_to_time = (current_time - self.last_checkpoint_time) >= (tr.ckpt_every_n_minutes * 60) checkpoint_due_to_step = check_every_n_steps(state, tr.ckpt_steps, run_first=False, all_processes=True) if is_torch_cuda_available() and tr.ckpt_every_n_minutes > 0: should_ckpt_all_ranks = gather_object([checkpoint_due_to_time or checkpoint_due_to_step]) else: should_ckpt_all_ranks = [checkpoint_due_to_step] if should_ckpt_all_ranks[0] and not xla_spmd: # To avoid timing inconsistencies, we take the value from the main process rprint(f"Saving checkpoint at {self.global_step}...due to {'time' if checkpoint_due_to_time else 'step'}. Ranks thought: {should_ckpt_all_ranks}") self.last_checkpoint_time = current_time self.checkpoint(state) rprint(f"Checkpoint saved at {self.global_step}...") def after_backward(self, state): freq = getattr(self.config.trainer, "log_grad_norm_every_n_steps", 200 if self.is_compiled else 50) if not is_xla_available and self.config.trainer.log_grad_norm and check_every_n_steps(state, freq, run_first=True, all_processes=False): norms, total_norm = grad_norm(self.backbone, norm_type=2, group_separator="") grad_norm_dict = {f"grad_norms/{k}": v for k, v in norms.items()} if 'text-diffusion' in self.config.wandb.project: grad_norm_dict = {k.replace("module.", ""): v for k, v in grad_norm_dict.items()} log({**grad_norm_dict, "trainer/total_grad_norm": total_norm, "trainer/global_step": self.global_step}) from model_utils import Loss def shortcut_return(self, logprobs, output_tokens, attention_mask, prefix): # For comparing to unidisc only loss = -logprobs.gather( -1, output_tokens[:, :, None])[:, :, 0] nlls = loss * attention_mask count = attention_mask.sum() batch_nll = nlls.sum() token_nll = batch_nll / count losses = Loss( loss=token_nll, img_loss=0, txt_loss=0, nlls=nlls, txt_nlls=0, img_nlls=0, token_mask=attention_mask, modality_mask=None, extra_losses=None, ) if getattr(self.config.trainer, "disable_torchmetrics", False): raise NotImplementedError("Torchmetrics disabled") elif prefix == "train": return losses elif prefix == "val": self.valid_metrics.update(losses.nlls, losses.token_mask) elif prefix == "test": self.test_metrics.update(losses.nlls, losses.token_mask) metrics = self.test_metrics self.log_dict(metrics, on_step=False, on_epoch=True, sync_dist=True) else: raise ValueError(f"Invalid prefix: {prefix}") def unwrap_model(self, model): from diffusers.utils.torch_utils import is_compiled_module model = self.accelerator.unwrap_model(model) model = model._orig_mod if is_compiled_module(model) else model return model