import math import typing import flash_attn import flash_attn.layers.rotary import huggingface_hub import omegaconf import torch import torch.nn as nn import torch.nn.functional as F from einops import rearrange # Flags required to enable jit fusion kernels torch._C._jit_set_profiling_mode(False) torch._C._jit_set_profiling_executor(False) torch._C._jit_override_can_fuse_on_cpu(True) torch._C._jit_override_can_fuse_on_gpu(True) def bias_dropout_add_scale( x: torch.Tensor, bias: typing.Optional[torch.Tensor], scale: torch.Tensor, residual: typing.Optional[torch.Tensor], prob: float, training: bool, ) -> torch.Tensor: if bias is not None: out = scale * F.dropout( x + bias, p=prob, training=training ) else: out = scale * F.dropout(x, p=prob, training=training) if residual is not None: out = residual + out return out def get_bias_dropout_add_scale(training): def _bias_dropout_add(x, bias, scale, residual, prob): return bias_dropout_add_scale( x, bias, scale, residual, prob, training ) return _bias_dropout_add @torch.jit.script def bias_dropout_add_scale_fused_train( x: torch.Tensor, bias: typing.Optional[torch.Tensor], scale: torch.Tensor, residual: typing.Optional[torch.Tensor], prob: float, ) -> torch.Tensor: return bias_dropout_add_scale( x, bias, scale, residual, prob, True ) @torch.jit.script def bias_dropout_add_scale_fused_inference( x: torch.Tensor, bias: typing.Optional[torch.Tensor], scale: torch.Tensor, residual: typing.Optional[torch.Tensor], prob: float, ) -> torch.Tensor: return bias_dropout_add_scale( x, bias, scale, residual, prob, False ) class Rotary(torch.nn.Module): def __init__(self, dim, base=10_000): super().__init__() inv_freq = 1.0 / ( base ** (torch.arange(0, dim, 2).float() / dim) ) self.register_buffer('inv_freq', inv_freq) self.seq_len_cached = None self.cos_cached = None self.sin_cached = None def forward(self, x, seq_dim=1): seq_len = x.shape[seq_dim] if seq_len != self.seq_len_cached: self.seq_len_cached = seq_len t = torch.arange( x.shape[seq_dim], device=x.device ).type_as(self.inv_freq) freqs = torch.einsum( 'i,j->ij', t, self.inv_freq.clone() ) emb = torch.cat((freqs, freqs), dim=-1).to(x.device) # dims are: batch, seq_len, qkv, head, dim self.cos_cached = emb.cos()[ None, :, None, None, : ].repeat(1, 1, 3, 1, 1) self.sin_cached = emb.sin()[ None, :, None, None, : ].repeat(1, 1, 3, 1, 1) # This makes the transformation on v an identity. self.cos_cached[:, :, 2, :, :].fill_(1.0) self.sin_cached[:, :, 2, :, :].fill_(0.0) return self.cos_cached, self.sin_cached def rotate_half(x): x1, x2 = ( x[..., : x.shape[-1] // 2], x[..., x.shape[-1] // 2 :], ) return torch.cat((-x2, x1), dim=-1) def apply_rotary_pos_emb(qkv, cos, sin): cos = cos[0, :, 0, 0, : cos.shape[-1] // 2] sin = sin[0, :, 0, 0, : sin.shape[-1] // 2] return flash_attn.layers.rotary.apply_rotary_emb_qkv_( qkv, cos, sin ) ################################################################################# # Layers # ################################################################################# class LayerNorm(nn.Module): def __init__(self, dim): super().__init__() self.weight = nn.Parameter(torch.ones([dim])) self.dim = dim def forward(self, x): with torch.cuda.amp.autocast(enabled=False): x = F.layer_norm(x.float(), [self.dim]) return x * self.weight[None, None, :] def residual_linear(x, W, x_skip, residual_scale): """x_skip + residual_scale * W @ x""" dim_out, dim_in = W.shape[0], W.shape[1] return torch.addmm( x_skip.view(-1, dim_out), x.view(-1, dim_in), W.T, alpha=residual_scale, ).view(*x.shape[:-1], dim_out) ################################################################################# # Core Model # ################################################################################# class DDiTBlock(nn.Module): def __init__( self, dim, n_heads, cond_dim, mlp_ratio=4, dropout=0.1, causal=False, ): super().__init__() self.n_heads = n_heads self.causal = causal self.norm1 = LayerNorm(dim) self.attn_qkv = nn.Linear(dim, 3 * dim, bias=False) self.attn_out = nn.Linear(dim, dim, bias=False) self.dropout1 = nn.Dropout(dropout) self.norm2 = LayerNorm(dim) self.mlp = nn.Sequential( nn.Linear(dim, mlp_ratio * dim, bias=True), nn.GELU(approximate='tanh'), nn.Linear(mlp_ratio * dim, dim, bias=True), ) self.dropout2 = nn.Dropout(dropout) self.dropout = dropout def _get_bias_dropout_scale(self): if self.training: return bias_dropout_add_scale_fused_train else: return bias_dropout_add_scale_fused_inference def forward(self, x, rotary_cos_sin, c, seqlens=None): batch_size, seq_len = x.shape[0], x.shape[1] bias_dropout_scale_fn = self._get_bias_dropout_scale() # attention operation x_skip = x x = self.norm1(x) qkv = self.attn_qkv(x) qkv = rearrange( qkv, 'b s (three h d) -> b s three h d', three=3, h=self.n_heads, ) with torch.cuda.amp.autocast(enabled=False): cos, sin = rotary_cos_sin qkv = apply_rotary_pos_emb( qkv, cos.to(qkv.dtype), sin.to(qkv.dtype) ) qkv = rearrange(qkv, 'b s ... -> (b s) ...') if seqlens is None: cu_seqlens = torch.arange( 0, (batch_size + 1) * seq_len, step=seq_len, dtype=torch.int32, device=qkv.device, ) else: cu_seqlens = seqlens.cumsum(-1) x = flash_attn.flash_attn_interface.flash_attn_varlen_qkvpacked_func( qkv, cu_seqlens, seq_len, 0.0, causal=self.causal ) x = rearrange(x, '(b s) h d -> b s (h d)', b=batch_size) scale = torch.ones(1, device=x.device, dtype=x.dtype) x = bias_dropout_scale_fn( self.attn_out(x), None, scale, x_skip, self.dropout ) # mlp operation x = bias_dropout_scale_fn( self.mlp(self.norm2(x)), None, scale, x, self.dropout ) return x class EmbeddingLayer(nn.Module): def __init__(self, dim, vocab_dim): super().__init__() self.embedding = nn.Parameter( torch.empty((vocab_dim, dim)) ) torch.nn.init.kaiming_uniform_( self.embedding, a=math.sqrt(5) ) def forward(self, x): return self.embedding[x] class DDitFinalLayer(nn.Module): def __init__( self, hidden_size, out_channels, cond_dim, causal=False ): super().__init__() self.causal = causal assert causal == True self.norm_final = LayerNorm(hidden_size) self.linear = nn.Linear(hidden_size, out_channels) self.linear.weight.data.zero_() self.linear.bias.data.zero_() def forward(self, x, c): return self.linear(self.norm_final(x)) class DDIT(nn.Module, huggingface_hub.PyTorchModelHubMixin): def __init__(self, config, vocab_size: int, causal: bool): super().__init__() if type(config) == dict: config = omegaconf.OmegaConf.create(config) self.config = config self.vocab_size = vocab_size self.causal = ( hasattr(config.model, 'causal') and config.model.causal ) or causal assert self.causal == True self.vocab_embed = EmbeddingLayer( config.model.hidden_size, vocab_size ) self.rotary_emb = Rotary( config.model.hidden_size // config.model.n_heads ) blocks = [] for _ in range(config.model.n_blocks): blocks.append( DDiTBlock( config.model.hidden_size, config.model.n_heads, config.model.cond_dim, dropout=config.model.dropout, causal=self.causal, ) ) self.blocks = nn.ModuleList(blocks) self.output_layer = DDitFinalLayer( config.model.hidden_size, vocab_size, config.model.cond_dim, causal=self.causal, ) self.scale_by_sigma = config.model.scale_by_sigma def _get_bias_dropout_scale(self): if self.training: return bias_dropout_add_scale_fused_train else: return bias_dropout_add_scale_fused_inference class AR(DDIT): def __init__(self, config, vocab_size, mask_index, causal: bool = False): super().__init__(config, vocab_size, causal) self.mask_index = mask_index self.neg_infinity = -1000.0 def forward(self, xt, sigma, **kwargs): """Forward pass of the denoising model. Args: xt: int torch.Tensor with shape (batch_size, diffusion_model_input_length), token ids. sigma: float torch.Tensor with shape (batch_size). Returns: log probability with shape (batch_size, diffusion_model_input_length, vocab_size) """ x = self.vocab_embed(xt) rotary_cos_sin = self.rotary_emb(x) with torch.cuda.amp.autocast(dtype=torch.bfloat16): for i in range(len(self.blocks)): x = self.blocks[i]( x, rotary_cos_sin, None, seqlens=None ) output = self.output_layer(x, None) # log prob at the mask index = - infinity output[:, :, self.mask_index] = self.neg_infinity # Normalize the logits such that x.exp() is # a probability distribution over vocab_size. # x = x - torch.logsumexp(x, dim=-1, keepdim=True) return output.log_softmax(-1)