import functools import itertools import json import math import os import random import re import shutil import typing import urllib import zipfile from pathlib import Path import datasets import fsspec import pandas as pd import requests import tokenizers import torch import transformers import utils from decoupled_utils import rprint def wt_detokenizer(string): # contractions string = string.replace("s '", "s'") string = re.sub(r"/' [0-9]/", r"/'[0-9]/", string) # number separators string = string.replace(" @-@ ", "-") string = string.replace(" @,@ ", ",") string = string.replace(" @.@ ", ".") # punctuation string = string.replace(" : ", ": ") string = string.replace(" ; ", "; ") string = string.replace(" . ", ". ") string = string.replace(" ! ", "! ") string = string.replace(" ? ", "? ") string = string.replace(" , ", ", ") # double brackets string = re.sub(r"\(\s*([^\)]*?)\s*\)", r"(\1)", string) string = re.sub(r"\[\s*([^\]]*?)\s*\]", r"[\1]", string) string = re.sub(r"{\s*([^}]*?)\s*}", r"{\1}", string) string = re.sub(r"\"\s*([^\"]*?)\s*\"", r'"\1"', string) string = re.sub(r"'\s*([^']*?)\s*'", r"'\1'", string) # miscellaneous string = string.replace("= = = =", "====") string = string.replace("= = =", "===") string = string.replace("= =", "==") string = string.replace(" " + chr(176) + " ", chr(176)) string = string.replace(" \n", "\n") string = string.replace("\n ", "\n") string = string.replace(" N ", " 1 ") string = string.replace(" 's", "'s") return string def ptb_detokenizer(x): x = x.replace(" 's", "'s") x = x.replace("s ' ", "s' ") x = x.replace(" n't", "n't") x = x.replace(" \n ", "\n") x = x.replace("\\/", "/") for _ in range(10): x = x.replace(" N ", " 1 ") x = x.replace("$ 1", "$1") x = x.replace("# 1", "#1") x = x.replace("", "?") return x def lm1b_detokenizer(x): x = x.replace('http : / / ', 'http://') x = x.replace('https : / / ', 'https://') x = re.sub(r' \'(\w+)', r"'\1", x) x = re.sub(r' (\w+) \. ', r' \1. ', x) x = re.sub(r' (\w+) \.$', r' \1.', x) x = x.replace(' ? ', '? ') x = re.sub(r' \?$', '?', x) x = x.replace(' ! ', '! ') x = re.sub(r' \!$', '!', x) x = x.replace(' , ', ', ') x = x.replace(' : ', ': ') x = x.replace(' ; ', '; ') x = x.replace(' / ', '/') x = re.sub(r'\" ([^\"]+) \"', r'"\1"', x) x = re.sub(r'\' ([^\']+) \'', r"'\1'", x) x = re.sub(r'\( ([^\(\)]+) \)', r"(\1)", x) x = re.sub(r'\[ ([^\[\]]+) \]', r"[\1]", x) x = x.replace('$ ', '$') x = x.replace('£ ', '£') return x def lambada_detokenizer(text): text = text.replace("“", '"') text = text.replace("”", '"') return '\n'+text.strip() def scientific_papers_detokenizer(x): x = wt_detokenizer(x) x = lm1b_detokenizer(x) return x class Text8Tokenizer(transformers.PreTrainedTokenizer): def __init__( self, bos_token='[BOS]', eos_token='[EOS]', sep_token='[SEP]', cls_token='[CLS]', pad_token='[PAD]', mask_token='[MASK]', unk_token='[UNK]', **kwargs): self.characters = list('abcdefghijklmnopqrstuvwxyz ') self._vocab_str_to_int = { '[CLS]': 0, '[SEP]': 1, '[BOS]': 2, '[EOS]': 3, '[MASK]': 4, '[PAD]': 5, '[RESERVED]': 6, '[UNK]': 7, ** {ch: i + 8 for i, ch in enumerate(self.characters)}} self._vocab_int_to_str = { v: k for k, v in self._vocab_str_to_int.items()} super().__init__( bos_token=bos_token, eos_token=eos_token, sep_token=sep_token, cls_token=cls_token, pad_token=pad_token, mask_token=mask_token, unk_token=unk_token, **kwargs) @property def vocab_size(self) -> int: return len(self._vocab_str_to_int) def _tokenize(self, text: str, **kwargs): return list(text.lower()) def _convert_token_to_id(self, token: str) -> int: return self._vocab_str_to_int.get( token, self._vocab_str_to_int['[UNK]']) def _convert_id_to_token(self, index: int) -> str: return self._vocab_int_to_str[index] def convert_tokens_to_string(self, tokens): return ''.join(tokens) def get_vocab(self) -> typing.Dict[str, int]: return self._vocab_str_to_int def get_lambada_test_dataset(): url = "https://openaipublic.blob.core.windows.net/gpt-2/data/lambada_test.jsonl" def read_jsonl_to_list(url): response = requests.get(url, stream=True) data_list = [] # Process each line in the response content for line in response.iter_lines(decode_unicode=True): if line: data = json.loads(line) data_list.append(data) return data_list lambada_data = read_jsonl_to_list(url) dataset = datasets.Dataset.from_list(lambada_data) return dataset def get_text8_dataset(cache_dir, max_seq_length=256, drop_last=True, crop_train=False): """Adapted from: https://github.com/google-research/google-research/blob/master/d3pm/text/datasets.py#L344 Args: cache_dir: str, path to cache directory. max_seq_length: int, maximum length of sequences. (default: 256, as in D3PM codebase.) drop_last: bool, whether to drop the last incomplete batch. (default: True, as in D3PM codebase.) crop_train: bool, whether to subsample contiguous subsequences from training example. serves to make sure transformer models with absolute position embeddings do not have incorrect position-wise marginals. (default: False, but necessary to match D3PM AR) Returns: dataset: dataset.DatasetDict, with keys 'train', 'valid', 'test'. """ url = 'http://mattmahoney.net/dc/text8.zip' if not crop_train: cache_dir = f'{cache_dir}/text8' else: cache_dir = f'{cache_dir}/text8-crop-train' split_names = ['train', 'validation', 'test'] if not all([ utils.fsspec_exists(os.path.join(cache_dir, split)) for split in split_names ]): # Check if raw data exists raw_cache_dir = os.path.join(cache_dir, 'raw_data') if not all([ utils.fsspec_exists( os.path.join(raw_cache_dir, f'text8.{split}.txt')) for split in split_names ]): if not utils.fsspec_exists( os.path.join(raw_cache_dir, 'text8.zip')): utils.fsspec_mkdirs(raw_cache_dir, exist_ok=True) print('Downloading text8 from URL {}.'.format(url)) with (urllib.request.urlopen(url) as in_stream, open(os.path.join(raw_cache_dir, 'text8.zip'), 'wb') as out_file): shutil.copyfileobj(in_stream, out_file) with fsspec.open( os.path.join(raw_cache_dir, 'text8.zip'), 'rb') as f: rawdata = zipfile.ZipFile(f).read( 'text8').decode('utf-8') # Splits taken from D3PM codebase splits = { 'train': rawdata[:90000000], 'validation': rawdata[90000000: 95000000], 'test': rawdata[95000000:], } for split, data in splits.items(): _path = os.path.join(raw_cache_dir, f'text8.{split}.txt') with fsspec.open(_path, 'w') as f: f.write(data) else: splits = {} for split in split_names: _path = os.path.join(raw_cache_dir, f'text8.{split}.txt') with fsspec.open(_path, 'r') as f: splits[split] = f.read() # Chunk and save as datasets.DatasetDict def chunks(lst, n): """Yield successive n-sized chunks from lst.""" for i in range(0, len(lst), n): yield lst[i:i + n] dataset_dict = {} for k, v in splits.items(): if k == 'train' and crop_train == True: chunk_size = 2 * max_seq_length else: chunk_size = max_seq_length text = list(chunks(v, chunk_size)) if drop_last and len(text[-1]) < chunk_size: text = text[:-1] dataset_dict[k] = datasets.Dataset.from_dict({'text': text}) dataset = datasets.DatasetDict(dataset_dict) dataset.save_to_disk(cache_dir) else: dataset = datasets.load_from_disk(cache_dir) return dataset def _group_texts(examples, block_size, bos, eos): # Concatenate all texts. concatenated_examples = list(itertools.chain(* examples['input_ids'])) total_length = len(concatenated_examples) # TODO(yair): look into not dropping the remainder but rather padding it. # We drop the small remainder, and if the total_length < block_size - 2 # we exclude this batch and return an empty dict. # We could add padding if the model supported it instead of # this drop, you can customize this part to your needs. new_block_size = block_size - 2 # [BOS] and [EOS] to be added total_length = (total_length // new_block_size) * new_block_size # Split by chunks of max_len. result = {} _values = [] _attn_masks = [] for i in range(0, total_length, new_block_size): _values.append( [bos] + concatenated_examples[i : i + new_block_size] + [eos]) _attn_masks.append(torch.ones(block_size)) result['input_ids'] = _values result['attention_mask'] = _attn_masks return result def get_text_dataset(dataset_name, tokenizer, wrap, mode, cache_dir, block_size=1024, num_proc=len(os.sched_getaffinity(0)), streaming=False, **kwargs): if wrap: filename = f'{dataset_name}_{mode}_bs{block_size}_{tokenizer.__class__.__name__}_wrapped.dat' else: filename = f'{dataset_name}_{mode}_bs{block_size}_{tokenizer.__class__.__name__}_unwrapped.dat' _path = os.path.join(cache_dir, filename) if utils.fsspec_exists(_path): print(f'Loading data from: {_path}') _dataset = datasets.load_from_disk(_path).with_format('torch') rprint(f"Sample 0: {_dataset[0]}") rprint(f"Sample -1: {_dataset[-1]}") return _dataset print(f'Generating new data at: {_path}') crop_train = dataset_name == 'text8-crop' if mode == 'train' and crop_train: # double block size for sub-sampling block_size *= 2 if dataset_name == 'wikitext103': dataset = datasets.load_dataset( 'wikitext', name='wikitext-103-raw-v1', cache_dir=cache_dir) elif dataset_name == 'wikitext2': dataset = datasets.load_dataset( 'wikitext', name='wikitext-2-raw-v1', cache_dir=cache_dir) elif dataset_name == 'ptb': dataset = datasets.load_dataset( 'ptb_text_only', cache_dir=cache_dir) elif dataset_name == 'lambada': dataset = get_lambada_test_dataset() elif dataset_name == 'text8': assert wrap dataset = get_text8_dataset( cache_dir, max_seq_length=block_size) elif dataset_name == 'text8-crop': dataset = get_text8_dataset( cache_dir, max_seq_length=block_size, crop_train=True) elif dataset_name == 'openwebtext-train': dataset = datasets.load_dataset( 'openwebtext', split='train' if streaming else 'train[:-100000]', cache_dir=cache_dir, streaming=streaming, trust_remote_code=True) elif dataset_name == 'openwebtext-valid': dataset = datasets.load_dataset( 'openwebtext', split='train' if streaming else 'train[-100000:]', cache_dir=cache_dir, streaming=streaming) elif dataset_name == 'scientific_papers_arxiv': dataset = datasets.load_dataset( 'scientific_papers', 'arxiv', trust_remote_code=True, cache_dir=cache_dir, streaming=streaming) elif dataset_name == 'scientific_papers_pubmed': dataset = datasets.load_dataset( 'scientific_papers', 'pubmed', trust_remote_code=True, cache_dir=cache_dir, streaming=streaming) elif dataset_name == 'ag_news': dataset = datasets.load_dataset( 'ag_news', cache_dir=cache_dir, streaming=streaming) else: dataset = datasets.load_dataset( dataset_name, cache_dir=cache_dir, streaming=streaming, trust_remote_code=True) if dataset_name in ['lambada', 'openwebtext-train', 'openwebtext-valid']: data = dataset else: data = dataset[mode] if dataset_name.startswith('wikitext'): detokenizer = wt_detokenizer elif dataset_name == 'ptb': detokenizer = ptb_detokenizer elif dataset_name == 'lm1b': detokenizer = lm1b_detokenizer elif dataset_name == 'lambada': detokenizer = lambada_detokenizer elif dataset_name.startswith('scientific_papers'): detokenizer = scientific_papers_detokenizer else: detokenizer = None def _apply_detokenizer(detokenizer): def detok(text): for i, t in enumerate(text, 0): text[i] = detokenizer(t) return text return detok EOS = tokenizer.encode(tokenizer.eos_token)[0] BOS = tokenizer.encode(tokenizer.bos_token)[0] def preprocess_and_tokenize(example): if dataset_name == 'ptb': text = example['sentence'] elif 'scientific_papers' in dataset_name: text = example['article'] else: text = example['text'] if detokenizer is not None: text = _apply_detokenizer(detokenizer)(text) tokenizer.padding_side = 'right' tokenizer.truncation_side = 'right' if wrap: tokens = tokenizer(text, add_special_tokens=False, return_attention_mask=False, return_token_type_ids=False) tokens = {'input_ids': [t + [EOS] for t in tokens['input_ids']]} # Still missing BOS, but will be added in group_texts else: tokens = tokenizer(text, max_length=block_size, padding='max_length', truncation=True, add_special_tokens=True, return_attention_mask=True, return_token_type_ids=True) return tokens if streaming: tokenized_dataset = data.map( preprocess_and_tokenize, batched=True ) else: rprint(f"Tokenizing with num_proc: {num_proc}") tokenized_dataset = data.map( preprocess_and_tokenize, batched=True, num_proc=num_proc, load_from_cache_file=True, desc='Tokenizing') if dataset_name == 'ptb': tokenized_dataset = tokenized_dataset.remove_columns( 'sentence') elif 'scientific_papers' in dataset_name: tokenized_dataset = tokenized_dataset.remove_columns([ 'article', 'abstract', 'section_names']) elif dataset_name == 'ag_news': tokenized_dataset = tokenized_dataset.remove_columns( ['text', 'label']) else: tokenized_dataset = tokenized_dataset.remove_columns( 'text') if not wrap: if streaming is False: tokenized_dataset.save_to_disk(_path) return tokenized_dataset.with_format('torch') group_texts = functools.partial( _group_texts, block_size=block_size, bos=BOS, eos=EOS) if streaming: chunked_dataset = tokenized_dataset.map( group_texts, batched=True) else: chunked_dataset = tokenized_dataset.map( group_texts, batched=True, num_proc=num_proc, load_from_cache_file=True, desc='Grouping') chunked_dataset.save_to_disk(_path) chunked_dataset = chunked_dataset.with_format('torch') return chunked_dataset