Spaces:
Runtime error
Runtime error
File size: 8,021 Bytes
15425df 5219bc0 15425df 334ca28 15425df 334ca28 5219bc0 334ca28 15425df 1a35ebb 15425df 1a35ebb 15425df 5219bc0 a0e1483 15425df a0e1483 15425df 5219bc0 334ca28 5219bc0 334ca28 5219bc0 334ca28 15425df 5219bc0 15425df 334ca28 15425df 334ca28 15425df 334ca28 15425df 5219bc0 334ca28 5219bc0 15425df 334ca28 15425df 5219bc0 15425df 1545304 15425df 1a35ebb 15425df 5219bc0 15425df 1a35ebb 15425df 1a35ebb 334ca28 15425df 3a7adc5 15425df 334ca28 15425df 334ca28 15425df 334ca28 15425df 334ca28 15425df 334ca28 15425df a0e1483 334ca28 15425df 334ca28 15425df 334ca28 15425df 334ca28 15425df 334ca28 15425df 334ca28 15425df 3a7adc5 1a35ebb 15425df a0e1483 334ca28 15425df 334ca28 15425df 3a7adc5 5219bc0 334ca28 15425df 5219bc0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 |
import torch
from transformers import InstructBlipProcessor, InstructBlipForConditionalGeneration
import gradio as gr
from PIL import Image
import re
from typing import List, Tuple
# Configuration
MODEL_NAME = "Salesforce/instructblip-flan-t5-xl"
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
TORCH_DTYPE = torch.float16 if DEVICE == "cuda" else torch.float32
class RiverPollutionAnalyzer:
def __init__(self):
# Initialize processor and model
self.processor = InstructBlipProcessor.from_pretrained(MODEL_NAME)
self.model = InstructBlipForConditionalGeneration.from_pretrained(
MODEL_NAME,
torch_dtype=TORCH_DTYPE
).to(DEVICE)
self.pollutants = [
"plastic waste", "chemical foam", "industrial discharge",
"sewage water", "oil spill", "organic debris",
"construction waste", "medical waste", "floating trash",
"algal bloom", "toxic sludge", "agricultural runoff"
]
self.severity_descriptions = {
1: "Minimal pollution - Slightly noticeable",
2: "Minor pollution - Small amounts visible",
3: "Moderate pollution - Clearly visible",
4: "Significant pollution - Affecting water quality",
5: "Heavy pollution - Obvious environmental impact",
6: "Severe pollution - Large accumulation",
7: "Very severe pollution - Major ecosystem impact",
8: "Extreme pollution - Dangerous levels",
9: "Critical pollution - Immediate action needed",
10: "Disaster level - Ecological catastrophe"
}
def analyze_image(self, image):
"""Analyze river pollution with robust parsing"""
if not isinstance(image, Image.Image):
image = Image.fromarray(image)
prompt = """Analyze this river pollution scene and provide:
1. List ALL visible pollutants ONLY from: [plastic waste, chemical foam, industrial discharge, sewage water, oil spill, organic debris, construction waste, medical waste, floating trash, algal bloom, toxic sludge, agricultural runoff]
2. Estimate pollution severity from 1-10
Respond EXACTLY in this format:
Pollutants: [comma separated list]
Severity: [number]"""
inputs = self.processor(
images=image,
text=prompt,
return_tensors="pt"
).to(DEVICE, TORCH_DTYPE)
with torch.no_grad():
outputs = self.model.generate(
**inputs,
max_new_tokens=200,
temperature=0.7,
top_p=0.9,
do_sample=True
)
analysis = self.processor.batch_decode(outputs, skip_special_tokens=True)[0]
pollutants, severity = self._parse_response(analysis)
return self._format_analysis(pollutants, severity)
def analyze_chat(self, message):
"""Handle chat questions about pollution"""
if "severity" in message.lower():
return "Severity levels range from 1 (minimal) to 10 (disaster). The analyzer automatically detects the appropriate level."
elif "pollutant" in message.lower():
return f"Detectable pollutants: {', '.join(self.pollutants)}"
else:
return "I can answer questions about pollution severity levels and detectable pollutants."
def _parse_response(self, analysis: str) -> Tuple[List[str], int]:
"""Robust parsing of model response"""
pollutants = []
severity = 3
# Extract pollutants
pollutant_match = re.search(
r'Pollutants:\s*\[?(.*?)\]?',
analysis, re.IGNORECASE
)
if pollutant_match:
pollutants_str = pollutant_match.group(1).strip()
pollutants = [
p.strip().lower()
for p in re.split(r'[,;]', pollutants_str)
if p.strip().lower() in self.pollutants
]
# Extract severity
severity_match = re.search(
r'Severity:\s*(\d{1,2})',
analysis, re.IGNORECASE
)
if severity_match:
severity = min(max(int(severity_match.group(1)), 1), 10)
else:
severity = self._calculate_severity(pollutants)
return pollutants, severity
def _calculate_severity(self, pollutants: List[str]) -> int:
"""Weighted severity calculation"""
if not pollutants:
return 1
weights = {
"medical waste": 3, "toxic sludge": 3, "oil spill": 2.5,
"chemical foam": 2, "industrial discharge": 2, "sewage water": 2,
"plastic waste": 1.5, "construction waste": 1.5, "algal bloom": 1.5,
"agricultural runoff": 1.5, "floating trash": 1, "organic debris": 1
}
avg_weight = sum(weights.get(p, 1) for p in pollutants) / len(pollutants)
return min(10, max(1, round(avg_weight * 3)))
def _format_analysis(self, pollutants: List[str], severity: int) -> str:
"""Generate formatted report"""
severity_bar = f"""π Severity: {severity}/10
{"β" * severity}{"β" * (10 - severity)}
{self.severity_descriptions.get(severity, '')}"""
pollutants_list = "\nπ No pollutants detected" if not pollutants else "\n".join(
f"β’ {p.capitalize()}" for p in pollutants[:8])
return f"""π River Pollution Analysis π
{pollutants_list}
{severity_bar}"""
# Initialize analyzer
analyzer = RiverPollutionAnalyzer()
# Gradio Interface
css = """
.header { text-align: center; margin-bottom: 20px; }
.header h1 { font-size: 2.2rem; margin-bottom: 0; }
.header h3 { font-size: 1.1rem; font-weight: normal; margin-top: 0.5rem; }
.side-by-side { display: flex; gap: 20px; }
.left-panel, .right-panel { flex: 1; }
.analysis-box { border: 1px solid #e0e0e0; border-radius: 8px; padding: 15px; margin-top: 20px; }
.chat-container { border: 1px solid #e0e0e0; border-radius: 8px; padding: 15px; height: 100%; }
"""
with gr.Blocks(theme=gr.themes.Soft(), css=css) as demo:
with gr.Column(elem_classes="header"):
gr.Markdown("# π River Pollution Analyzer")
gr.Markdown("### AI-powered water quality assessment")
with gr.Row(elem_classes="side-by-side"):
# Image Analysis Panel
with gr.Column(elem_classes="left-panel"):
gr.Markdown("### πΈ Image Analysis")
with gr.Group():
image_input = gr.Image(type="pil", label="Upload River Image", height=300)
analyze_btn = gr.Button("π Analyze", variant="primary")
with gr.Group(elem_classes="analysis-box"):
analysis_output = gr.Markdown()
# Chat Panel
with gr.Column(elem_classes="right-panel"):
gr.Markdown("### π¬ Pollution Q&A")
with gr.Group(elem_classes="chat-container"):
chatbot = gr.Chatbot(height=350)
with gr.Row():
chat_input = gr.Textbox(placeholder="Ask about pollution...", show_label=False)
chat_btn = gr.Button("Send", variant="secondary")
clear_btn = gr.Button("Clear Chat")
# Event handlers
analyze_btn.click(
analyzer.analyze_image,
inputs=image_input,
outputs=analysis_output
)
def respond(message, chat_history):
response = analyzer.analyze_chat(message)
chat_history.append((message, response))
return "", chat_history
chat_input.submit(respond, [chat_input, chatbot], [chat_input, chatbot])
chat_btn.click(respond, [chat_input, chatbot], [chat_input, chatbot])
clear_btn.click(lambda: None, None, chatbot, queue=False)
# Examples
gr.Examples(
examples=[["examples/pollution1.jpg"], ["examples/pollution2.jpg"]],
inputs=image_input,
outputs=analysis_output,
fn=analyzer.analyze_image,
cache_examples=True,
label="Example Images"
)
demo.launch() |