import torch from transformers import InstructBlipProcessor, InstructBlipForConditionalGeneration import gradio as gr from PIL import Image import re from typing import List, Tuple # Configuration MODEL_NAME = "Salesforce/instructblip-flan-t5-xl" DEVICE = "cuda" if torch.cuda.is_available() else "cpu" TORCH_DTYPE = torch.float16 if DEVICE == "cuda" else torch.float32 class RiverPollutionAnalyzer: def __init__(self): # Initialize processor and model self.processor = InstructBlipProcessor.from_pretrained(MODEL_NAME) self.model = InstructBlipForConditionalGeneration.from_pretrained( MODEL_NAME, torch_dtype=TORCH_DTYPE ).to(DEVICE) self.pollutants = [ "plastic waste", "chemical foam", "industrial discharge", "sewage water", "oil spill", "organic debris", "construction waste", "medical waste", "floating trash", "algal bloom", "toxic sludge", "agricultural runoff" ] self.severity_descriptions = { 1: "Minimal pollution - Slightly noticeable", 2: "Minor pollution - Small amounts visible", 3: "Moderate pollution - Clearly visible", 4: "Significant pollution - Affecting water quality", 5: "Heavy pollution - Obvious environmental impact", 6: "Severe pollution - Large accumulation", 7: "Very severe pollution - Major ecosystem impact", 8: "Extreme pollution - Dangerous levels", 9: "Critical pollution - Immediate action needed", 10: "Disaster level - Ecological catastrophe" } def analyze_image(self, image): """Analyze river pollution with robust parsing""" if not isinstance(image, Image.Image): image = Image.fromarray(image) prompt = """Analyze this river pollution scene and provide: 1. List ALL visible pollutants ONLY from: [plastic waste, chemical foam, industrial discharge, sewage water, oil spill, organic debris, construction waste, medical waste, floating trash, algal bloom, toxic sludge, agricultural runoff] 2. Estimate pollution severity from 1-10 Respond EXACTLY in this format: Pollutants: [comma separated list] Severity: [number]""" inputs = self.processor( images=image, text=prompt, return_tensors="pt" ).to(DEVICE, TORCH_DTYPE) with torch.no_grad(): outputs = self.model.generate( **inputs, max_new_tokens=200, temperature=0.7, top_p=0.9, do_sample=True ) analysis = self.processor.batch_decode(outputs, skip_special_tokens=True)[0] pollutants, severity = self._parse_response(analysis) return self._format_analysis(pollutants, severity) def analyze_chat(self, message): """Handle chat questions about pollution""" if "severity" in message.lower(): return "Severity levels range from 1 (minimal) to 10 (disaster). The analyzer automatically detects the appropriate level." elif "pollutant" in message.lower(): return f"Detectable pollutants: {', '.join(self.pollutants)}" else: return "I can answer questions about pollution severity levels and detectable pollutants." def _parse_response(self, analysis: str) -> Tuple[List[str], int]: """Robust parsing of model response""" pollutants = [] severity = 3 # Extract pollutants pollutant_match = re.search( r'Pollutants:\s*\[?(.*?)\]?', analysis, re.IGNORECASE ) if pollutant_match: pollutants_str = pollutant_match.group(1).strip() pollutants = [ p.strip().lower() for p in re.split(r'[,;]', pollutants_str) if p.strip().lower() in self.pollutants ] # Extract severity severity_match = re.search( r'Severity:\s*(\d{1,2})', analysis, re.IGNORECASE ) if severity_match: severity = min(max(int(severity_match.group(1)), 1), 10) else: severity = self._calculate_severity(pollutants) return pollutants, severity def _calculate_severity(self, pollutants: List[str]) -> int: """Weighted severity calculation""" if not pollutants: return 1 weights = { "medical waste": 3, "toxic sludge": 3, "oil spill": 2.5, "chemical foam": 2, "industrial discharge": 2, "sewage water": 2, "plastic waste": 1.5, "construction waste": 1.5, "algal bloom": 1.5, "agricultural runoff": 1.5, "floating trash": 1, "organic debris": 1 } avg_weight = sum(weights.get(p, 1) for p in pollutants) / len(pollutants) return min(10, max(1, round(avg_weight * 3))) def _format_analysis(self, pollutants: List[str], severity: int) -> str: """Generate formatted report""" severity_bar = f"""šŸ“Š Severity: {severity}/10 {"ā–ˆ" * severity}{"ā–‘" * (10 - severity)} {self.severity_descriptions.get(severity, '')}""" pollutants_list = "\nšŸ” No pollutants detected" if not pollutants else "\n".join( f"• {p.capitalize()}" for p in pollutants[:8]) return f"""🌊 River Pollution Analysis 🌊 {pollutants_list} {severity_bar}""" # Initialize analyzer analyzer = RiverPollutionAnalyzer() # Gradio Interface css = """ .header { text-align: center; margin-bottom: 20px; } .header h1 { font-size: 2.2rem; margin-bottom: 0; } .header h3 { font-size: 1.1rem; font-weight: normal; margin-top: 0.5rem; } .side-by-side { display: flex; gap: 20px; } .left-panel, .right-panel { flex: 1; } .analysis-box { border: 1px solid #e0e0e0; border-radius: 8px; padding: 15px; margin-top: 20px; } .chat-container { border: 1px solid #e0e0e0; border-radius: 8px; padding: 15px; height: 100%; } """ with gr.Blocks(theme=gr.themes.Soft(), css=css) as demo: with gr.Column(elem_classes="header"): gr.Markdown("# šŸŒ River Pollution Analyzer") gr.Markdown("### AI-powered water quality assessment") with gr.Row(elem_classes="side-by-side"): # Image Analysis Panel with gr.Column(elem_classes="left-panel"): gr.Markdown("### šŸ“ø Image Analysis") with gr.Group(): image_input = gr.Image(type="pil", label="Upload River Image", height=300) analyze_btn = gr.Button("šŸ” Analyze", variant="primary") with gr.Group(elem_classes="analysis-box"): analysis_output = gr.Markdown() # Chat Panel with gr.Column(elem_classes="right-panel"): gr.Markdown("### šŸ’¬ Pollution Q&A") with gr.Group(elem_classes="chat-container"): chatbot = gr.Chatbot(height=350) with gr.Row(): chat_input = gr.Textbox(placeholder="Ask about pollution...", show_label=False) chat_btn = gr.Button("Send", variant="secondary") clear_btn = gr.Button("Clear Chat") # Event handlers analyze_btn.click( analyzer.analyze_image, inputs=image_input, outputs=analysis_output ) def respond(message, chat_history): response = analyzer.analyze_chat(message) chat_history.append((message, response)) return "", chat_history chat_input.submit(respond, [chat_input, chatbot], [chat_input, chatbot]) chat_btn.click(respond, [chat_input, chatbot], [chat_input, chatbot]) clear_btn.click(lambda: None, None, chatbot, queue=False) # Examples gr.Examples( examples=[["examples/pollution1.jpg"], ["examples/pollution2.jpg"]], inputs=image_input, outputs=analysis_output, fn=analyzer.analyze_image, cache_examples=True, label="Example Images" ) demo.launch()