Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -8,10 +8,24 @@ from huggingface_hub import CommitScheduler
|
|
8 |
from pathlib import Path
|
9 |
import uuid
|
10 |
import json
|
|
|
|
|
|
|
11 |
|
12 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
14 |
-
|
15 |
|
16 |
# token
|
17 |
token = os.environ['TOKEN']
|
@@ -19,12 +33,15 @@ token = os.environ['TOKEN']
|
|
19 |
# Load the pretrained model and tokenizer
|
20 |
MODEL_NAME = "atlasia/Al-Atlas-0.5B" # "atlasia/Al-Atlas-LLM-mid-training" # "BounharAbdelaziz/Al-Atlas-LLM-0.5B" #"atlasia/Al-Atlas-LLM"
|
21 |
|
|
|
22 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME,token=token) # , token=token
|
23 |
model = AutoModelForCausalLM.from_pretrained(MODEL_NAME,token=token).to(device)
|
|
|
24 |
|
25 |
# Fix tokenizer padding
|
26 |
if tokenizer.pad_token is None:
|
27 |
tokenizer.pad_token = tokenizer.eos_token # Set pad token
|
|
|
28 |
|
29 |
# Predefined examples
|
30 |
examples = [
|
@@ -44,6 +61,7 @@ feedback_file = submit_file
|
|
44 |
|
45 |
# Create directory if it doesn't exist
|
46 |
submit_file.parent.mkdir(exist_ok=True, parents=True)
|
|
|
47 |
|
48 |
scheduler = CommitScheduler(
|
49 |
repo_id="atlasia/atlaset_inference_ds",
|
@@ -53,10 +71,42 @@ scheduler = CommitScheduler(
|
|
53 |
every=5,
|
54 |
token=token
|
55 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
|
57 |
@spaces.GPU
|
58 |
-
def generate_text(prompt, max_length=256, temperature=0.7, top_p=0.9, top_k=150, num_beams=8, repetition_penalty=1.5):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
60 |
output = model.generate(
|
61 |
**inputs,
|
62 |
max_length=max_length,
|
@@ -65,63 +115,260 @@ def generate_text(prompt, max_length=256, temperature=0.7, top_p=0.9, top_k=150,
|
|
65 |
do_sample=True,
|
66 |
repetition_penalty=repetition_penalty,
|
67 |
num_beams=num_beams,
|
68 |
-
top_k=
|
69 |
-
early_stopping
|
70 |
-
pad_token_id=tokenizer.pad_token_id,
|
71 |
-
eos_token_id=tokenizer.eos_token_id,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
72 |
)
|
73 |
-
|
74 |
-
|
75 |
-
|
|
|
|
|
76 |
|
77 |
def save_feedback(input, output, params) -> None:
|
78 |
"""
|
79 |
Append input/outputs and parameters to a JSON Lines file using a thread lock
|
80 |
to avoid concurrent writes from different users.
|
81 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
82 |
with scheduler.lock:
|
83 |
-
|
84 |
-
|
85 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
86 |
|
87 |
if __name__ == "__main__":
|
|
|
|
|
88 |
# Create the Gradio interface
|
89 |
-
with gr.Blocks() as app:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
90 |
with gr.Row():
|
91 |
-
with gr.Column():
|
92 |
-
prompt_input = gr.Textbox(
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
99 |
|
100 |
-
|
|
|
|
|
101 |
|
102 |
-
|
103 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
104 |
|
105 |
# Examples section with caching
|
106 |
gr.Examples(
|
107 |
examples=examples,
|
108 |
inputs=[prompt_input, max_length, temperature, top_p, top_k, num_beams, repetition_penalty],
|
109 |
-
outputs=output_text,
|
110 |
fn=generate_text,
|
111 |
cache_examples=True
|
112 |
)
|
113 |
|
114 |
-
# Button
|
115 |
submit_btn.click(
|
116 |
generate_text,
|
117 |
inputs=[prompt_input, max_length, temperature, top_p, top_k, num_beams, repetition_penalty],
|
118 |
-
outputs=output_text
|
119 |
)
|
120 |
|
121 |
-
|
122 |
-
|
|
|
|
|
|
|
123 |
|
124 |
-
|
125 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
126 |
|
127 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
from pathlib import Path
|
9 |
import uuid
|
10 |
import json
|
11 |
+
import time
|
12 |
+
from datetime import datetime
|
13 |
+
import logging
|
14 |
|
15 |
|
16 |
+
# Configure logging
|
17 |
+
logging.basicConfig(
|
18 |
+
level=logging.INFO,
|
19 |
+
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
|
20 |
+
handlers=[
|
21 |
+
logging.FileHandler("app.log"),
|
22 |
+
logging.StreamHandler()
|
23 |
+
]
|
24 |
+
)
|
25 |
+
logger = logging.getLogger("darija-llm")
|
26 |
+
|
27 |
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
28 |
+
logger.info(f'Using device: {device}')
|
29 |
|
30 |
# token
|
31 |
token = os.environ['TOKEN']
|
|
|
33 |
# Load the pretrained model and tokenizer
|
34 |
MODEL_NAME = "atlasia/Al-Atlas-0.5B" # "atlasia/Al-Atlas-LLM-mid-training" # "BounharAbdelaziz/Al-Atlas-LLM-0.5B" #"atlasia/Al-Atlas-LLM"
|
35 |
|
36 |
+
logger.info(f"Loading model: {MODEL_NAME}")
|
37 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME,token=token) # , token=token
|
38 |
model = AutoModelForCausalLM.from_pretrained(MODEL_NAME,token=token).to(device)
|
39 |
+
logger.info("Model loaded successfully")
|
40 |
|
41 |
# Fix tokenizer padding
|
42 |
if tokenizer.pad_token is None:
|
43 |
tokenizer.pad_token = tokenizer.eos_token # Set pad token
|
44 |
+
logger.info("Set pad_token to eos_token")
|
45 |
|
46 |
# Predefined examples
|
47 |
examples = [
|
|
|
61 |
|
62 |
# Create directory if it doesn't exist
|
63 |
submit_file.parent.mkdir(exist_ok=True, parents=True)
|
64 |
+
logger.info(f"Created feedback file: {feedback_file}")
|
65 |
|
66 |
scheduler = CommitScheduler(
|
67 |
repo_id="atlasia/atlaset_inference_ds",
|
|
|
71 |
every=5,
|
72 |
token=token
|
73 |
)
|
74 |
+
logger.info(f"Initialized CommitScheduler for repo: atlasia/atlaset_inference_ds")
|
75 |
+
|
76 |
+
# Track usage statistics
|
77 |
+
usage_stats = {
|
78 |
+
"total_generations": 0,
|
79 |
+
"total_tokens_generated": 0,
|
80 |
+
"start_time": time.time()
|
81 |
+
}
|
82 |
|
83 |
@spaces.GPU
|
84 |
+
def generate_text(prompt, max_length=256, temperature=0.7, top_p=0.9, top_k=150, num_beams=8, repetition_penalty=1.5, progress=gr.Progress()):
|
85 |
+
if not prompt.strip():
|
86 |
+
logger.warning("Empty prompt submitted")
|
87 |
+
return "", "الرجاء إدخال نص للتوليد (Please enter text to generate)"
|
88 |
+
|
89 |
+
logger.info(f"Generating text for prompt: '{prompt[:50]}...' (length: {len(prompt)})")
|
90 |
+
logger.info(f"Parameters: max_length={max_length}, temp={temperature}, top_p={top_p}, top_k={top_k}, beams={num_beams}, rep_penalty={repetition_penalty}")
|
91 |
+
|
92 |
+
start_time = time.time()
|
93 |
+
|
94 |
+
# Update progress bar - tokenization step
|
95 |
+
progress(0.1, desc="تحليل النص (Tokenizing input)")
|
96 |
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
97 |
+
|
98 |
+
# Update progress bar - generation starting
|
99 |
+
progress(0.2, desc="توليد النص (Generating text)")
|
100 |
+
|
101 |
+
# Define a callback function to update progress during generation
|
102 |
+
def generation_callback(beam_idx, token_idx, token_id, scores, generation_config):
|
103 |
+
# Estimate progress based on token index and max length
|
104 |
+
# We start at 20% and go to 90%, leaving room for post-processing
|
105 |
+
progress_value = 0.2 + 0.7 * min(token_idx / max_length, 1.0)
|
106 |
+
progress(progress_value, desc=f"توليد النص: {token_idx}/{max_length} (Generating: {token_idx}/{max_length})")
|
107 |
+
return False # Continue generation
|
108 |
+
|
109 |
+
# Generate with callback
|
110 |
output = model.generate(
|
111 |
**inputs,
|
112 |
max_length=max_length,
|
|
|
115 |
do_sample=True,
|
116 |
repetition_penalty=repetition_penalty,
|
117 |
num_beams=num_beams,
|
118 |
+
top_k=top_k,
|
119 |
+
early_stopping=True,
|
120 |
+
pad_token_id=tokenizer.pad_token_id,
|
121 |
+
eos_token_id=tokenizer.eos_token_id,
|
122 |
+
callback=generation_callback if hasattr(model, "generation_config") else None,
|
123 |
+
)
|
124 |
+
|
125 |
+
# Update progress bar - decoding step
|
126 |
+
progress(0.9, desc="معالجة النتائج (Processing results)")
|
127 |
+
result = tokenizer.decode(output[0], skip_special_tokens=True)
|
128 |
+
|
129 |
+
# Update stats
|
130 |
+
generation_time = time.time() - start_time
|
131 |
+
token_count = len(output[0])
|
132 |
+
|
133 |
+
with scheduler.lock:
|
134 |
+
usage_stats["total_generations"] += 1
|
135 |
+
usage_stats["total_tokens_generated"] += token_count
|
136 |
+
|
137 |
+
logger.info(f"Generated {token_count} tokens in {generation_time:.2f}s")
|
138 |
+
logger.info(f"Result: '{result[:50]}...' (length: {len(result)})")
|
139 |
+
|
140 |
+
# Save feedback with additional metadata
|
141 |
+
save_feedback(
|
142 |
+
prompt,
|
143 |
+
result,
|
144 |
+
{
|
145 |
+
"max_length": max_length,
|
146 |
+
"temperature": temperature,
|
147 |
+
"top_p": top_p,
|
148 |
+
"top_k": top_k,
|
149 |
+
"num_beams": num_beams,
|
150 |
+
"repetition_penalty": repetition_penalty,
|
151 |
+
"generation_time": generation_time,
|
152 |
+
"token_count": token_count,
|
153 |
+
"timestamp": datetime.now().isoformat()
|
154 |
+
}
|
155 |
)
|
156 |
+
|
157 |
+
# Complete progress
|
158 |
+
progress(1.0, desc="اكتمل (Complete)")
|
159 |
+
|
160 |
+
return result, f"تم توليد {token_count} رمز في {generation_time:.2f} ثانية (Generated {token_count} tokens in {generation_time:.2f} seconds)"
|
161 |
|
162 |
def save_feedback(input, output, params) -> None:
|
163 |
"""
|
164 |
Append input/outputs and parameters to a JSON Lines file using a thread lock
|
165 |
to avoid concurrent writes from different users.
|
166 |
"""
|
167 |
+
logger.info(f"Saving feedback to {feedback_file}")
|
168 |
+
|
169 |
+
with scheduler.lock:
|
170 |
+
try:
|
171 |
+
with feedback_file.open("a") as f:
|
172 |
+
f.write(json.dumps({
|
173 |
+
"input": input,
|
174 |
+
"output": output,
|
175 |
+
"params": params
|
176 |
+
}))
|
177 |
+
f.write("\n")
|
178 |
+
logger.info("Feedback saved successfully")
|
179 |
+
except Exception as e:
|
180 |
+
logger.error(f"Error saving feedback: {str(e)}")
|
181 |
+
|
182 |
+
def get_stats():
|
183 |
+
"""Return current usage statistics"""
|
184 |
+
with scheduler.lock:
|
185 |
+
uptime = time.time() - usage_stats["start_time"]
|
186 |
+
hours = uptime / 3600
|
187 |
+
|
188 |
+
stats = {
|
189 |
+
"Total generations": usage_stats["total_generations"],
|
190 |
+
"Total tokens generated": usage_stats["total_tokens_generated"],
|
191 |
+
"Uptime": f"{int(hours)}h {int((hours % 1) * 60)}m",
|
192 |
+
"Generations per hour": f"{usage_stats['total_generations'] / hours:.1f}" if hours > 0 else "N/A",
|
193 |
+
"Last updated": datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
194 |
+
}
|
195 |
+
|
196 |
+
logger.info(f"Stats requested: {stats}")
|
197 |
+
return stats
|
198 |
+
|
199 |
+
def reset_params():
|
200 |
+
"""Reset parameters to default values"""
|
201 |
+
logger.info("Parameters reset to defaults")
|
202 |
+
return 256, 0.7, 0.9, 150, 8, 1.5
|
203 |
+
|
204 |
+
def thumbs_up_callback(input_text, output_text):
|
205 |
+
"""Record positive feedback"""
|
206 |
+
logger.info("Received positive feedback")
|
207 |
+
|
208 |
+
feedback_path = Path("user_submit") / "positive_feedback.jsonl"
|
209 |
+
feedback_path.parent.mkdir(exist_ok=True, parents=True)
|
210 |
+
|
211 |
+
with scheduler.lock:
|
212 |
+
try:
|
213 |
+
with feedback_path.open("a") as f:
|
214 |
+
feedback_data = {
|
215 |
+
"input": input_text,
|
216 |
+
"output": output_text,
|
217 |
+
"rating": "positive",
|
218 |
+
"timestamp": datetime.now().isoformat()
|
219 |
+
}
|
220 |
+
f.write(json.dumps(feedback_data))
|
221 |
+
f.write("\n")
|
222 |
+
|
223 |
+
logger.info(f"Positive feedback saved to {feedback_path}")
|
224 |
+
except Exception as e:
|
225 |
+
logger.error(f"Error saving positive feedback: {str(e)}")
|
226 |
+
|
227 |
+
return "شكرا على التقييم الإيجابي!"
|
228 |
+
|
229 |
+
def thumbs_down_callback(input_text, output_text, feedback=""):
|
230 |
+
"""Record negative feedback"""
|
231 |
+
logger.info(f"Received negative feedback: '{feedback}'")
|
232 |
+
|
233 |
+
feedback_path = Path("user_submit") / "negative_feedback.jsonl"
|
234 |
+
feedback_path.parent.mkdir(exist_ok=True, parents=True)
|
235 |
+
|
236 |
with scheduler.lock:
|
237 |
+
try:
|
238 |
+
with feedback_path.open("a") as f:
|
239 |
+
feedback_data = {
|
240 |
+
"input": input_text,
|
241 |
+
"output": output_text,
|
242 |
+
"rating": "negative",
|
243 |
+
"feedback": feedback,
|
244 |
+
"timestamp": datetime.now().isoformat()
|
245 |
+
}
|
246 |
+
f.write(json.dumps(feedback_data))
|
247 |
+
f.write("\n")
|
248 |
+
|
249 |
+
logger.info(f"Negative feedback saved to {feedback_path}")
|
250 |
+
except Exception as e:
|
251 |
+
logger.error(f"Error saving negative feedback: {str(e)}")
|
252 |
+
|
253 |
+
return "شكرا على ملاحظاتك!"
|
254 |
|
255 |
if __name__ == "__main__":
|
256 |
+
logger.info("Starting Moroccan Darija LLM application")
|
257 |
+
|
258 |
# Create the Gradio interface
|
259 |
+
with gr.Blocks(css="footer {visibility: hidden}") as app:
|
260 |
+
gr.Markdown("""
|
261 |
+
# 🇲🇦 نموذج اللغة المغربية الدارجة (Moroccan Darija LLM)
|
262 |
+
|
263 |
+
أدخل نصًا بالدارجة المغربية واحصل على نص تم إنشاؤه بواسطة نموذج اللغة الخاص بنا المدرب على الدارجة المغربية.
|
264 |
+
|
265 |
+
Enter a prompt and get AI-generated text using our pretrained LLM on Moroccan Darija.
|
266 |
+
""")
|
267 |
+
|
268 |
with gr.Row():
|
269 |
+
with gr.Column(scale=6):
|
270 |
+
prompt_input = gr.Textbox(
|
271 |
+
label="الدخل (Prompt): دخل النص بالدارجة",
|
272 |
+
placeholder="اكتب هنا...",
|
273 |
+
lines=4
|
274 |
+
)
|
275 |
+
|
276 |
+
with gr.Row():
|
277 |
+
submit_btn = gr.Button("توليد النص (Generate)", variant="primary")
|
278 |
+
clear_btn = gr.Button("مسح (Clear)")
|
279 |
+
reset_btn = gr.Button("إعادة ضبط المعلمات (Reset Parameters)")
|
280 |
+
|
281 |
+
with gr.Accordion("معلمات التوليد (Generation Parameters)", open=False):
|
282 |
+
with gr.Row():
|
283 |
+
with gr.Column():
|
284 |
+
max_length = gr.Slider(8, 4096, value=256, label="Max Length (الطول الأقصى)")
|
285 |
+
temperature = gr.Slider(0.0, 2, value=0.7, label="Temperature (درجة الحرارة)")
|
286 |
+
top_p = gr.Slider(0.0, 1.0, value=0.9, label="Top-p (أعلى احتمال)")
|
287 |
+
|
288 |
+
with gr.Column():
|
289 |
+
top_k = gr.Slider(1, 10000, value=150, label="Top-k (أعلى ك)")
|
290 |
+
num_beams = gr.Slider(1, 20, value=8, label="Number of Beams (عدد الأشعة)")
|
291 |
+
repetition_penalty = gr.Slider(0.0, 100.0, value=1.5, label="Repetition Penalty (عقوبة التكرار)")
|
292 |
+
|
293 |
+
with gr.Column(scale=6):
|
294 |
+
output_text = gr.Textbox(label="النص المولد (Generated Text)", lines=10)
|
295 |
+
generation_info = gr.Markdown("")
|
296 |
|
297 |
+
with gr.Row():
|
298 |
+
thumbs_up = gr.Button("👍 جيد")
|
299 |
+
thumbs_down = gr.Button("👎 سيء")
|
300 |
|
301 |
+
with gr.Accordion("تعليق (Feedback)", open=False, visible=False) as feedback_accordion:
|
302 |
+
feedback_text = gr.Textbox(label="لماذا لم يعجبك الناتج؟ (Why didn't you like the output?)", lines=2)
|
303 |
+
submit_feedback = gr.Button("إرسال التعليق (Submit Feedback)")
|
304 |
+
|
305 |
+
feedback_result = gr.Markdown("")
|
306 |
+
|
307 |
+
with gr.Accordion("إحصائيات الاستخدام (Usage Statistics)", open=False):
|
308 |
+
stats_md = gr.JSON(get_stats, every=10)
|
309 |
+
refresh_stats = gr.Button("تحديث (Refresh)")
|
310 |
|
311 |
# Examples section with caching
|
312 |
gr.Examples(
|
313 |
examples=examples,
|
314 |
inputs=[prompt_input, max_length, temperature, top_p, top_k, num_beams, repetition_penalty],
|
315 |
+
outputs=[output_text, generation_info],
|
316 |
fn=generate_text,
|
317 |
cache_examples=True
|
318 |
)
|
319 |
|
320 |
+
# Button actions
|
321 |
submit_btn.click(
|
322 |
generate_text,
|
323 |
inputs=[prompt_input, max_length, temperature, top_p, top_k, num_beams, repetition_penalty],
|
324 |
+
outputs=[output_text, generation_info]
|
325 |
)
|
326 |
|
327 |
+
clear_btn.click(
|
328 |
+
lambda: ("", ""),
|
329 |
+
inputs=None,
|
330 |
+
outputs=[prompt_input, output_text]
|
331 |
+
)
|
332 |
|
333 |
+
reset_btn.click(
|
334 |
+
reset_params,
|
335 |
+
inputs=None,
|
336 |
+
outputs=[max_length, temperature, top_p, top_k, num_beams, repetition_penalty]
|
337 |
+
)
|
338 |
+
|
339 |
+
# Feedback system
|
340 |
+
thumbs_up.click(
|
341 |
+
thumbs_up_callback,
|
342 |
+
inputs=[prompt_input, output_text],
|
343 |
+
outputs=[feedback_result]
|
344 |
+
)
|
345 |
+
|
346 |
+
thumbs_down.click(
|
347 |
+
lambda: (gr.Accordion.update(visible=True, open=True), ""),
|
348 |
+
inputs=None,
|
349 |
+
outputs=[feedback_accordion, feedback_result]
|
350 |
+
)
|
351 |
|
352 |
+
submit_feedback.click(
|
353 |
+
thumbs_down_callback,
|
354 |
+
inputs=[prompt_input, output_text, feedback_text],
|
355 |
+
outputs=[feedback_result]
|
356 |
+
)
|
357 |
+
|
358 |
+
# Stats refresh
|
359 |
+
refresh_stats.click(
|
360 |
+
get_stats,
|
361 |
+
inputs=None,
|
362 |
+
outputs=[stats_md]
|
363 |
+
)
|
364 |
+
|
365 |
+
# Keyboard shortcuts
|
366 |
+
prompt_input.submit(
|
367 |
+
generate_text,
|
368 |
+
inputs=[prompt_input, max_length, temperature, top_p, top_k, num_beams, repetition_penalty],
|
369 |
+
outputs=[output_text, generation_info]
|
370 |
+
)
|
371 |
+
|
372 |
+
logger.info("Launching Gradio interface")
|
373 |
+
app.launch()
|
374 |
+
logger.info("Gradio interface closed")
|