Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -3,6 +3,8 @@ from transformers import AutoModelForCausalLM, AutoTokenizer
|
|
3 |
import os
|
4 |
import spaces
|
5 |
import torch
|
|
|
|
|
6 |
|
7 |
|
8 |
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
@@ -33,6 +35,10 @@ examples = [
|
|
33 |
, 256, 0.7, 0.9, 150, 8, 1.5],
|
34 |
]
|
35 |
|
|
|
|
|
|
|
|
|
36 |
@spaces.GPU
|
37 |
def generate_text(prompt, max_length=256, temperature=0.7, top_p=0.9, top_k=150, num_beams=8, repetition_penalty=1.5):
|
38 |
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
@@ -49,8 +55,19 @@ def generate_text(prompt, max_length=256, temperature=0.7, top_p=0.9, top_k=150,
|
|
49 |
pad_token_id=tokenizer.pad_token_id, # Explicit pad token
|
50 |
eos_token_id=tokenizer.eos_token_id, # Explicit eos token
|
51 |
)
|
52 |
-
|
|
|
|
|
|
|
|
|
53 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
if __name__ == "__main__":
|
55 |
# Create the Gradio interface
|
56 |
with gr.Blocks() as app:
|
@@ -70,5 +87,14 @@ if __name__ == "__main__":
|
|
70 |
description="Enter a prompt and get AI-generated text using our pretrained LLM on Moroccan Darija.",
|
71 |
examples=examples,
|
72 |
)
|
73 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
74 |
app.launch()
|
|
|
3 |
import os
|
4 |
import spaces
|
5 |
import torch
|
6 |
+
from datasets import load_dataset
|
7 |
+
from huggingface_hub import CommitScheduler
|
8 |
|
9 |
|
10 |
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
|
|
35 |
, 256, 0.7, 0.9, 150, 8, 1.5],
|
36 |
]
|
37 |
|
38 |
+
#inf_dataset=load_dataset("atlasia/atlaset_inference_ds",token=token,split="test",name="llm")
|
39 |
+
detected_commit=False
|
40 |
+
submit_file = Path("user_submit/") / f"data_{uuid.uuid4()}.json"
|
41 |
+
|
42 |
@spaces.GPU
|
43 |
def generate_text(prompt, max_length=256, temperature=0.7, top_p=0.9, top_k=150, num_beams=8, repetition_penalty=1.5):
|
44 |
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
|
|
55 |
pad_token_id=tokenizer.pad_token_id, # Explicit pad token
|
56 |
eos_token_id=tokenizer.eos_token_id, # Explicit eos token
|
57 |
)
|
58 |
+
result=tokenizer.decode(output[0], skip_special_tokens=True)
|
59 |
+
#inf_dataset.add_item({"inputs":prompt,"outputs":result,"params":f"{max_length},{temperature},{top_p},{top_k},{num_beams},{repetition_penalty}"})
|
60 |
+
save_feedback(prompt,result,f"{max_length},{temperature},{top_p},{top_k},{num_beams},{repetition_penalty}")
|
61 |
+
detected_commit=True
|
62 |
+
return result
|
63 |
|
64 |
+
def save_feedback(input,output,params) -> None:
|
65 |
+
with scheduler.lock:
|
66 |
+
with feedback_file.open("a") as f:
|
67 |
+
f.write(json.dumps({"input": input, "output": output, "params": params}))
|
68 |
+
f.write("\n")
|
69 |
+
detected_commit=True
|
70 |
+
|
71 |
if __name__ == "__main__":
|
72 |
# Create the Gradio interface
|
73 |
with gr.Blocks() as app:
|
|
|
87 |
description="Enter a prompt and get AI-generated text using our pretrained LLM on Moroccan Darija.",
|
88 |
examples=examples,
|
89 |
)
|
90 |
+
if detected_commit:
|
91 |
+
print("[INFO] CommitScheduler...")
|
92 |
+
scheduler = CommitScheduler(
|
93 |
+
repo_id="atlasia/atlaset_inference_ds",
|
94 |
+
repo_type="dataset",
|
95 |
+
folder_path=submit_file,
|
96 |
+
every=5,
|
97 |
+
token=token
|
98 |
+
)
|
99 |
+
detected_commit=False
|
100 |
app.launch()
|