Spaces:
Running
Running
fix to loop through all possibilities
Browse files- human_eval.py +134 -52
human_eval.py
CHANGED
@@ -2,17 +2,33 @@ import gradio as gr
|
|
2 |
from collections import defaultdict
|
3 |
import os
|
4 |
import base64
|
5 |
-
import torch
|
6 |
from datasets import (
|
7 |
Dataset,
|
8 |
load_dataset,
|
9 |
)
|
10 |
-
import random
|
11 |
import pandas as pd
|
12 |
from collections import defaultdict
|
|
|
13 |
|
14 |
TOKEN = os.environ['TOKEN']
|
15 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
def encode_image_to_base64(image_path):
|
17 |
"""Encode an image or GIF file to base64."""
|
18 |
with open(image_path, "rb") as file:
|
@@ -35,58 +51,101 @@ def create_html_media(media_path, is_gif=False):
|
|
35 |
"""
|
36 |
return html_string
|
37 |
|
38 |
-
MASKED_LM_MODELS = [
|
39 |
-
"BounharAbdelaziz/XLM-RoBERTa-Morocco",
|
40 |
-
"SI2M-Lab/DarijaBERT",
|
41 |
-
"BounharAbdelaziz/ModernBERT-Morocco",
|
42 |
-
"google-bert/bert-base-multilingual-cased",
|
43 |
-
"FacebookAI/xlm-roberta-large",
|
44 |
-
"aubmindlab/bert-base-arabertv02",
|
45 |
-
]
|
46 |
-
|
47 |
-
CAUSAL_LM_MODELS = [
|
48 |
-
"BounharAbdelaziz/Al-Atlas-LLM-0.5B",
|
49 |
-
"Qwen/Qwen2.5-0.5B",
|
50 |
-
"tiiuae/Falcon3-1B-Base",
|
51 |
-
"MBZUAI-Paris/Atlas-Chat-2B",
|
52 |
-
]
|
53 |
-
|
54 |
class LMBattleArena:
|
55 |
-
def __init__(self, dataset_path):
|
56 |
"""Initialize battle arena with dataset"""
|
57 |
self.df = pd.read_csv(dataset_path)
|
58 |
-
print(self.df.head())
|
59 |
self.current_index = 0
|
60 |
-
self.saving_freq =
|
61 |
self.evaluation_results_masked = []
|
62 |
self.evaluation_results_causal = []
|
63 |
self.model_scores = defaultdict(lambda: {'wins': 0, 'total_comparisons': 0})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
64 |
|
65 |
def get_next_battle_pair(self, is_causal):
|
66 |
-
"""Retrieve next pair of summaries for comparison"""
|
67 |
-
|
68 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
69 |
|
70 |
row = self.df.iloc[self.current_index]
|
|
|
|
|
71 |
if is_causal:
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
76 |
else:
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
82 |
battle_data = {
|
83 |
'prompt': row['masked_sentence'] if not is_causal else row['causal_sentence'],
|
84 |
-
'model_1': row[
|
85 |
-
'model_2': row[
|
86 |
-
'model1_name':
|
87 |
-
'model2_name':
|
88 |
}
|
89 |
-
|
90 |
return battle_data
|
91 |
|
92 |
def record_evaluation(self, preferred_models, input_text, output1, output2, model1_name, model2_name, is_causal):
|
@@ -116,8 +175,31 @@ class LMBattleArena:
|
|
116 |
else:
|
117 |
self.evaluation_results_masked.append(evaluation)
|
118 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
119 |
return self.get_model_scores_df(is_causal)
|
120 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
121 |
def get_model_scores_df(self, is_causal):
|
122 |
"""Convert model scores to DataFrame"""
|
123 |
scores_data = []
|
@@ -135,16 +217,15 @@ class LMBattleArena:
|
|
135 |
'Total Comparisons': stats['total_comparisons'],
|
136 |
'Win Rate (%)': round(win_rate, 2)
|
137 |
})
|
138 |
-
|
|
|
|
|
139 |
|
140 |
-
#
|
141 |
-
|
142 |
-
|
143 |
-
# results_dataset.push_to_hub('atlasia/Res-Moroccan-Darija-LLM-Battle-Al-Atlas', private=True)
|
144 |
-
results_df.to_csv('human_eval_results.csv')
|
145 |
-
|
146 |
return results_df
|
147 |
-
|
148 |
|
149 |
def create_battle_arena(dataset_path, is_gif, is_causal):
|
150 |
arena = LMBattleArena(dataset_path)
|
@@ -153,7 +234,7 @@ def create_battle_arena(dataset_path, is_gif, is_causal):
|
|
153 |
battle_data = arena.get_next_battle_pair(is_causal)
|
154 |
|
155 |
if battle_data is None:
|
156 |
-
return "
|
157 |
|
158 |
return (
|
159 |
battle_data['prompt'],
|
@@ -172,7 +253,7 @@ def create_battle_arena(dataset_path, is_gif, is_causal):
|
|
172 |
return (*next_battle[:-1], scores_df)
|
173 |
|
174 |
with gr.Blocks(css="footer{display:none !important}") as demo:
|
175 |
-
|
176 |
base_path = os.path.dirname(__file__)
|
177 |
local_image_path = os.path.join(base_path, 'battle_leaderboard.gif')
|
178 |
gr.HTML(create_html_media(local_image_path, is_gif=is_gif))
|
@@ -277,13 +358,14 @@ def create_battle_arena(dataset_path, is_gif, is_causal):
|
|
277 |
return demo
|
278 |
|
279 |
if __name__ == "__main__":
|
280 |
-
|
|
|
|
|
281 |
dataset_path = 'human_eval_dataset.csv'
|
282 |
is_gif = True
|
283 |
|
284 |
# load the existing dataset that contains outputs of the LMs
|
285 |
-
human_eval_dataset = load_dataset("atlasia/LM-Moroccan-Darija-Bench", split='test', token=TOKEN).to_csv(dataset_path)
|
286 |
-
|
287 |
-
# load first tab for masked LM
|
288 |
demo = create_battle_arena(dataset_path, is_gif, is_causal=False)
|
289 |
demo.launch(debug=True)
|
|
|
2 |
from collections import defaultdict
|
3 |
import os
|
4 |
import base64
|
|
|
5 |
from datasets import (
|
6 |
Dataset,
|
7 |
load_dataset,
|
8 |
)
|
|
|
9 |
import pandas as pd
|
10 |
from collections import defaultdict
|
11 |
+
import itertools
|
12 |
|
13 |
TOKEN = os.environ['TOKEN']
|
14 |
|
15 |
+
|
16 |
+
MASKED_LM_MODELS = [
|
17 |
+
"BounharAbdelaziz/XLM-RoBERTa-Morocco",
|
18 |
+
"SI2M-Lab/DarijaBERT",
|
19 |
+
"BounharAbdelaziz/ModernBERT-Morocco",
|
20 |
+
"google-bert/bert-base-multilingual-cased",
|
21 |
+
"FacebookAI/xlm-roberta-large",
|
22 |
+
"aubmindlab/bert-base-arabertv02",
|
23 |
+
]
|
24 |
+
|
25 |
+
CAUSAL_LM_MODELS = [
|
26 |
+
"BounharAbdelaziz/Al-Atlas-LLM-0.5B",
|
27 |
+
"Qwen/Qwen2.5-0.5B",
|
28 |
+
"tiiuae/Falcon3-1B-Base",
|
29 |
+
"MBZUAI-Paris/Atlas-Chat-2B",
|
30 |
+
]
|
31 |
+
|
32 |
def encode_image_to_base64(image_path):
|
33 |
"""Encode an image or GIF file to base64."""
|
34 |
with open(image_path, "rb") as file:
|
|
|
51 |
"""
|
52 |
return html_string
|
53 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
class LMBattleArena:
|
55 |
+
def __init__(self, dataset_path, saving_freq=25):
|
56 |
"""Initialize battle arena with dataset"""
|
57 |
self.df = pd.read_csv(dataset_path)
|
|
|
58 |
self.current_index = 0
|
59 |
+
self.saving_freq = saving_freq # save the results in csv/push to hub every saving_freq evaluations
|
60 |
self.evaluation_results_masked = []
|
61 |
self.evaluation_results_causal = []
|
62 |
self.model_scores = defaultdict(lambda: {'wins': 0, 'total_comparisons': 0})
|
63 |
+
|
64 |
+
# Generate all possible model pairs
|
65 |
+
self.masked_model_pairs = list(itertools.combinations(MASKED_LM_MODELS, 2))
|
66 |
+
self.causal_model_pairs = list(itertools.combinations(CAUSAL_LM_MODELS, 2))
|
67 |
+
|
68 |
+
# Pair indices to track which pair is being evaluated
|
69 |
+
self.masked_pair_idx = 0
|
70 |
+
self.causal_pair_idx = 0
|
71 |
+
|
72 |
+
# To track which rows have been evaluated for which model pairs
|
73 |
+
self.row_model_pairs_evaluated = set() # Using a simple set
|
74 |
|
75 |
def get_next_battle_pair(self, is_causal):
|
76 |
+
"""Retrieve next pair of summaries for comparison ensuring all pairs are evaluated"""
|
77 |
+
|
78 |
+
if self.current_index >= len(self.df):
|
79 |
+
# Reset index to go through dataset again with remaining model pairs
|
80 |
+
self.current_index = 0
|
81 |
+
|
82 |
+
# If we've gone through all model pairs for all rows, we're done
|
83 |
+
if is_causal and self.causal_pair_idx >= len(self.causal_model_pairs):
|
84 |
+
return None
|
85 |
+
elif not is_causal and self.masked_pair_idx >= len(self.masked_model_pairs):
|
86 |
+
return None
|
87 |
|
88 |
row = self.df.iloc[self.current_index]
|
89 |
+
|
90 |
+
# Get the current model pair to evaluate
|
91 |
if is_causal:
|
92 |
+
# Check if we've evaluated all causal model pairs
|
93 |
+
if self.causal_pair_idx >= len(self.causal_model_pairs):
|
94 |
+
# Move to next row and reset pair index
|
95 |
+
self.current_index += 1
|
96 |
+
self.causal_pair_idx = 0
|
97 |
+
# Try again with the next row
|
98 |
+
return self.get_next_battle_pair(is_causal)
|
99 |
+
|
100 |
+
model_pair = self.causal_model_pairs[self.causal_pair_idx]
|
101 |
+
pair_key = f"{self.current_index}_causal_{self.causal_pair_idx}"
|
102 |
+
|
103 |
+
# Check if this row-pair combination has been evaluated
|
104 |
+
if pair_key in self.row_model_pairs_evaluated:
|
105 |
+
# Move to next pair
|
106 |
+
self.causal_pair_idx += 1
|
107 |
+
return self.get_next_battle_pair(is_causal)
|
108 |
+
|
109 |
+
# Mark this row-pair combination as evaluated
|
110 |
+
self.row_model_pairs_evaluated.add(pair_key)
|
111 |
+
# Move to next pair for next evaluation
|
112 |
+
self.causal_pair_idx += 1
|
113 |
+
|
114 |
+
# Check if we've gone through all pairs for this row
|
115 |
+
if self.causal_pair_idx >= len(self.causal_model_pairs):
|
116 |
+
# Reset pair index and move to next row for next evaluation
|
117 |
+
self.causal_pair_idx = 0
|
118 |
+
self.current_index += 1
|
119 |
else:
|
120 |
+
# Similar logic for masked models
|
121 |
+
if self.masked_pair_idx >= len(self.masked_model_pairs):
|
122 |
+
self.current_index += 1
|
123 |
+
self.masked_pair_idx = 0
|
124 |
+
return self.get_next_battle_pair(is_causal)
|
125 |
+
|
126 |
+
model_pair = self.masked_model_pairs[self.masked_pair_idx]
|
127 |
+
pair_key = f"{self.current_index}_masked_{self.masked_pair_idx}"
|
128 |
+
|
129 |
+
if pair_key in self.row_model_pairs_evaluated:
|
130 |
+
self.masked_pair_idx += 1
|
131 |
+
return self.get_next_battle_pair(is_causal)
|
132 |
+
|
133 |
+
self.row_model_pairs_evaluated.add(pair_key)
|
134 |
+
self.masked_pair_idx += 1
|
135 |
+
|
136 |
+
if self.masked_pair_idx >= len(self.masked_model_pairs):
|
137 |
+
self.masked_pair_idx = 0
|
138 |
+
self.current_index += 1
|
139 |
+
|
140 |
+
# Prepare the battle data with the selected model pair
|
141 |
battle_data = {
|
142 |
'prompt': row['masked_sentence'] if not is_causal else row['causal_sentence'],
|
143 |
+
'model_1': row[model_pair[0]],
|
144 |
+
'model_2': row[model_pair[1]],
|
145 |
+
'model1_name': model_pair[0],
|
146 |
+
'model2_name': model_pair[1]
|
147 |
}
|
148 |
+
|
149 |
return battle_data
|
150 |
|
151 |
def record_evaluation(self, preferred_models, input_text, output1, output2, model1_name, model2_name, is_causal):
|
|
|
175 |
else:
|
176 |
self.evaluation_results_masked.append(evaluation)
|
177 |
|
178 |
+
# Calculate the total number of evaluations
|
179 |
+
total_evaluations = len(self.evaluation_results_causal) + len(self.evaluation_results_masked)
|
180 |
+
|
181 |
+
# Save results periodically
|
182 |
+
if total_evaluations % self.saving_freq == 0:
|
183 |
+
self.save_results()
|
184 |
+
|
185 |
return self.get_model_scores_df(is_causal)
|
186 |
|
187 |
+
def save_results(self):
|
188 |
+
"""Save the evaluation results to Hub and CSV"""
|
189 |
+
results_df = self.get_model_scores_df(is_causal=True) # Get the latest scores
|
190 |
+
results_dataset = Dataset.from_pandas(results_df)
|
191 |
+
results_dataset.push_to_hub('atlasia/Res-Moroccan-Darija-LLM-Battle-Al-Atlas', private=True, , token=TOKEN)
|
192 |
+
results_df.to_csv('human_eval_results.csv')
|
193 |
+
|
194 |
+
# Also save the raw evaluation results
|
195 |
+
masked_df = pd.DataFrame(self.evaluation_results_masked)
|
196 |
+
causal_df = pd.DataFrame(self.evaluation_results_causal)
|
197 |
+
|
198 |
+
if not masked_df.empty:
|
199 |
+
masked_df.to_csv('masked_evaluations.csv')
|
200 |
+
if not causal_df.empty:
|
201 |
+
causal_df.to_csv('causal_evaluations.csv')
|
202 |
+
|
203 |
def get_model_scores_df(self, is_causal):
|
204 |
"""Convert model scores to DataFrame"""
|
205 |
scores_data = []
|
|
|
217 |
'Total Comparisons': stats['total_comparisons'],
|
218 |
'Win Rate (%)': round(win_rate, 2)
|
219 |
})
|
220 |
+
|
221 |
+
results_df = pd.DataFrame(scores_data)
|
222 |
+
print("Generated DataFrame:\n", results_df) # Debugging print
|
223 |
|
224 |
+
# if 'Win Rate (%)' not in results_df.columns:
|
225 |
+
# raise ValueError("Win Rate (%) column is missing from DataFrame!")
|
226 |
+
|
|
|
|
|
|
|
227 |
return results_df
|
228 |
+
|
229 |
|
230 |
def create_battle_arena(dataset_path, is_gif, is_causal):
|
231 |
arena = LMBattleArena(dataset_path)
|
|
|
234 |
battle_data = arena.get_next_battle_pair(is_causal)
|
235 |
|
236 |
if battle_data is None:
|
237 |
+
return "All model pairs have been evaluated for all examples!", "", "", "", "", gr.DataFrame(visible=False)
|
238 |
|
239 |
return (
|
240 |
battle_data['prompt'],
|
|
|
253 |
return (*next_battle[:-1], scores_df)
|
254 |
|
255 |
with gr.Blocks(css="footer{display:none !important}") as demo:
|
256 |
+
# Rest of the code remains the same
|
257 |
base_path = os.path.dirname(__file__)
|
258 |
local_image_path = os.path.join(base_path, 'battle_leaderboard.gif')
|
259 |
gr.HTML(create_html_media(local_image_path, is_gif=is_gif))
|
|
|
358 |
return demo
|
359 |
|
360 |
if __name__ == "__main__":
|
361 |
+
|
362 |
+
# inference device
|
363 |
+
device = "cpu"
|
364 |
dataset_path = 'human_eval_dataset.csv'
|
365 |
is_gif = True
|
366 |
|
367 |
# load the existing dataset that contains outputs of the LMs
|
368 |
+
human_eval_dataset = load_dataset("atlasia/LM-Moroccan-Darija-Bench", split='test', token=TOKEN).to_csv(dataset_path) # atlasia/Moroccan-Darija-LLM-Battle-Al-Atlas
|
369 |
+
|
|
|
370 |
demo = create_battle_arena(dataset_path, is_gif, is_causal=False)
|
371 |
demo.launch(debug=True)
|