Mohadata / utils.py
abdeljalilELmajjodi's picture
Update utils.py
207f049 verified
import gradio as gr
from openai import OpenAI
import os
from tqdm import tqdm
import pandas as pd
from pathlib import Path
from datasets import Dataset,load_dataset,concatenate_datasets
import asyncio
import threading
from dotenv import load_dotenv
load_dotenv()
HF_READ=os.environ["HF_READ"]
HF_WRITE=os.environ["HF_WRITE"]
print(HF_READ,HF_WRITE)
model_base_url={}
LANGUAGE="MOROCCAN Arabic"
HF_DATASET="abdeljalilELmajjodi/Mohadata"
SYSTEM_PROMPT = {
"role": "system",
"content": f"""This is a context-based Q&A game where two AIs interact with a user-provided context. All interactions MUST be in {LANGUAGE}.
QUESTIONER_AI:
- Must only ask questions that can be answered from the provided context
- Should identify key information gaps or unclear points
- Cannot ask questions about information not present in the context
- Must communicate exclusively in {LANGUAGE}
ANSWERER_AI:
- Must only answer using information explicitly stated in the context
- Cannot add external information or assumptions
- Must indicate if a question cannot be answered from the context alone
- Must communicate exclusively in {LANGUAGE}"""
}
def add_model(model_name,base_url,api_key):
model_base_url[model_name]=base_url
#model_quest.choices=list(model_base_url.keys())
#print(model_quest)
os.environ[model_name]=api_key
return gr.Dropdown(label="Questioner Model",choices=list(model_base_url.keys())),gr.Dropdown(label="Answerer Model",choices=list(model_base_url.keys()))
def model_init(model):
try:
api_key=os.environ.get(model)
base_url=model_base_url[model]
client = OpenAI(api_key=api_key, base_url=base_url)
return client
except Exception as e:
print(f"You should add api key of {model}")
# generate questions
def init_req_messages(sample_context):
messages_quest=[
SYSTEM_PROMPT,
{
"role":"user",
"content":f"""Context for analysis:
{sample_context}
As QUESTIONER_AI, generate a question based on this context.
"""
}
]
return messages_quest
# generate Answers
def init_resp_messages(sample_context,question):
messages_answ=[
SYSTEM_PROMPT,
{
"role": "user",
"content": f"""
Context for analysis:
{sample_context}
Question: {question}
As ANSWERER_AI, answer this question using only information from the context.
"""}
]
return messages_answ
def chat_generation(client,model_name,messages):
return client.chat.completions.create(
model=model_name,
messages=messages,
temperature=0.5
).choices[0].message.content
def generate_question(client,model_name,messages_quest):
question=chat_generation(client,model_name,messages_quest)
messages_quest.append({"role":"assistant","content":question})
return question
def generate_answer(client,model_name,messages_answ):
answer=chat_generation(client,model_name,messages_answ)
messages_answ.append({"role":"assistant","content":answer})
return answer
def load_upload_ds_hf(df):
dataset_stream=load_dataset("atlasia/Mohadata_Dataset",token=HF_READ,split="train")
print("[INFO] dataset loaded successfully")
new_ds=Dataset.from_pandas(df,preserve_index=False)
updated_ds=concatenate_datasets([dataset_stream,new_ds])
updated_ds.push_to_hub("atlasia/Mohadata_Dataset",token=HF_WRITE)
print("[INFO] dataset uploaded successfully")
async def load_upload_ds_hf_async(df):
await asyncio.to_thread(load_upload_ds_hf,df)
def save_conversation(conversation,context,num_rounds):
conv_flat={"user":[],"assistant":[]}
for i in range(0,len(conversation)):
conv_flat[conversation[i]["role"]].append(conversation[i]["content"])
conv_flat["context"]=[context]*num_rounds
df=pd.DataFrame(conv_flat)
df.to_csv("data.csv")
print("[INFO] conversation saved successfully")
print("[INFO] uploading dataset to huggingface")
thread=threading.Thread(target=load_upload_ds_hf,args=(df,))
thread.daemon=True
thread.start()
return Path("data.csv").name
def user_input(context,model_a,model_b,num_rounds,conversation_history):
conversation_history.clear()
client_quest=model_init(model_a)
client_ans=model_init(model_b)
messages_quest=init_req_messages(context)
for round_num in tqdm(range(num_rounds)):
question = generate_question(client_quest,model_a,messages_quest)
conversation_history.append(
{"role":"user","content":question},
)
if round_num==0:
messages_answ=init_resp_messages(context,question)
else:
messages_answ.append({"role":"user","content":question})
answer = generate_answer(client_ans,model_b,messages_answ)
messages_quest.append({"role":"user","content":answer})
conversation_history.append(
{"role":"assistant","content":answer},
)
file_path=save_conversation(conversation_history,context,num_rounds)
return conversation_history,gr.DownloadButton(label="Save Conversation",value=file_path,visible=True)