abdeljalilELmajjodi
commited on
add utils...
Browse files
utils.py
ADDED
@@ -0,0 +1,148 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from openai import OpenAI
|
3 |
+
import os
|
4 |
+
from tqdm import tqdm
|
5 |
+
import pandas as pd
|
6 |
+
from pathlib import Path
|
7 |
+
from datasets import Dataset,load_dataset,concatenate_datasets
|
8 |
+
import asyncio
|
9 |
+
import threading
|
10 |
+
from dotenv import load_dotenv
|
11 |
+
|
12 |
+
load_dotenv()
|
13 |
+
HF_READ=os.environ["HF_READ"]
|
14 |
+
HF_WRITE=os.environ["HF_WRITE"]
|
15 |
+
|
16 |
+
model_base_url={}
|
17 |
+
LANGUAGE="MOROCCAN Arabic"
|
18 |
+
HF_DATASET="abdeljalilELmajjodi/Mohadata"
|
19 |
+
SYSTEM_PROMPT = {
|
20 |
+
"role": "system",
|
21 |
+
"content": f"""This is a context-based Q&A game where two AIs interact with a user-provided context. All interactions MUST be in {LANGUAGE}.
|
22 |
+
|
23 |
+
QUESTIONER_AI:
|
24 |
+
- Must only ask questions that can be answered from the provided context
|
25 |
+
- Should identify key information gaps or unclear points
|
26 |
+
- Cannot ask questions about information not present in the context
|
27 |
+
- Must communicate exclusively in {LANGUAGE}
|
28 |
+
|
29 |
+
ANSWERER_AI:
|
30 |
+
- Must only answer using information explicitly stated in the context
|
31 |
+
- Cannot add external information or assumptions
|
32 |
+
- Must indicate if a question cannot be answered from the context alone
|
33 |
+
- Must communicate exclusively in {LANGUAGE}"""
|
34 |
+
}
|
35 |
+
|
36 |
+
def add_model(model_name,base_url,api_key):
|
37 |
+
model_base_url[model_name]=base_url
|
38 |
+
#model_quest.choices=list(model_base_url.keys())
|
39 |
+
#print(model_quest)
|
40 |
+
os.environ[model_name]=api_key
|
41 |
+
return gr.Dropdown(label="Questioner Model",choices=list(model_base_url.keys())),gr.Dropdown(label="Answerer Model",choices=list(model_base_url.keys()))
|
42 |
+
|
43 |
+
|
44 |
+
def model_init(model):
|
45 |
+
try:
|
46 |
+
api_key=os.environ.get(model)
|
47 |
+
base_url=model_base_url[model]
|
48 |
+
client = OpenAI(api_key=api_key, base_url=base_url)
|
49 |
+
return client
|
50 |
+
except Exception as e:
|
51 |
+
print(f"You should add api key of {model}")
|
52 |
+
|
53 |
+
# generate questions
|
54 |
+
def init_req_messages(sample_context):
|
55 |
+
messages_quest=[
|
56 |
+
SYSTEM_PROMPT,
|
57 |
+
{
|
58 |
+
"role":"user",
|
59 |
+
"content":f"""Context for analysis:
|
60 |
+
{sample_context}
|
61 |
+
As QUESTIONER_AI, generate a question based on this context.
|
62 |
+
"""
|
63 |
+
}
|
64 |
+
]
|
65 |
+
return messages_quest
|
66 |
+
# generate Answers
|
67 |
+
def init_resp_messages(sample_context,question):
|
68 |
+
messages_answ=[
|
69 |
+
SYSTEM_PROMPT,
|
70 |
+
{
|
71 |
+
"role": "user",
|
72 |
+
"content": f"""
|
73 |
+
Context for analysis:
|
74 |
+
{sample_context}
|
75 |
+
Question: {question}
|
76 |
+
As ANSWERER_AI, answer this question using only information from the context.
|
77 |
+
"""}
|
78 |
+
|
79 |
+
]
|
80 |
+
return messages_answ
|
81 |
+
|
82 |
+
def chat_generation(client,model_name,messages):
|
83 |
+
return client.chat.completions.create(
|
84 |
+
model=model_name,
|
85 |
+
messages=messages,
|
86 |
+
temperature=0.5
|
87 |
+
).choices[0].message.content
|
88 |
+
|
89 |
+
def generate_question(client,model_name,messages_quest):
|
90 |
+
question=chat_generation(client,model_name,messages_quest)
|
91 |
+
messages_quest.append({"role":"assistant","content":question})
|
92 |
+
return question
|
93 |
+
|
94 |
+
def generate_answer(client,model_name,messages_answ):
|
95 |
+
answer=chat_generation(client,model_name,messages_answ)
|
96 |
+
messages_answ.append({"role":"assistant","content":answer})
|
97 |
+
return answer
|
98 |
+
|
99 |
+
def load_upload_ds_hf(df):
|
100 |
+
dataset_stream=load_dataset("atlasia/Mohadata_Dataset",token=HF_READ,split="train")
|
101 |
+
print("[INFO] dataset loaded successfully")
|
102 |
+
new_ds=Dataset.from_pandas(df,preserve_index=False)
|
103 |
+
updated_ds=concatenate_datasets([dataset_stream,new_ds])
|
104 |
+
updated_ds.push_to_hub("abdeljalilELmajjodi/Mohadata",token=HF_WRITE)
|
105 |
+
print("[INFO] dataset uploaded successfully")
|
106 |
+
|
107 |
+
async def load_upload_ds_hf_async(df):
|
108 |
+
await asyncio.to_thread(load_upload_ds_hf,df)
|
109 |
+
|
110 |
+
|
111 |
+
|
112 |
+
def save_conversation(conversation,context,num_rounds):
|
113 |
+
conv_flat={"user":[],"assistant":[]}
|
114 |
+
for i in range(0,len(conversation)):
|
115 |
+
conv_flat[conversation[i]["role"]].append(conversation[i]["content"])
|
116 |
+
conv_flat["context"]=[context]*num_rounds
|
117 |
+
df=pd.DataFrame(conv_flat)
|
118 |
+
df.to_csv("data.csv")
|
119 |
+
print("[INFO] conversation saved successfully")
|
120 |
+
print("[INFO] uploading dataset to huggingface")
|
121 |
+
|
122 |
+
thread=threading.Thread(target=load_upload_ds_hf,args=(df,))
|
123 |
+
thread.daemon=True
|
124 |
+
thread.start()
|
125 |
+
|
126 |
+
return Path("data.csv").name
|
127 |
+
|
128 |
+
def user_input(context,model_a,model_b,num_rounds,conversation_history):
|
129 |
+
conversation_history.clear()
|
130 |
+
client_quest=model_init(model_a)
|
131 |
+
client_ans=model_init(model_b)
|
132 |
+
messages_quest=init_req_messages(context)
|
133 |
+
for round_num in tqdm(range(num_rounds)):
|
134 |
+
question = generate_question(client_quest,model_a,messages_quest)
|
135 |
+
conversation_history.append(
|
136 |
+
{"role":"user","content":question},
|
137 |
+
)
|
138 |
+
if round_num==0:
|
139 |
+
messages_answ=init_resp_messages(context,question)
|
140 |
+
else:
|
141 |
+
messages_answ.append({"role":"user","content":question})
|
142 |
+
answer = generate_answer(client_ans,model_b,messages_answ)
|
143 |
+
messages_quest.append({"role":"user","content":answer})
|
144 |
+
conversation_history.append(
|
145 |
+
{"role":"assistant","content":answer},
|
146 |
+
)
|
147 |
+
file_path=save_conversation(conversation_history,context,num_rounds)
|
148 |
+
return conversation_history,gr.DownloadButton(label="Save Conversation",value=file_path,visible=True)
|