add utils...
Browse files
utils.py
ADDED
|
@@ -0,0 +1,148 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
from openai import OpenAI
|
| 3 |
+
import os
|
| 4 |
+
from tqdm import tqdm
|
| 5 |
+
import pandas as pd
|
| 6 |
+
from pathlib import Path
|
| 7 |
+
from datasets import Dataset,load_dataset,concatenate_datasets
|
| 8 |
+
import asyncio
|
| 9 |
+
import threading
|
| 10 |
+
from dotenv import load_dotenv
|
| 11 |
+
|
| 12 |
+
load_dotenv()
|
| 13 |
+
HF_READ=os.environ["HF_READ"]
|
| 14 |
+
HF_WRITE=os.environ["HF_WRITE"]
|
| 15 |
+
|
| 16 |
+
model_base_url={}
|
| 17 |
+
LANGUAGE="MOROCCAN Arabic"
|
| 18 |
+
HF_DATASET="abdeljalilELmajjodi/Mohadata"
|
| 19 |
+
SYSTEM_PROMPT = {
|
| 20 |
+
"role": "system",
|
| 21 |
+
"content": f"""This is a context-based Q&A game where two AIs interact with a user-provided context. All interactions MUST be in {LANGUAGE}.
|
| 22 |
+
|
| 23 |
+
QUESTIONER_AI:
|
| 24 |
+
- Must only ask questions that can be answered from the provided context
|
| 25 |
+
- Should identify key information gaps or unclear points
|
| 26 |
+
- Cannot ask questions about information not present in the context
|
| 27 |
+
- Must communicate exclusively in {LANGUAGE}
|
| 28 |
+
|
| 29 |
+
ANSWERER_AI:
|
| 30 |
+
- Must only answer using information explicitly stated in the context
|
| 31 |
+
- Cannot add external information or assumptions
|
| 32 |
+
- Must indicate if a question cannot be answered from the context alone
|
| 33 |
+
- Must communicate exclusively in {LANGUAGE}"""
|
| 34 |
+
}
|
| 35 |
+
|
| 36 |
+
def add_model(model_name,base_url,api_key):
|
| 37 |
+
model_base_url[model_name]=base_url
|
| 38 |
+
#model_quest.choices=list(model_base_url.keys())
|
| 39 |
+
#print(model_quest)
|
| 40 |
+
os.environ[model_name]=api_key
|
| 41 |
+
return gr.Dropdown(label="Questioner Model",choices=list(model_base_url.keys())),gr.Dropdown(label="Answerer Model",choices=list(model_base_url.keys()))
|
| 42 |
+
|
| 43 |
+
|
| 44 |
+
def model_init(model):
|
| 45 |
+
try:
|
| 46 |
+
api_key=os.environ.get(model)
|
| 47 |
+
base_url=model_base_url[model]
|
| 48 |
+
client = OpenAI(api_key=api_key, base_url=base_url)
|
| 49 |
+
return client
|
| 50 |
+
except Exception as e:
|
| 51 |
+
print(f"You should add api key of {model}")
|
| 52 |
+
|
| 53 |
+
# generate questions
|
| 54 |
+
def init_req_messages(sample_context):
|
| 55 |
+
messages_quest=[
|
| 56 |
+
SYSTEM_PROMPT,
|
| 57 |
+
{
|
| 58 |
+
"role":"user",
|
| 59 |
+
"content":f"""Context for analysis:
|
| 60 |
+
{sample_context}
|
| 61 |
+
As QUESTIONER_AI, generate a question based on this context.
|
| 62 |
+
"""
|
| 63 |
+
}
|
| 64 |
+
]
|
| 65 |
+
return messages_quest
|
| 66 |
+
# generate Answers
|
| 67 |
+
def init_resp_messages(sample_context,question):
|
| 68 |
+
messages_answ=[
|
| 69 |
+
SYSTEM_PROMPT,
|
| 70 |
+
{
|
| 71 |
+
"role": "user",
|
| 72 |
+
"content": f"""
|
| 73 |
+
Context for analysis:
|
| 74 |
+
{sample_context}
|
| 75 |
+
Question: {question}
|
| 76 |
+
As ANSWERER_AI, answer this question using only information from the context.
|
| 77 |
+
"""}
|
| 78 |
+
|
| 79 |
+
]
|
| 80 |
+
return messages_answ
|
| 81 |
+
|
| 82 |
+
def chat_generation(client,model_name,messages):
|
| 83 |
+
return client.chat.completions.create(
|
| 84 |
+
model=model_name,
|
| 85 |
+
messages=messages,
|
| 86 |
+
temperature=0.5
|
| 87 |
+
).choices[0].message.content
|
| 88 |
+
|
| 89 |
+
def generate_question(client,model_name,messages_quest):
|
| 90 |
+
question=chat_generation(client,model_name,messages_quest)
|
| 91 |
+
messages_quest.append({"role":"assistant","content":question})
|
| 92 |
+
return question
|
| 93 |
+
|
| 94 |
+
def generate_answer(client,model_name,messages_answ):
|
| 95 |
+
answer=chat_generation(client,model_name,messages_answ)
|
| 96 |
+
messages_answ.append({"role":"assistant","content":answer})
|
| 97 |
+
return answer
|
| 98 |
+
|
| 99 |
+
def load_upload_ds_hf(df):
|
| 100 |
+
dataset_stream=load_dataset("atlasia/Mohadata_Dataset",token=HF_READ,split="train")
|
| 101 |
+
print("[INFO] dataset loaded successfully")
|
| 102 |
+
new_ds=Dataset.from_pandas(df,preserve_index=False)
|
| 103 |
+
updated_ds=concatenate_datasets([dataset_stream,new_ds])
|
| 104 |
+
updated_ds.push_to_hub("abdeljalilELmajjodi/Mohadata",token=HF_WRITE)
|
| 105 |
+
print("[INFO] dataset uploaded successfully")
|
| 106 |
+
|
| 107 |
+
async def load_upload_ds_hf_async(df):
|
| 108 |
+
await asyncio.to_thread(load_upload_ds_hf,df)
|
| 109 |
+
|
| 110 |
+
|
| 111 |
+
|
| 112 |
+
def save_conversation(conversation,context,num_rounds):
|
| 113 |
+
conv_flat={"user":[],"assistant":[]}
|
| 114 |
+
for i in range(0,len(conversation)):
|
| 115 |
+
conv_flat[conversation[i]["role"]].append(conversation[i]["content"])
|
| 116 |
+
conv_flat["context"]=[context]*num_rounds
|
| 117 |
+
df=pd.DataFrame(conv_flat)
|
| 118 |
+
df.to_csv("data.csv")
|
| 119 |
+
print("[INFO] conversation saved successfully")
|
| 120 |
+
print("[INFO] uploading dataset to huggingface")
|
| 121 |
+
|
| 122 |
+
thread=threading.Thread(target=load_upload_ds_hf,args=(df,))
|
| 123 |
+
thread.daemon=True
|
| 124 |
+
thread.start()
|
| 125 |
+
|
| 126 |
+
return Path("data.csv").name
|
| 127 |
+
|
| 128 |
+
def user_input(context,model_a,model_b,num_rounds,conversation_history):
|
| 129 |
+
conversation_history.clear()
|
| 130 |
+
client_quest=model_init(model_a)
|
| 131 |
+
client_ans=model_init(model_b)
|
| 132 |
+
messages_quest=init_req_messages(context)
|
| 133 |
+
for round_num in tqdm(range(num_rounds)):
|
| 134 |
+
question = generate_question(client_quest,model_a,messages_quest)
|
| 135 |
+
conversation_history.append(
|
| 136 |
+
{"role":"user","content":question},
|
| 137 |
+
)
|
| 138 |
+
if round_num==0:
|
| 139 |
+
messages_answ=init_resp_messages(context,question)
|
| 140 |
+
else:
|
| 141 |
+
messages_answ.append({"role":"user","content":question})
|
| 142 |
+
answer = generate_answer(client_ans,model_b,messages_answ)
|
| 143 |
+
messages_quest.append({"role":"user","content":answer})
|
| 144 |
+
conversation_history.append(
|
| 145 |
+
{"role":"assistant","content":answer},
|
| 146 |
+
)
|
| 147 |
+
file_path=save_conversation(conversation_history,context,num_rounds)
|
| 148 |
+
return conversation_history,gr.DownloadButton(label="Save Conversation",value=file_path,visible=True)
|