|
from utils import ( |
|
update_leaderboard_multilingual, |
|
update_leaderboard_one_vs_all, |
|
handle_evaluation, |
|
process_results_file, |
|
create_html_image, |
|
) |
|
|
|
import os |
|
import gradio as gr |
|
|
|
from constants import * |
|
|
|
if __name__ == "__main__": |
|
|
|
with gr.Blocks() as app: |
|
|
|
base_path = os.path.dirname(__file__) |
|
local_image_path = os.path.join(base_path, 'open_arabic_lid_arena.png') |
|
|
|
gr.HTML(create_html_image(local_image_path)) |
|
gr.Markdown("# 🏅 Open Arabic Dialect Identification Leaderboard") |
|
|
|
|
|
with gr.Tab("Multi-dialects model leaderboard"): |
|
gr.Markdown(""" |
|
Complete leaderboard across multiple arabic dialects. |
|
Compare the performance of different models across various metrics such as FNR, FPR, and other clasical metrics. |
|
""" |
|
) |
|
|
|
with gr.Row(): |
|
with gr.Column(scale=1): |
|
gr.Markdown("### Select country to display") |
|
country_selector = gr.Dropdown( |
|
choices=supported_dialects, |
|
value='Morocco', |
|
label="Country" |
|
) |
|
|
|
with gr.Column(scale=2): |
|
gr.Markdown("### Select metrics to display") |
|
metric_checkboxes = gr.CheckboxGroup( |
|
choices=metrics, |
|
value=default_metrics, |
|
label="Metrics" |
|
) |
|
|
|
with gr.Row(): |
|
leaderboard_table = gr.DataFrame( |
|
interactive=False |
|
) |
|
|
|
gr.Markdown("</br>") |
|
|
|
gr.Markdown("## Contribute to the Leaderboard") |
|
gr.Markdown(""" |
|
We welcome contributions from the community! |
|
If you have a model that you would like to see on the leaderboard, please use the 'Evaluate a model' or 'Upload your results' tabs to submit your model's performance. |
|
Let's work together to improve Arabic dialect identification! 🚀 |
|
""") |
|
|
|
|
|
with gr.Tab("Dialect confusion leaderboard"): |
|
|
|
gr.Markdown(""" |
|
Detailed analysis of how well models distinguish specific dialects from others. |
|
For each target dialect, see how often models incorrectly classify other dialects as the target. |
|
Lower `false_positive_rate` indicate better ability to identify the true dialect by |
|
showing **how often it misclassifies other dialects as the target dialect**. |
|
""" |
|
) |
|
|
|
with gr.Row(): |
|
with gr.Column(scale=1): |
|
gr.Markdown("### Select your target language") |
|
target_language_selector = gr.Dropdown( |
|
choices=languages_to_display_one_vs_all, |
|
value='Morocco', |
|
label="Target Language" |
|
) |
|
|
|
with gr.Column(scale=2): |
|
gr.Markdown("### Select languages to compare to") |
|
languages_checkboxes = gr.CheckboxGroup( |
|
choices=languages_to_display_one_vs_all, |
|
value=default_languages, |
|
label="Languages" |
|
) |
|
|
|
with gr.Row(): |
|
binary_leaderboard_table = gr.DataFrame( |
|
interactive=False |
|
) |
|
|
|
|
|
with gr.Tab("Evaluate a model"): |
|
gr.Markdown("Suggest a model to evaluate 🤗 (Supports only **Fasttext** models as SfayaLID, GlotLID, OpenLID, etc.)") |
|
gr.Markdown("For other models, you are welcome to **submit your results** through the upload section.") |
|
|
|
model_path = gr.Textbox(label="Model Path", placeholder='path/to/model') |
|
model_path_bin = gr.Textbox(label=".bin filename", placeholder='model.bin') |
|
gr.Markdown("### **⚠️ To ensure correct results, tick this when the model's labels are the iso_codes**") |
|
use_mapping = gr.Checkbox(label="Does not map to country", value=True) |
|
eval_button = gr.Button("Evaluate", value=False) |
|
|
|
|
|
status_message = gr.Markdown(value="") |
|
def update_status_message(): |
|
return "### **⚠️Evaluating... Please wait...**" |
|
|
|
eval_button.click(update_status_message, outputs=[status_message]) |
|
|
|
eval_button.click(handle_evaluation, inputs=[model_path, model_path_bin, use_mapping], outputs=[leaderboard_table, status_message]) |
|
|
|
with gr.Tab("Upload your results"): |
|
|
|
|
|
code_snippet = """ |
|
```python |
|
|
|
# Load your model |
|
model = ... # Load your model here |
|
|
|
# Load evaluation benchmark |
|
eval_dataset = load_dataset("atlasia/Arabic-LID-Leaderboard", split='test').to_pandas() # do not change this line :) |
|
|
|
# Predict labels using your model |
|
eval_dataset['preds'] = eval_dataset['text'].apply(lambda text: predict_label(text, model)) # predict_label is a function that you need to define for your model |
|
|
|
# now drop the columns that are not needed, i.e. 'text', 'metadata' and 'dataset_source' |
|
df_eval = df_eval.drop(columns=['text', 'metadata', 'dataset_source']) |
|
df_eval.to_csv('your_model_name.csv') |
|
|
|
# submit your results: 'your_model_name.csv' to the leaderboard |
|
|
|
``` |
|
""" |
|
|
|
gr.Markdown("## Upload your results to the leaderboard 🚀") |
|
gr.Markdown("### Submission guidelines: Run the test dataset on your model and save the results in a CSV file. Bellow a code snippet to help you with that.") |
|
gr.Markdown("### Nota Bene: The One-vs-All leaderboard evaluation is currently unavailable with the csv upload but will be implemented soon. Stay tuned!") |
|
gr.Markdown(code_snippet) |
|
|
|
uploaded_model_name = gr.Textbox(label="Model name", placeholder='Your model/team name') |
|
file = gr.File(label="Upload your results") |
|
upload_button = gr.Button("Upload") |
|
|
|
|
|
status_message = gr.Markdown(value="") |
|
def update_status_message(): |
|
return "### **⚠️Evaluating... Please wait...**" |
|
|
|
upload_button.click(update_status_message, outputs=[status_message]) |
|
|
|
upload_button.click(process_results_file, inputs=[file, uploaded_model_name], outputs=[leaderboard_table, status_message]) |
|
|
|
|
|
country_selector.change( |
|
update_leaderboard_multilingual, |
|
inputs=[country_selector, metric_checkboxes], |
|
outputs=leaderboard_table |
|
) |
|
|
|
metric_checkboxes.change( |
|
update_leaderboard_multilingual, |
|
inputs=[country_selector, metric_checkboxes], |
|
outputs=leaderboard_table |
|
) |
|
|
|
|
|
target_language_selector.change( |
|
update_leaderboard_one_vs_all, |
|
inputs=[target_language_selector, languages_checkboxes], |
|
outputs=[binary_leaderboard_table, languages_checkboxes] |
|
) |
|
|
|
languages_checkboxes.change( |
|
update_leaderboard_one_vs_all, |
|
inputs=[target_language_selector, languages_checkboxes], |
|
outputs=[binary_leaderboard_table, languages_checkboxes] |
|
) |
|
|
|
|
|
app.load( |
|
update_leaderboard_one_vs_all, |
|
inputs=[target_language_selector, languages_checkboxes], |
|
outputs=[binary_leaderboard_table, languages_checkboxes] |
|
) |
|
|
|
app.load( |
|
update_leaderboard_multilingual, |
|
inputs=[country_selector, metric_checkboxes], |
|
outputs=leaderboard_table |
|
) |
|
|
|
app.launch(allowed_paths=[base_path]) |
|
|