BounharAbdelaziz
commited on
implemented multilingual, eval from link and csv
Browse files- .gitattributes +1 -0
- app.py +205 -0
- darija_leaderboard_binary.json +3 -0
- darija_leaderboard_multilingual.json +1378 -0
- open_arabic_lid_arena.png +3 -0
- utils.py +488 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
open_arabic_lid_arena.png filter=lfs diff=lfs merge=lfs -text
|
app.py
ADDED
@@ -0,0 +1,205 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import pandas as pd
|
3 |
+
from utils import (
|
4 |
+
update_leaderboard_multilingual,
|
5 |
+
handle_evaluation,
|
6 |
+
process_results_file,
|
7 |
+
create_html_image,
|
8 |
+
)
|
9 |
+
from datasets import load_dataset
|
10 |
+
import gradio as gr
|
11 |
+
|
12 |
+
if __name__ == "__main__":
|
13 |
+
# Evaluation dataset path
|
14 |
+
DATA_PATH = "atlasia/No-Arabic-Dialect-Left-Behind-Filtered-Balanced"
|
15 |
+
# All Metrics
|
16 |
+
metrics = [
|
17 |
+
'f1_score',
|
18 |
+
'precision',
|
19 |
+
'recall',
|
20 |
+
'specificity',
|
21 |
+
'false_positive_rate',
|
22 |
+
'false_negative_rate',
|
23 |
+
'negative_predictive_value',
|
24 |
+
'n_test_samples',
|
25 |
+
]
|
26 |
+
# Default metrics to display
|
27 |
+
default_metrics = [
|
28 |
+
'f1_score',
|
29 |
+
'precision',
|
30 |
+
'recall',
|
31 |
+
'false_positive_rate',
|
32 |
+
'false_negative_rate'
|
33 |
+
]
|
34 |
+
# default language to display
|
35 |
+
default_languages = [
|
36 |
+
'Morocco',
|
37 |
+
'MSA',
|
38 |
+
'Egypt',
|
39 |
+
'Algeria',
|
40 |
+
'Tunisia',
|
41 |
+
'Levantine',
|
42 |
+
]
|
43 |
+
|
44 |
+
# Load test dataset
|
45 |
+
test_dataset = load_dataset(DATA_PATH, split='test')
|
46 |
+
# Supported dialects
|
47 |
+
supported_dialects = list(test_dataset.unique("dialect")) + ['All']
|
48 |
+
|
49 |
+
with gr.Blocks() as app:
|
50 |
+
base_path = os.path.dirname(__file__)
|
51 |
+
local_image_path = os.path.join(base_path, 'open_arabic_lid_arena.png')
|
52 |
+
|
53 |
+
gr.HTML(create_html_image(local_image_path))
|
54 |
+
gr.Markdown("# 🏅 Open Arabic Dialect Identification Leaderboard")
|
55 |
+
|
56 |
+
# Multilingual model leaderboard
|
57 |
+
with gr.Tab("Multilingual model leaderboard"):
|
58 |
+
gr.Markdown("""
|
59 |
+
Complete leaderboard across multiple arabic dialects.
|
60 |
+
Compare the performance of different models across various metrics such as FNR, FPR, and other clasical metrics.
|
61 |
+
"""
|
62 |
+
)
|
63 |
+
|
64 |
+
with gr.Row():
|
65 |
+
with gr.Column(scale=1):
|
66 |
+
gr.Markdown("### Select country to display")
|
67 |
+
country_selector = gr.Dropdown(
|
68 |
+
choices=supported_dialects,
|
69 |
+
value='Morocco', # Default to Morocco of course
|
70 |
+
label="Country"
|
71 |
+
)
|
72 |
+
|
73 |
+
with gr.Column(scale=2):
|
74 |
+
gr.Markdown("### Select metrics to display")
|
75 |
+
metric_checkboxes = gr.CheckboxGroup(
|
76 |
+
choices=metrics,
|
77 |
+
value=default_metrics,
|
78 |
+
label="Metrics"
|
79 |
+
)
|
80 |
+
|
81 |
+
with gr.Row():
|
82 |
+
leaderboard_table = gr.DataFrame(
|
83 |
+
interactive=False
|
84 |
+
)
|
85 |
+
|
86 |
+
gr.Markdown("</br>")
|
87 |
+
|
88 |
+
gr.Markdown("## Contribute to the Leaderboard")
|
89 |
+
gr.Markdown("""
|
90 |
+
We welcome contributions from the community!
|
91 |
+
If you have a model that you would like to see on the leaderboard, please use the 'Evaluate a model' or 'Upload your results' tabs to submit your model's performance.
|
92 |
+
Let's work together to improve Arabic dialect identification! 🚀
|
93 |
+
""")
|
94 |
+
|
95 |
+
# Binary model leaderboard
|
96 |
+
with gr.Tab("One-vs-All leaderboard"):
|
97 |
+
|
98 |
+
gr.Markdown("""
|
99 |
+
A kind of one-vs-all approach for evaluating LID models across multiple arabic dialects.
|
100 |
+
Computes the `false_positive_rate` of different models for a given target language.
|
101 |
+
This should help you understand how well a model can identify a specific dialect by
|
102 |
+
showing how often it misclassifies other dialects as the target dialect.
|
103 |
+
"""
|
104 |
+
)
|
105 |
+
|
106 |
+
with gr.Column(scale=1):
|
107 |
+
gr.Markdown("### Select target language")
|
108 |
+
target_language_selector = gr.Dropdown(
|
109 |
+
choices=supported_dialects,
|
110 |
+
value='Morocco', # Default to Morocco of course
|
111 |
+
label="Target Language"
|
112 |
+
)
|
113 |
+
|
114 |
+
with gr.Column(scale=2):
|
115 |
+
gr.Markdown("### Select Languages to display")
|
116 |
+
languages_checkboxes = gr.CheckboxGroup(
|
117 |
+
choices=supported_dialects,
|
118 |
+
value=default_languages,
|
119 |
+
label="Languages"
|
120 |
+
)
|
121 |
+
|
122 |
+
with gr.Row():
|
123 |
+
binary_leaderboard_table = gr.DataFrame(
|
124 |
+
interactive=False
|
125 |
+
)
|
126 |
+
|
127 |
+
|
128 |
+
with gr.Tab("Evaluate a model"):
|
129 |
+
gr.Markdown("Suggest a model to evaluate 🤗 (Supports only **Fasttext** models as SfayaLID, GlotLID, OpenLID, etc.)")
|
130 |
+
gr.Markdown("For other models, you are welcome to **submit your results** through the upload section.")
|
131 |
+
|
132 |
+
model_path = gr.Textbox(label="Model Path", placeholder='path/to/model')
|
133 |
+
model_path_bin = gr.Textbox(label=".bin filename", placeholder='model.bin')
|
134 |
+
gr.Markdown("### **⚠️ To ensure correct results, tick this when the model's labels are the iso_codes**")
|
135 |
+
use_mapping = gr.Checkbox(label="Does not map to country")
|
136 |
+
eval_button = gr.Button("Evaluate", value=False) # Initially disabled
|
137 |
+
|
138 |
+
eval_button.click(handle_evaluation, inputs=[model_path, model_path_bin, use_mapping], outputs=[leaderboard_table])
|
139 |
+
|
140 |
+
with gr.Tab("Upload your results"):
|
141 |
+
|
142 |
+
# Define a code block to display
|
143 |
+
code_snippet = """
|
144 |
+
```python
|
145 |
+
|
146 |
+
# Load your model
|
147 |
+
model = ... # Load your model here
|
148 |
+
|
149 |
+
# Load evaluation benchmark
|
150 |
+
eval_dataset = load_dataset("atlasia/No-Arabic-Dialect-Left-Behind-Filtered-Balanced", split='test').to_pandas() # do not change this line :)
|
151 |
+
|
152 |
+
# Predict labels using your model
|
153 |
+
eval_dataset['preds'] = eval_dataset['text'].apply(lambda text: predict_label(text, model)) # predict_label is a function that you need to define for your model
|
154 |
+
|
155 |
+
# now drop the columns that are not needed, i.e. 'text', 'metadata' and 'dataset_source'
|
156 |
+
df_eval = df_eval.drop(columns=['text', 'metadata', 'dataset_source'])
|
157 |
+
df_eval.to_csv('your_model_name.csv')
|
158 |
+
|
159 |
+
# submit your results: 'your_model_name.csv' to the leaderboard
|
160 |
+
|
161 |
+
```
|
162 |
+
"""
|
163 |
+
gr.Markdown("## Upload your results to the leaderboard 🚀")
|
164 |
+
gr.Markdown("### Submission guidelines: Run the test dataset on your model and save the results in a CSV file. Bellow a code snippet to help you with that.")
|
165 |
+
gr.Markdown(code_snippet)
|
166 |
+
|
167 |
+
uploaded_model_name = gr.Textbox(label="Model name", placeholder='Your model/team name')
|
168 |
+
file = gr.File(label="Upload your results")
|
169 |
+
upload_button = gr.Button("Upload")
|
170 |
+
upload_button.click(process_results_file, inputs=[file, uploaded_model_name], outputs=[leaderboard_table])
|
171 |
+
|
172 |
+
# Update multilangual table when any input changes
|
173 |
+
country_selector.change(
|
174 |
+
update_leaderboard_multilingual,
|
175 |
+
inputs=[country_selector, metric_checkboxes],
|
176 |
+
outputs=leaderboard_table
|
177 |
+
)
|
178 |
+
|
179 |
+
metric_checkboxes.change(
|
180 |
+
update_leaderboard_multilingual,
|
181 |
+
inputs=[country_selector, metric_checkboxes],
|
182 |
+
outputs=leaderboard_table
|
183 |
+
)
|
184 |
+
|
185 |
+
# Update binary table when any input changes
|
186 |
+
target_language_selector.change(
|
187 |
+
update_leaderboard_multilingual,
|
188 |
+
inputs=[country_selector, metric_checkboxes],
|
189 |
+
outputs=leaderboard_table
|
190 |
+
)
|
191 |
+
|
192 |
+
languages_checkboxes.change(
|
193 |
+
update_leaderboard_multilingual,
|
194 |
+
inputs=[country_selector, metric_checkboxes],
|
195 |
+
outputs=leaderboard_table
|
196 |
+
)
|
197 |
+
|
198 |
+
# Define load event to run at startup
|
199 |
+
app.load(
|
200 |
+
update_leaderboard_multilingual,
|
201 |
+
inputs=[country_selector, metric_checkboxes],
|
202 |
+
outputs=leaderboard_table
|
203 |
+
)
|
204 |
+
|
205 |
+
app.launch(allowed_paths=[base_path])
|
darija_leaderboard_binary.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
|
3 |
+
]
|
darija_leaderboard_multilingual.json
ADDED
@@ -0,0 +1,1378 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"MSA": {
|
4 |
+
"atlasia/Sfaya-Moroccan-Darija-vs-All/model_multi_v3_2fpr.bin": {
|
5 |
+
"f1_score": 0.9749,
|
6 |
+
"precision": 0.9908,
|
7 |
+
"recall": 0.9594,
|
8 |
+
"specificity": 0.9942,
|
9 |
+
"false_positive_rate": 0.0058,
|
10 |
+
"false_negative_rate": 0.0406,
|
11 |
+
"negative_predictive_value": 0.974,
|
12 |
+
"n_test_samples": 54390
|
13 |
+
},
|
14 |
+
"cis-lmu/glotlid/model.bin": {
|
15 |
+
"f1_score": 0.9554,
|
16 |
+
"precision": 0.9252,
|
17 |
+
"recall": 0.9876,
|
18 |
+
"specificity": 0.9478,
|
19 |
+
"false_positive_rate": 0.0522,
|
20 |
+
"false_negative_rate": 0.0124,
|
21 |
+
"negative_predictive_value": 0.9915,
|
22 |
+
"n_test_samples": 54390
|
23 |
+
},
|
24 |
+
"laurievb/OpenLID/model.bin": {
|
25 |
+
"f1_score": 0.9264,
|
26 |
+
"precision": 0.9359,
|
27 |
+
"recall": 0.9172,
|
28 |
+
"specificity": 0.9589,
|
29 |
+
"false_positive_rate": 0.0411,
|
30 |
+
"false_negative_rate": 0.0828,
|
31 |
+
"negative_predictive_value": 0.9465,
|
32 |
+
"n_test_samples": 54390
|
33 |
+
},
|
34 |
+
"atlasia/Sfaya-Moroccan-Darija-vs-All/model_binary_v3_1fpr.bin": {
|
35 |
+
"f1_score": 0.0,
|
36 |
+
"precision": 0.0,
|
37 |
+
"recall": 0.0,
|
38 |
+
"specificity": 1.0,
|
39 |
+
"false_positive_rate": 0.0,
|
40 |
+
"false_negative_rate": 1.0,
|
41 |
+
"negative_predictive_value": 0.6047,
|
42 |
+
"n_test_samples": 54390
|
43 |
+
}
|
44 |
+
}
|
45 |
+
},
|
46 |
+
{
|
47 |
+
"Pakistan": {
|
48 |
+
"atlasia/Sfaya-Moroccan-Darija-vs-All/model_multi_v3_2fpr.bin": {
|
49 |
+
"f1_score": 0.9963,
|
50 |
+
"precision": 0.9999,
|
51 |
+
"recall": 0.9927,
|
52 |
+
"specificity": 0.9999,
|
53 |
+
"false_positive_rate": 0.0001,
|
54 |
+
"false_negative_rate": 0.0073,
|
55 |
+
"negative_predictive_value": 0.9958,
|
56 |
+
"n_test_samples": 50000
|
57 |
+
},
|
58 |
+
"cis-lmu/glotlid/model.bin": {
|
59 |
+
"f1_score": 0.999,
|
60 |
+
"precision": 0.9989,
|
61 |
+
"recall": 0.9991,
|
62 |
+
"specificity": 0.9994,
|
63 |
+
"false_positive_rate": 0.0006,
|
64 |
+
"false_negative_rate": 0.0009,
|
65 |
+
"negative_predictive_value": 0.9995,
|
66 |
+
"n_test_samples": 50000
|
67 |
+
},
|
68 |
+
"laurievb/OpenLID/model.bin": {
|
69 |
+
"f1_score": 0.9927,
|
70 |
+
"precision": 0.9928,
|
71 |
+
"recall": 0.9925,
|
72 |
+
"specificity": 0.9959,
|
73 |
+
"false_positive_rate": 0.0041,
|
74 |
+
"false_negative_rate": 0.0075,
|
75 |
+
"negative_predictive_value": 0.9957,
|
76 |
+
"n_test_samples": 50000
|
77 |
+
},
|
78 |
+
"atlasia/Sfaya-Moroccan-Darija-vs-All/model_binary_v3_1fpr.bin": {
|
79 |
+
"f1_score": 0.0,
|
80 |
+
"precision": 0.0,
|
81 |
+
"recall": 0.0,
|
82 |
+
"specificity": 1.0,
|
83 |
+
"false_positive_rate": 0.0,
|
84 |
+
"false_negative_rate": 1.0,
|
85 |
+
"negative_predictive_value": 0.6366,
|
86 |
+
"n_test_samples": 50000
|
87 |
+
}
|
88 |
+
}
|
89 |
+
},
|
90 |
+
{
|
91 |
+
"Morocco": {
|
92 |
+
"atlasia/Sfaya-Moroccan-Darija-vs-All/model_multi_v3_2fpr.bin": {
|
93 |
+
"f1_score": 0.8789,
|
94 |
+
"precision": 0.8624,
|
95 |
+
"recall": 0.8961,
|
96 |
+
"specificity": 0.9771,
|
97 |
+
"false_positive_rate": 0.0229,
|
98 |
+
"false_negative_rate": 0.1039,
|
99 |
+
"negative_predictive_value": 0.9832,
|
100 |
+
"n_test_samples": 19005
|
101 |
+
},
|
102 |
+
"cis-lmu/glotlid/model.bin": {
|
103 |
+
"f1_score": 0.7172,
|
104 |
+
"precision": 0.9038,
|
105 |
+
"recall": 0.5945,
|
106 |
+
"specificity": 0.9899,
|
107 |
+
"false_positive_rate": 0.0101,
|
108 |
+
"false_negative_rate": 0.4055,
|
109 |
+
"negative_predictive_value": 0.9384,
|
110 |
+
"n_test_samples": 19005
|
111 |
+
},
|
112 |
+
"laurievb/OpenLID/model.bin": {
|
113 |
+
"f1_score": 0.6146,
|
114 |
+
"precision": 0.7279,
|
115 |
+
"recall": 0.5318,
|
116 |
+
"specificity": 0.9681,
|
117 |
+
"false_positive_rate": 0.0319,
|
118 |
+
"false_negative_rate": 0.4682,
|
119 |
+
"negative_predictive_value": 0.9281,
|
120 |
+
"n_test_samples": 19005
|
121 |
+
},
|
122 |
+
"atlasia/Sfaya-Moroccan-Darija-vs-All/model_binary_v3_1fpr.bin": {
|
123 |
+
"f1_score": 0.8986,
|
124 |
+
"precision": 0.9166,
|
125 |
+
"recall": 0.8812,
|
126 |
+
"specificity": 0.9871,
|
127 |
+
"false_positive_rate": 0.0129,
|
128 |
+
"false_negative_rate": 0.1188,
|
129 |
+
"negative_predictive_value": 0.9811,
|
130 |
+
"n_test_samples": 19005
|
131 |
+
}
|
132 |
+
}
|
133 |
+
},
|
134 |
+
{
|
135 |
+
"Egypt": {
|
136 |
+
"atlasia/Sfaya-Moroccan-Darija-vs-All/model_multi_v3_2fpr.bin": {
|
137 |
+
"f1_score": 0.5929,
|
138 |
+
"precision": 0.5835,
|
139 |
+
"recall": 0.6025,
|
140 |
+
"specificity": 0.993,
|
141 |
+
"false_positive_rate": 0.007,
|
142 |
+
"false_negative_rate": 0.3975,
|
143 |
+
"negative_predictive_value": 0.9935,
|
144 |
+
"n_test_samples": 2204
|
145 |
+
},
|
146 |
+
"cis-lmu/glotlid/model.bin": {
|
147 |
+
"f1_score": 0.6028,
|
148 |
+
"precision": 0.4837,
|
149 |
+
"recall": 0.7999,
|
150 |
+
"specificity": 0.9861,
|
151 |
+
"false_positive_rate": 0.0139,
|
152 |
+
"false_negative_rate": 0.2001,
|
153 |
+
"negative_predictive_value": 0.9967,
|
154 |
+
"n_test_samples": 2204
|
155 |
+
},
|
156 |
+
"laurievb/OpenLID/model.bin": {
|
157 |
+
"f1_score": 0.4094,
|
158 |
+
"precision": 0.2663,
|
159 |
+
"recall": 0.8843,
|
160 |
+
"specificity": 0.9603,
|
161 |
+
"false_positive_rate": 0.0397,
|
162 |
+
"false_negative_rate": 0.1157,
|
163 |
+
"negative_predictive_value": 0.998,
|
164 |
+
"n_test_samples": 2204
|
165 |
+
},
|
166 |
+
"atlasia/Sfaya-Moroccan-Darija-vs-All/model_binary_v3_1fpr.bin": {
|
167 |
+
"f1_score": 0.0,
|
168 |
+
"precision": 0.0,
|
169 |
+
"recall": 0.0,
|
170 |
+
"specificity": 1.0,
|
171 |
+
"false_positive_rate": 0.0,
|
172 |
+
"false_negative_rate": 1.0,
|
173 |
+
"negative_predictive_value": 0.984,
|
174 |
+
"n_test_samples": 2204
|
175 |
+
}
|
176 |
+
}
|
177 |
+
},
|
178 |
+
{
|
179 |
+
"Palestine": {
|
180 |
+
"atlasia/Sfaya-Moroccan-Darija-vs-All/model_multi_v3_2fpr.bin": {
|
181 |
+
"f1_score": 0.2511,
|
182 |
+
"precision": 0.3352,
|
183 |
+
"recall": 0.2007,
|
184 |
+
"specificity": 0.9957,
|
185 |
+
"false_positive_rate": 0.0043,
|
186 |
+
"false_negative_rate": 0.7993,
|
187 |
+
"negative_predictive_value": 0.9914,
|
188 |
+
"n_test_samples": 1465
|
189 |
+
},
|
190 |
+
"cis-lmu/glotlid/model.bin": {
|
191 |
+
"f1_score": 0.0,
|
192 |
+
"precision": 0.0,
|
193 |
+
"recall": 0.0,
|
194 |
+
"specificity": 1.0,
|
195 |
+
"false_positive_rate": 0.0,
|
196 |
+
"false_negative_rate": 1.0,
|
197 |
+
"negative_predictive_value": 0.9894,
|
198 |
+
"n_test_samples": 1465
|
199 |
+
},
|
200 |
+
"laurievb/OpenLID/model.bin": {
|
201 |
+
"f1_score": 0.0,
|
202 |
+
"precision": 0.0,
|
203 |
+
"recall": 0.0,
|
204 |
+
"specificity": 1.0,
|
205 |
+
"false_positive_rate": 0.0,
|
206 |
+
"false_negative_rate": 1.0,
|
207 |
+
"negative_predictive_value": 0.9894,
|
208 |
+
"n_test_samples": 1465
|
209 |
+
},
|
210 |
+
"atlasia/Sfaya-Moroccan-Darija-vs-All/model_binary_v3_1fpr.bin": {
|
211 |
+
"f1_score": 0.0,
|
212 |
+
"precision": 0.0,
|
213 |
+
"recall": 0.0,
|
214 |
+
"specificity": 1.0,
|
215 |
+
"false_positive_rate": 0.0,
|
216 |
+
"false_negative_rate": 1.0,
|
217 |
+
"negative_predictive_value": 0.9894,
|
218 |
+
"n_test_samples": 1465
|
219 |
+
}
|
220 |
+
}
|
221 |
+
},
|
222 |
+
{
|
223 |
+
"Levantine": {
|
224 |
+
"atlasia/Sfaya-Moroccan-Darija-vs-All/model_multi_v3_2fpr.bin": {
|
225 |
+
"f1_score": 0.1723,
|
226 |
+
"precision": 0.1386,
|
227 |
+
"recall": 0.2275,
|
228 |
+
"specificity": 0.9854,
|
229 |
+
"false_positive_rate": 0.0146,
|
230 |
+
"false_negative_rate": 0.7725,
|
231 |
+
"negative_predictive_value": 0.992,
|
232 |
+
"n_test_samples": 1402
|
233 |
+
},
|
234 |
+
"cis-lmu/glotlid/model.bin": {
|
235 |
+
"f1_score": 0.1171,
|
236 |
+
"precision": 0.073,
|
237 |
+
"recall": 0.2953,
|
238 |
+
"specificity": 0.9614,
|
239 |
+
"false_positive_rate": 0.0386,
|
240 |
+
"false_negative_rate": 0.7047,
|
241 |
+
"negative_predictive_value": 0.9925,
|
242 |
+
"n_test_samples": 1402
|
243 |
+
},
|
244 |
+
"laurievb/OpenLID/model.bin": {
|
245 |
+
"f1_score": 0.1029,
|
246 |
+
"precision": 0.0645,
|
247 |
+
"recall": 0.2532,
|
248 |
+
"specificity": 0.9622,
|
249 |
+
"false_positive_rate": 0.0378,
|
250 |
+
"false_negative_rate": 0.7468,
|
251 |
+
"negative_predictive_value": 0.9921,
|
252 |
+
"n_test_samples": 1402
|
253 |
+
},
|
254 |
+
"atlasia/Sfaya-Moroccan-Darija-vs-All/model_binary_v3_1fpr.bin": {
|
255 |
+
"f1_score": 0.0,
|
256 |
+
"precision": 0.0,
|
257 |
+
"recall": 0.0,
|
258 |
+
"specificity": 1.0,
|
259 |
+
"false_positive_rate": 0.0,
|
260 |
+
"false_negative_rate": 1.0,
|
261 |
+
"negative_predictive_value": 0.9898,
|
262 |
+
"n_test_samples": 1402
|
263 |
+
}
|
264 |
+
}
|
265 |
+
},
|
266 |
+
{
|
267 |
+
"Saudi": {
|
268 |
+
"atlasia/Sfaya-Moroccan-Darija-vs-All/model_multi_v3_2fpr.bin": {
|
269 |
+
"f1_score": 0.4382,
|
270 |
+
"precision": 0.3474,
|
271 |
+
"recall": 0.5932,
|
272 |
+
"specificity": 0.9887,
|
273 |
+
"false_positive_rate": 0.0113,
|
274 |
+
"false_negative_rate": 0.4068,
|
275 |
+
"negative_predictive_value": 0.9958,
|
276 |
+
"n_test_samples": 1384
|
277 |
+
},
|
278 |
+
"cis-lmu/glotlid/model.bin": {
|
279 |
+
"f1_score": 0.3893,
|
280 |
+
"precision": 0.2692,
|
281 |
+
"recall": 0.703,
|
282 |
+
"specificity": 0.9806,
|
283 |
+
"false_positive_rate": 0.0194,
|
284 |
+
"false_negative_rate": 0.297,
|
285 |
+
"negative_predictive_value": 0.9969,
|
286 |
+
"n_test_samples": 1384
|
287 |
+
},
|
288 |
+
"laurievb/OpenLID/model.bin": {
|
289 |
+
"f1_score": 0.3436,
|
290 |
+
"precision": 0.2381,
|
291 |
+
"recall": 0.6171,
|
292 |
+
"specificity": 0.9799,
|
293 |
+
"false_positive_rate": 0.0201,
|
294 |
+
"false_negative_rate": 0.3829,
|
295 |
+
"negative_predictive_value": 0.996,
|
296 |
+
"n_test_samples": 1384
|
297 |
+
},
|
298 |
+
"atlasia/Sfaya-Moroccan-Darija-vs-All/model_binary_v3_1fpr.bin": {
|
299 |
+
"f1_score": 0.0,
|
300 |
+
"precision": 0.0,
|
301 |
+
"recall": 0.0,
|
302 |
+
"specificity": 1.0,
|
303 |
+
"false_positive_rate": 0.0,
|
304 |
+
"false_negative_rate": 1.0,
|
305 |
+
"negative_predictive_value": 0.9899,
|
306 |
+
"n_test_samples": 1384
|
307 |
+
}
|
308 |
+
}
|
309 |
+
},
|
310 |
+
{
|
311 |
+
"Jordan": {
|
312 |
+
"atlasia/Sfaya-Moroccan-Darija-vs-All/model_multi_v3_2fpr.bin": {
|
313 |
+
"f1_score": 0.2726,
|
314 |
+
"precision": 0.4203,
|
315 |
+
"recall": 0.2017,
|
316 |
+
"specificity": 0.9972,
|
317 |
+
"false_positive_rate": 0.0028,
|
318 |
+
"false_negative_rate": 0.7983,
|
319 |
+
"negative_predictive_value": 0.992,
|
320 |
+
"n_test_samples": 1373
|
321 |
+
},
|
322 |
+
"cis-lmu/glotlid/model.bin": {
|
323 |
+
"f1_score": 0.0,
|
324 |
+
"precision": 0.0,
|
325 |
+
"recall": 0.0,
|
326 |
+
"specificity": 1.0,
|
327 |
+
"false_positive_rate": 0.0,
|
328 |
+
"false_negative_rate": 1.0,
|
329 |
+
"negative_predictive_value": 0.99,
|
330 |
+
"n_test_samples": 1373
|
331 |
+
},
|
332 |
+
"laurievb/OpenLID/model.bin": {
|
333 |
+
"f1_score": 0.0,
|
334 |
+
"precision": 0.0,
|
335 |
+
"recall": 0.0,
|
336 |
+
"specificity": 1.0,
|
337 |
+
"false_positive_rate": 0.0,
|
338 |
+
"false_negative_rate": 1.0,
|
339 |
+
"negative_predictive_value": 0.99,
|
340 |
+
"n_test_samples": 1373
|
341 |
+
},
|
342 |
+
"atlasia/Sfaya-Moroccan-Darija-vs-All/model_binary_v3_1fpr.bin": {
|
343 |
+
"f1_score": 0.0,
|
344 |
+
"precision": 0.0,
|
345 |
+
"recall": 0.0,
|
346 |
+
"specificity": 1.0,
|
347 |
+
"false_positive_rate": 0.0,
|
348 |
+
"false_negative_rate": 1.0,
|
349 |
+
"negative_predictive_value": 0.99,
|
350 |
+
"n_test_samples": 1373
|
351 |
+
}
|
352 |
+
}
|
353 |
+
},
|
354 |
+
{
|
355 |
+
"Algeria": {
|
356 |
+
"atlasia/Sfaya-Moroccan-Darija-vs-All/model_multi_v3_2fpr.bin": {
|
357 |
+
"f1_score": 0.5221,
|
358 |
+
"precision": 0.5849,
|
359 |
+
"recall": 0.4714,
|
360 |
+
"specificity": 0.9974,
|
361 |
+
"false_positive_rate": 0.0026,
|
362 |
+
"false_negative_rate": 0.5286,
|
363 |
+
"negative_predictive_value": 0.9959,
|
364 |
+
"n_test_samples": 1067
|
365 |
+
},
|
366 |
+
"cis-lmu/glotlid/model.bin": {
|
367 |
+
"f1_score": 0.1235,
|
368 |
+
"precision": 0.2751,
|
369 |
+
"recall": 0.0797,
|
370 |
+
"specificity": 0.9984,
|
371 |
+
"false_positive_rate": 0.0016,
|
372 |
+
"false_negative_rate": 0.9203,
|
373 |
+
"negative_predictive_value": 0.9928,
|
374 |
+
"n_test_samples": 1067
|
375 |
+
},
|
376 |
+
"laurievb/OpenLID/model.bin": {
|
377 |
+
"f1_score": 0.0,
|
378 |
+
"precision": 0.0,
|
379 |
+
"recall": 0.0,
|
380 |
+
"specificity": 1.0,
|
381 |
+
"false_positive_rate": 0.0,
|
382 |
+
"false_negative_rate": 1.0,
|
383 |
+
"negative_predictive_value": 0.9922,
|
384 |
+
"n_test_samples": 1067
|
385 |
+
},
|
386 |
+
"atlasia/Sfaya-Moroccan-Darija-vs-All/model_binary_v3_1fpr.bin": {
|
387 |
+
"f1_score": 0.0,
|
388 |
+
"precision": 0.0,
|
389 |
+
"recall": 0.0,
|
390 |
+
"specificity": 1.0,
|
391 |
+
"false_positive_rate": 0.0,
|
392 |
+
"false_negative_rate": 1.0,
|
393 |
+
"negative_predictive_value": 0.9922,
|
394 |
+
"n_test_samples": 1067
|
395 |
+
}
|
396 |
+
}
|
397 |
+
},
|
398 |
+
{
|
399 |
+
"UAE": {
|
400 |
+
"atlasia/Sfaya-Moroccan-Darija-vs-All/model_multi_v3_2fpr.bin": {
|
401 |
+
"f1_score": 0.3452,
|
402 |
+
"precision": 0.4207,
|
403 |
+
"recall": 0.2926,
|
404 |
+
"specificity": 0.9971,
|
405 |
+
"false_positive_rate": 0.0029,
|
406 |
+
"false_negative_rate": 0.7074,
|
407 |
+
"negative_predictive_value": 0.9948,
|
408 |
+
"n_test_samples": 998
|
409 |
+
},
|
410 |
+
"cis-lmu/glotlid/model.bin": {
|
411 |
+
"f1_score": 0.0,
|
412 |
+
"precision": 0.0,
|
413 |
+
"recall": 0.0,
|
414 |
+
"specificity": 1.0,
|
415 |
+
"false_positive_rate": 0.0,
|
416 |
+
"false_negative_rate": 1.0,
|
417 |
+
"negative_predictive_value": 0.9927,
|
418 |
+
"n_test_samples": 998
|
419 |
+
},
|
420 |
+
"laurievb/OpenLID/model.bin": {
|
421 |
+
"f1_score": 0.0,
|
422 |
+
"precision": 0.0,
|
423 |
+
"recall": 0.0,
|
424 |
+
"specificity": 1.0,
|
425 |
+
"false_positive_rate": 0.0,
|
426 |
+
"false_negative_rate": 1.0,
|
427 |
+
"negative_predictive_value": 0.9927,
|
428 |
+
"n_test_samples": 998
|
429 |
+
},
|
430 |
+
"atlasia/Sfaya-Moroccan-Darija-vs-All/model_binary_v3_1fpr.bin": {
|
431 |
+
"f1_score": 0.0,
|
432 |
+
"precision": 0.0,
|
433 |
+
"recall": 0.0,
|
434 |
+
"specificity": 1.0,
|
435 |
+
"false_positive_rate": 0.0,
|
436 |
+
"false_negative_rate": 1.0,
|
437 |
+
"negative_predictive_value": 0.9927,
|
438 |
+
"n_test_samples": 998
|
439 |
+
}
|
440 |
+
}
|
441 |
+
},
|
442 |
+
{
|
443 |
+
"Mauritania": {
|
444 |
+
"atlasia/Sfaya-Moroccan-Darija-vs-All/model_multi_v3_2fpr.bin": {
|
445 |
+
"f1_score": 0.5343,
|
446 |
+
"precision": 0.944,
|
447 |
+
"recall": 0.3726,
|
448 |
+
"specificity": 0.9998,
|
449 |
+
"false_positive_rate": 0.0002,
|
450 |
+
"false_negative_rate": 0.6274,
|
451 |
+
"negative_predictive_value": 0.9957,
|
452 |
+
"n_test_samples": 950
|
453 |
+
},
|
454 |
+
"cis-lmu/glotlid/model.bin": {
|
455 |
+
"f1_score": 0.0,
|
456 |
+
"precision": 0.0,
|
457 |
+
"recall": 0.0,
|
458 |
+
"specificity": 1.0,
|
459 |
+
"false_positive_rate": 0.0,
|
460 |
+
"false_negative_rate": 1.0,
|
461 |
+
"negative_predictive_value": 0.9931,
|
462 |
+
"n_test_samples": 950
|
463 |
+
},
|
464 |
+
"laurievb/OpenLID/model.bin": {
|
465 |
+
"f1_score": 0.0,
|
466 |
+
"precision": 0.0,
|
467 |
+
"recall": 0.0,
|
468 |
+
"specificity": 1.0,
|
469 |
+
"false_positive_rate": 0.0,
|
470 |
+
"false_negative_rate": 1.0,
|
471 |
+
"negative_predictive_value": 0.9931,
|
472 |
+
"n_test_samples": 950
|
473 |
+
},
|
474 |
+
"atlasia/Sfaya-Moroccan-Darija-vs-All/model_binary_v3_1fpr.bin": {
|
475 |
+
"f1_score": 0.0,
|
476 |
+
"precision": 0.0,
|
477 |
+
"recall": 0.0,
|
478 |
+
"specificity": 1.0,
|
479 |
+
"false_positive_rate": 0.0,
|
480 |
+
"false_negative_rate": 1.0,
|
481 |
+
"negative_predictive_value": 0.9931,
|
482 |
+
"n_test_samples": 950
|
483 |
+
}
|
484 |
+
}
|
485 |
+
},
|
486 |
+
{
|
487 |
+
"Yemen": {
|
488 |
+
"atlasia/Sfaya-Moroccan-Darija-vs-All/model_multi_v3_2fpr.bin": {
|
489 |
+
"f1_score": 0.223,
|
490 |
+
"precision": 0.5619,
|
491 |
+
"recall": 0.1391,
|
492 |
+
"specificity": 0.9993,
|
493 |
+
"false_positive_rate": 0.0007,
|
494 |
+
"false_negative_rate": 0.8609,
|
495 |
+
"negative_predictive_value": 0.9943,
|
496 |
+
"n_test_samples": 913
|
497 |
+
},
|
498 |
+
"cis-lmu/glotlid/model.bin": {
|
499 |
+
"f1_score": 0.0,
|
500 |
+
"precision": 0.0,
|
501 |
+
"recall": 0.0,
|
502 |
+
"specificity": 1.0,
|
503 |
+
"false_positive_rate": 0.0,
|
504 |
+
"false_negative_rate": 1.0,
|
505 |
+
"negative_predictive_value": 0.9934,
|
506 |
+
"n_test_samples": 913
|
507 |
+
},
|
508 |
+
"laurievb/OpenLID/model.bin": {
|
509 |
+
"f1_score": 0.0,
|
510 |
+
"precision": 0.0,
|
511 |
+
"recall": 0.0,
|
512 |
+
"specificity": 1.0,
|
513 |
+
"false_positive_rate": 0.0,
|
514 |
+
"false_negative_rate": 1.0,
|
515 |
+
"negative_predictive_value": 0.9934,
|
516 |
+
"n_test_samples": 913
|
517 |
+
},
|
518 |
+
"atlasia/Sfaya-Moroccan-Darija-vs-All/model_binary_v3_1fpr.bin": {
|
519 |
+
"f1_score": 0.0,
|
520 |
+
"precision": 0.0,
|
521 |
+
"recall": 0.0,
|
522 |
+
"specificity": 1.0,
|
523 |
+
"false_positive_rate": 0.0,
|
524 |
+
"false_negative_rate": 1.0,
|
525 |
+
"negative_predictive_value": 0.9934,
|
526 |
+
"n_test_samples": 913
|
527 |
+
}
|
528 |
+
}
|
529 |
+
},
|
530 |
+
{
|
531 |
+
"Syria": {
|
532 |
+
"atlasia/Sfaya-Moroccan-Darija-vs-All/model_multi_v3_2fpr.bin": {
|
533 |
+
"f1_score": 0.1965,
|
534 |
+
"precision": 0.2126,
|
535 |
+
"recall": 0.1827,
|
536 |
+
"specificity": 0.9971,
|
537 |
+
"false_positive_rate": 0.0029,
|
538 |
+
"false_negative_rate": 0.8173,
|
539 |
+
"negative_predictive_value": 0.9965,
|
540 |
+
"n_test_samples": 591
|
541 |
+
},
|
542 |
+
"cis-lmu/glotlid/model.bin": {
|
543 |
+
"f1_score": 0.0,
|
544 |
+
"precision": 0.0,
|
545 |
+
"recall": 0.0,
|
546 |
+
"specificity": 1.0,
|
547 |
+
"false_positive_rate": 0.0,
|
548 |
+
"false_negative_rate": 1.0,
|
549 |
+
"negative_predictive_value": 0.9957,
|
550 |
+
"n_test_samples": 591
|
551 |
+
},
|
552 |
+
"laurievb/OpenLID/model.bin": {
|
553 |
+
"f1_score": 0.0,
|
554 |
+
"precision": 0.0,
|
555 |
+
"recall": 0.0,
|
556 |
+
"specificity": 1.0,
|
557 |
+
"false_positive_rate": 0.0,
|
558 |
+
"false_negative_rate": 1.0,
|
559 |
+
"negative_predictive_value": 0.9957,
|
560 |
+
"n_test_samples": 591
|
561 |
+
},
|
562 |
+
"atlasia/Sfaya-Moroccan-Darija-vs-All/model_binary_v3_1fpr.bin": {
|
563 |
+
"f1_score": 0.0,
|
564 |
+
"precision": 0.0,
|
565 |
+
"recall": 0.0,
|
566 |
+
"specificity": 1.0,
|
567 |
+
"false_positive_rate": 0.0,
|
568 |
+
"false_negative_rate": 1.0,
|
569 |
+
"negative_predictive_value": 0.9957,
|
570 |
+
"n_test_samples": 591
|
571 |
+
}
|
572 |
+
}
|
573 |
+
},
|
574 |
+
{
|
575 |
+
"Lebanon": {
|
576 |
+
"atlasia/Sfaya-Moroccan-Darija-vs-All/model_multi_v3_2fpr.bin": {
|
577 |
+
"f1_score": 0.2699,
|
578 |
+
"precision": 0.2133,
|
579 |
+
"recall": 0.3675,
|
580 |
+
"specificity": 0.9967,
|
581 |
+
"false_positive_rate": 0.0033,
|
582 |
+
"false_negative_rate": 0.6325,
|
583 |
+
"negative_predictive_value": 0.9985,
|
584 |
+
"n_test_samples": 332
|
585 |
+
},
|
586 |
+
"cis-lmu/glotlid/model.bin": {
|
587 |
+
"f1_score": 0.0,
|
588 |
+
"precision": 0.0,
|
589 |
+
"recall": 0.0,
|
590 |
+
"specificity": 1.0,
|
591 |
+
"false_positive_rate": 0.0,
|
592 |
+
"false_negative_rate": 1.0,
|
593 |
+
"negative_predictive_value": 0.9976,
|
594 |
+
"n_test_samples": 332
|
595 |
+
},
|
596 |
+
"laurievb/OpenLID/model.bin": {
|
597 |
+
"f1_score": 0.0,
|
598 |
+
"precision": 0.0,
|
599 |
+
"recall": 0.0,
|
600 |
+
"specificity": 1.0,
|
601 |
+
"false_positive_rate": 0.0,
|
602 |
+
"false_negative_rate": 1.0,
|
603 |
+
"negative_predictive_value": 0.9976,
|
604 |
+
"n_test_samples": 332
|
605 |
+
},
|
606 |
+
"atlasia/Sfaya-Moroccan-Darija-vs-All/model_binary_v3_1fpr.bin": {
|
607 |
+
"f1_score": 0.0,
|
608 |
+
"precision": 0.0,
|
609 |
+
"recall": 0.0,
|
610 |
+
"specificity": 1.0,
|
611 |
+
"false_positive_rate": 0.0,
|
612 |
+
"false_negative_rate": 1.0,
|
613 |
+
"negative_predictive_value": 0.9976,
|
614 |
+
"n_test_samples": 332
|
615 |
+
}
|
616 |
+
}
|
617 |
+
},
|
618 |
+
{
|
619 |
+
"Qatar": {
|
620 |
+
"atlasia/Sfaya-Moroccan-Darija-vs-All/model_multi_v3_2fpr.bin": {
|
621 |
+
"f1_score": 0.3145,
|
622 |
+
"precision": 0.2315,
|
623 |
+
"recall": 0.4905,
|
624 |
+
"specificity": 0.9975,
|
625 |
+
"false_positive_rate": 0.0025,
|
626 |
+
"false_negative_rate": 0.5095,
|
627 |
+
"negative_predictive_value": 0.9992,
|
628 |
+
"n_test_samples": 210
|
629 |
+
},
|
630 |
+
"cis-lmu/glotlid/model.bin": {
|
631 |
+
"f1_score": 0.0,
|
632 |
+
"precision": 0.0,
|
633 |
+
"recall": 0.0,
|
634 |
+
"specificity": 1.0,
|
635 |
+
"false_positive_rate": 0.0,
|
636 |
+
"false_negative_rate": 1.0,
|
637 |
+
"negative_predictive_value": 0.9985,
|
638 |
+
"n_test_samples": 210
|
639 |
+
},
|
640 |
+
"laurievb/OpenLID/model.bin": {
|
641 |
+
"f1_score": 0.0,
|
642 |
+
"precision": 0.0,
|
643 |
+
"recall": 0.0,
|
644 |
+
"specificity": 1.0,
|
645 |
+
"false_positive_rate": 0.0,
|
646 |
+
"false_negative_rate": 1.0,
|
647 |
+
"negative_predictive_value": 0.9985,
|
648 |
+
"n_test_samples": 210
|
649 |
+
},
|
650 |
+
"atlasia/Sfaya-Moroccan-Darija-vs-All/model_binary_v3_1fpr.bin": {
|
651 |
+
"f1_score": 0.0,
|
652 |
+
"precision": 0.0,
|
653 |
+
"recall": 0.0,
|
654 |
+
"specificity": 1.0,
|
655 |
+
"false_positive_rate": 0.0,
|
656 |
+
"false_negative_rate": 1.0,
|
657 |
+
"negative_predictive_value": 0.9985,
|
658 |
+
"n_test_samples": 210
|
659 |
+
}
|
660 |
+
}
|
661 |
+
},
|
662 |
+
{
|
663 |
+
"Iraq": {
|
664 |
+
"atlasia/Sfaya-Moroccan-Darija-vs-All/model_multi_v3_2fpr.bin": {
|
665 |
+
"f1_score": 0.4075,
|
666 |
+
"precision": 0.3884,
|
667 |
+
"recall": 0.4286,
|
668 |
+
"specificity": 0.999,
|
669 |
+
"false_positive_rate": 0.001,
|
670 |
+
"false_negative_rate": 0.5714,
|
671 |
+
"negative_predictive_value": 0.9992,
|
672 |
+
"n_test_samples": 203
|
673 |
+
},
|
674 |
+
"cis-lmu/glotlid/model.bin": {
|
675 |
+
"f1_score": 0.0098,
|
676 |
+
"precision": 1.0,
|
677 |
+
"recall": 0.0049,
|
678 |
+
"specificity": 1.0,
|
679 |
+
"false_positive_rate": 0.0,
|
680 |
+
"false_negative_rate": 0.9951,
|
681 |
+
"negative_predictive_value": 0.9985,
|
682 |
+
"n_test_samples": 203
|
683 |
+
},
|
684 |
+
"laurievb/OpenLID/model.bin": {
|
685 |
+
"f1_score": 0.0,
|
686 |
+
"precision": 0.0,
|
687 |
+
"recall": 0.0,
|
688 |
+
"specificity": 1.0,
|
689 |
+
"false_positive_rate": 0.0,
|
690 |
+
"false_negative_rate": 1.0,
|
691 |
+
"negative_predictive_value": 0.9985,
|
692 |
+
"n_test_samples": 203
|
693 |
+
},
|
694 |
+
"atlasia/Sfaya-Moroccan-Darija-vs-All/model_binary_v3_1fpr.bin": {
|
695 |
+
"f1_score": 0.0,
|
696 |
+
"precision": 0.0,
|
697 |
+
"recall": 0.0,
|
698 |
+
"specificity": 1.0,
|
699 |
+
"false_positive_rate": 0.0,
|
700 |
+
"false_negative_rate": 1.0,
|
701 |
+
"negative_predictive_value": 0.9985,
|
702 |
+
"n_test_samples": 203
|
703 |
+
}
|
704 |
+
}
|
705 |
+
},
|
706 |
+
{
|
707 |
+
"Libya": {
|
708 |
+
"atlasia/Sfaya-Moroccan-Darija-vs-All/model_multi_v3_2fpr.bin": {
|
709 |
+
"f1_score": 0.357,
|
710 |
+
"precision": 0.2621,
|
711 |
+
"recall": 0.5596,
|
712 |
+
"specificity": 0.9978,
|
713 |
+
"false_positive_rate": 0.0022,
|
714 |
+
"false_negative_rate": 0.4404,
|
715 |
+
"negative_predictive_value": 0.9994,
|
716 |
+
"n_test_samples": 193
|
717 |
+
},
|
718 |
+
"cis-lmu/glotlid/model.bin": {
|
719 |
+
"f1_score": 0.0,
|
720 |
+
"precision": 0.0,
|
721 |
+
"recall": 0.0,
|
722 |
+
"specificity": 1.0,
|
723 |
+
"false_positive_rate": 0.0,
|
724 |
+
"false_negative_rate": 1.0,
|
725 |
+
"negative_predictive_value": 0.9986,
|
726 |
+
"n_test_samples": 193
|
727 |
+
},
|
728 |
+
"laurievb/OpenLID/model.bin": {
|
729 |
+
"f1_score": 0.0,
|
730 |
+
"precision": 0.0,
|
731 |
+
"recall": 0.0,
|
732 |
+
"specificity": 1.0,
|
733 |
+
"false_positive_rate": 0.0,
|
734 |
+
"false_negative_rate": 1.0,
|
735 |
+
"negative_predictive_value": 0.9986,
|
736 |
+
"n_test_samples": 193
|
737 |
+
},
|
738 |
+
"atlasia/Sfaya-Moroccan-Darija-vs-All/model_binary_v3_1fpr.bin": {
|
739 |
+
"f1_score": 0.0,
|
740 |
+
"precision": 0.0,
|
741 |
+
"recall": 0.0,
|
742 |
+
"specificity": 1.0,
|
743 |
+
"false_positive_rate": 0.0,
|
744 |
+
"false_negative_rate": 1.0,
|
745 |
+
"negative_predictive_value": 0.9986,
|
746 |
+
"n_test_samples": 193
|
747 |
+
}
|
748 |
+
}
|
749 |
+
},
|
750 |
+
{
|
751 |
+
"Tunisia": {
|
752 |
+
"atlasia/Sfaya-Moroccan-Darija-vs-All/model_multi_v3_2fpr.bin": {
|
753 |
+
"f1_score": 0.1851,
|
754 |
+
"precision": 0.1089,
|
755 |
+
"recall": 0.6158,
|
756 |
+
"specificity": 0.993,
|
757 |
+
"false_positive_rate": 0.007,
|
758 |
+
"false_negative_rate": 0.3842,
|
759 |
+
"negative_predictive_value": 0.9995,
|
760 |
+
"n_test_samples": 190
|
761 |
+
},
|
762 |
+
"cis-lmu/glotlid/model.bin": {
|
763 |
+
"f1_score": 0.1143,
|
764 |
+
"precision": 0.0624,
|
765 |
+
"recall": 0.6737,
|
766 |
+
"specificity": 0.986,
|
767 |
+
"false_positive_rate": 0.014,
|
768 |
+
"false_negative_rate": 0.3263,
|
769 |
+
"negative_predictive_value": 0.9995,
|
770 |
+
"n_test_samples": 190
|
771 |
+
},
|
772 |
+
"laurievb/OpenLID/model.bin": {
|
773 |
+
"f1_score": 0.1045,
|
774 |
+
"precision": 0.0564,
|
775 |
+
"recall": 0.7053,
|
776 |
+
"specificity": 0.9837,
|
777 |
+
"false_positive_rate": 0.0163,
|
778 |
+
"false_negative_rate": 0.2947,
|
779 |
+
"negative_predictive_value": 0.9996,
|
780 |
+
"n_test_samples": 190
|
781 |
+
},
|
782 |
+
"atlasia/Sfaya-Moroccan-Darija-vs-All/model_binary_v3_1fpr.bin": {
|
783 |
+
"f1_score": 0.0,
|
784 |
+
"precision": 0.0,
|
785 |
+
"recall": 0.0,
|
786 |
+
"specificity": 1.0,
|
787 |
+
"false_positive_rate": 0.0,
|
788 |
+
"false_negative_rate": 1.0,
|
789 |
+
"negative_predictive_value": 0.9986,
|
790 |
+
"n_test_samples": 190
|
791 |
+
}
|
792 |
+
}
|
793 |
+
},
|
794 |
+
{
|
795 |
+
"Oman": {
|
796 |
+
"atlasia/Sfaya-Moroccan-Darija-vs-All/model_multi_v3_2fpr.bin": {
|
797 |
+
"f1_score": 0.1969,
|
798 |
+
"precision": 0.1391,
|
799 |
+
"recall": 0.3368,
|
800 |
+
"specificity": 0.9971,
|
801 |
+
"false_positive_rate": 0.0029,
|
802 |
+
"false_negative_rate": 0.6632,
|
803 |
+
"negative_predictive_value": 0.9991,
|
804 |
+
"n_test_samples": 190
|
805 |
+
},
|
806 |
+
"cis-lmu/glotlid/model.bin": {
|
807 |
+
"f1_score": 0.0,
|
808 |
+
"precision": 0.0,
|
809 |
+
"recall": 0.0,
|
810 |
+
"specificity": 1.0,
|
811 |
+
"false_positive_rate": 0.0,
|
812 |
+
"false_negative_rate": 1.0,
|
813 |
+
"negative_predictive_value": 0.9986,
|
814 |
+
"n_test_samples": 190
|
815 |
+
},
|
816 |
+
"laurievb/OpenLID/model.bin": {
|
817 |
+
"f1_score": 0.0,
|
818 |
+
"precision": 0.0,
|
819 |
+
"recall": 0.0,
|
820 |
+
"specificity": 1.0,
|
821 |
+
"false_positive_rate": 0.0,
|
822 |
+
"false_negative_rate": 1.0,
|
823 |
+
"negative_predictive_value": 0.9986,
|
824 |
+
"n_test_samples": 190
|
825 |
+
},
|
826 |
+
"atlasia/Sfaya-Moroccan-Darija-vs-All/model_binary_v3_1fpr.bin": {
|
827 |
+
"f1_score": 0.0,
|
828 |
+
"precision": 0.0,
|
829 |
+
"recall": 0.0,
|
830 |
+
"specificity": 1.0,
|
831 |
+
"false_positive_rate": 0.0,
|
832 |
+
"false_negative_rate": 1.0,
|
833 |
+
"negative_predictive_value": 0.9986,
|
834 |
+
"n_test_samples": 190
|
835 |
+
}
|
836 |
+
}
|
837 |
+
},
|
838 |
+
{
|
839 |
+
"Kuwait": {
|
840 |
+
"atlasia/Sfaya-Moroccan-Darija-vs-All/model_multi_v3_2fpr.bin": {
|
841 |
+
"f1_score": 0.29,
|
842 |
+
"precision": 0.2091,
|
843 |
+
"recall": 0.4728,
|
844 |
+
"specificity": 0.9976,
|
845 |
+
"false_positive_rate": 0.0024,
|
846 |
+
"false_negative_rate": 0.5272,
|
847 |
+
"negative_predictive_value": 0.9993,
|
848 |
+
"n_test_samples": 184
|
849 |
+
},
|
850 |
+
"cis-lmu/glotlid/model.bin": {
|
851 |
+
"f1_score": 0.0,
|
852 |
+
"precision": 0.0,
|
853 |
+
"recall": 0.0,
|
854 |
+
"specificity": 1.0,
|
855 |
+
"false_positive_rate": 0.0,
|
856 |
+
"false_negative_rate": 1.0,
|
857 |
+
"negative_predictive_value": 0.9987,
|
858 |
+
"n_test_samples": 184
|
859 |
+
},
|
860 |
+
"laurievb/OpenLID/model.bin": {
|
861 |
+
"f1_score": 0.0,
|
862 |
+
"precision": 0.0,
|
863 |
+
"recall": 0.0,
|
864 |
+
"specificity": 1.0,
|
865 |
+
"false_positive_rate": 0.0,
|
866 |
+
"false_negative_rate": 1.0,
|
867 |
+
"negative_predictive_value": 0.9987,
|
868 |
+
"n_test_samples": 184
|
869 |
+
},
|
870 |
+
"atlasia/Sfaya-Moroccan-Darija-vs-All/model_binary_v3_1fpr.bin": {
|
871 |
+
"f1_score": 0.0,
|
872 |
+
"precision": 0.0,
|
873 |
+
"recall": 0.0,
|
874 |
+
"specificity": 1.0,
|
875 |
+
"false_positive_rate": 0.0,
|
876 |
+
"false_negative_rate": 1.0,
|
877 |
+
"negative_predictive_value": 0.9987,
|
878 |
+
"n_test_samples": 184
|
879 |
+
}
|
880 |
+
}
|
881 |
+
},
|
882 |
+
{
|
883 |
+
"Bahrain": {
|
884 |
+
"atlasia/Sfaya-Moroccan-Darija-vs-All/model_multi_v3_2fpr.bin": {
|
885 |
+
"f1_score": 0.2045,
|
886 |
+
"precision": 0.2069,
|
887 |
+
"recall": 0.2022,
|
888 |
+
"specificity": 0.999,
|
889 |
+
"false_positive_rate": 0.001,
|
890 |
+
"false_negative_rate": 0.7978,
|
891 |
+
"negative_predictive_value": 0.999,
|
892 |
+
"n_test_samples": 178
|
893 |
+
},
|
894 |
+
"cis-lmu/glotlid/model.bin": {
|
895 |
+
"f1_score": 0.0,
|
896 |
+
"precision": 0.0,
|
897 |
+
"recall": 0.0,
|
898 |
+
"specificity": 1.0,
|
899 |
+
"false_positive_rate": 0.0,
|
900 |
+
"false_negative_rate": 1.0,
|
901 |
+
"negative_predictive_value": 0.9987,
|
902 |
+
"n_test_samples": 178
|
903 |
+
},
|
904 |
+
"laurievb/OpenLID/model.bin": {
|
905 |
+
"f1_score": 0.0,
|
906 |
+
"precision": 0.0,
|
907 |
+
"recall": 0.0,
|
908 |
+
"specificity": 1.0,
|
909 |
+
"false_positive_rate": 0.0,
|
910 |
+
"false_negative_rate": 1.0,
|
911 |
+
"negative_predictive_value": 0.9987,
|
912 |
+
"n_test_samples": 178
|
913 |
+
},
|
914 |
+
"atlasia/Sfaya-Moroccan-Darija-vs-All/model_binary_v3_1fpr.bin": {
|
915 |
+
"f1_score": 0.0,
|
916 |
+
"precision": 0.0,
|
917 |
+
"recall": 0.0,
|
918 |
+
"specificity": 1.0,
|
919 |
+
"false_positive_rate": 0.0,
|
920 |
+
"false_negative_rate": 1.0,
|
921 |
+
"negative_predictive_value": 0.9987,
|
922 |
+
"n_test_samples": 178
|
923 |
+
}
|
924 |
+
}
|
925 |
+
},
|
926 |
+
{
|
927 |
+
"Sudan": {
|
928 |
+
"atlasia/Sfaya-Moroccan-Darija-vs-All/model_multi_v3_2fpr.bin": {
|
929 |
+
"f1_score": 0.395,
|
930 |
+
"precision": 0.3198,
|
931 |
+
"recall": 0.5163,
|
932 |
+
"specificity": 0.9988,
|
933 |
+
"false_positive_rate": 0.0012,
|
934 |
+
"false_negative_rate": 0.4837,
|
935 |
+
"negative_predictive_value": 0.9995,
|
936 |
+
"n_test_samples": 153
|
937 |
+
},
|
938 |
+
"cis-lmu/glotlid/model.bin": {
|
939 |
+
"f1_score": 0.0,
|
940 |
+
"precision": 0.0,
|
941 |
+
"recall": 0.0,
|
942 |
+
"specificity": 1.0,
|
943 |
+
"false_positive_rate": 0.0,
|
944 |
+
"false_negative_rate": 1.0,
|
945 |
+
"negative_predictive_value": 0.9989,
|
946 |
+
"n_test_samples": 153
|
947 |
+
},
|
948 |
+
"laurievb/OpenLID/model.bin": {
|
949 |
+
"f1_score": 0.0,
|
950 |
+
"precision": 0.0,
|
951 |
+
"recall": 0.0,
|
952 |
+
"specificity": 1.0,
|
953 |
+
"false_positive_rate": 0.0,
|
954 |
+
"false_negative_rate": 1.0,
|
955 |
+
"negative_predictive_value": 0.9989,
|
956 |
+
"n_test_samples": 153
|
957 |
+
},
|
958 |
+
"atlasia/Sfaya-Moroccan-Darija-vs-All/model_binary_v3_1fpr.bin": {
|
959 |
+
"f1_score": 0.0,
|
960 |
+
"precision": 0.0,
|
961 |
+
"recall": 0.0,
|
962 |
+
"specificity": 1.0,
|
963 |
+
"false_positive_rate": 0.0,
|
964 |
+
"false_negative_rate": 1.0,
|
965 |
+
"negative_predictive_value": 0.9989,
|
966 |
+
"n_test_samples": 153
|
967 |
+
}
|
968 |
+
}
|
969 |
+
},
|
970 |
+
{
|
971 |
+
"Turkey": {
|
972 |
+
"atlasia/Sfaya-Moroccan-Darija-vs-All/model_multi_v3_2fpr.bin": {
|
973 |
+
"f1_score": 0.0,
|
974 |
+
"precision": 0.0,
|
975 |
+
"recall": 0.0,
|
976 |
+
"specificity": 0.9999,
|
977 |
+
"false_positive_rate": 0.0001,
|
978 |
+
"false_negative_rate": 0.0,
|
979 |
+
"negative_predictive_value": 1.0,
|
980 |
+
"n_test_samples": 0
|
981 |
+
},
|
982 |
+
"cis-lmu/glotlid/model.bin": {
|
983 |
+
"f1_score": 0.0,
|
984 |
+
"precision": 0.0,
|
985 |
+
"recall": 0.0,
|
986 |
+
"specificity": 1.0,
|
987 |
+
"false_positive_rate": 0.0,
|
988 |
+
"false_negative_rate": 0.0,
|
989 |
+
"negative_predictive_value": 1.0,
|
990 |
+
"n_test_samples": 0
|
991 |
+
}
|
992 |
+
}
|
993 |
+
},
|
994 |
+
{
|
995 |
+
"Turkmenistan": {
|
996 |
+
"atlasia/Sfaya-Moroccan-Darija-vs-All/model_multi_v3_2fpr.bin": {
|
997 |
+
"f1_score": 0.0,
|
998 |
+
"precision": 0.0,
|
999 |
+
"recall": 0.0,
|
1000 |
+
"specificity": 1.0,
|
1001 |
+
"false_positive_rate": 0.0,
|
1002 |
+
"false_negative_rate": 0.0,
|
1003 |
+
"negative_predictive_value": 1.0,
|
1004 |
+
"n_test_samples": 0
|
1005 |
+
}
|
1006 |
+
}
|
1007 |
+
},
|
1008 |
+
{
|
1009 |
+
"Uzbekistan": {
|
1010 |
+
"atlasia/Sfaya-Moroccan-Darija-vs-All/model_multi_v3_2fpr.bin": {
|
1011 |
+
"f1_score": 0.0,
|
1012 |
+
"precision": 0.0,
|
1013 |
+
"recall": 0.0,
|
1014 |
+
"specificity": 0.9999,
|
1015 |
+
"false_positive_rate": 0.0001,
|
1016 |
+
"false_negative_rate": 0.0,
|
1017 |
+
"negative_predictive_value": 1.0,
|
1018 |
+
"n_test_samples": 0
|
1019 |
+
}
|
1020 |
+
}
|
1021 |
+
},
|
1022 |
+
{
|
1023 |
+
"Acehnese": {
|
1024 |
+
"atlasia/Sfaya-Moroccan-Darija-vs-All/model_multi_v3_2fpr.bin": {
|
1025 |
+
"f1_score": 0.0,
|
1026 |
+
"precision": 0.0,
|
1027 |
+
"recall": 0.0,
|
1028 |
+
"specificity": 1.0,
|
1029 |
+
"false_positive_rate": 0.0,
|
1030 |
+
"false_negative_rate": 0.0,
|
1031 |
+
"negative_predictive_value": 1.0,
|
1032 |
+
"n_test_samples": 0
|
1033 |
+
},
|
1034 |
+
"laurievb/OpenLID/model.bin": {
|
1035 |
+
"f1_score": 0.0,
|
1036 |
+
"precision": 0.0,
|
1037 |
+
"recall": 0.0,
|
1038 |
+
"specificity": 1.0,
|
1039 |
+
"false_positive_rate": 0.0,
|
1040 |
+
"false_negative_rate": 0.0,
|
1041 |
+
"negative_predictive_value": 1.0,
|
1042 |
+
"n_test_samples": 0
|
1043 |
+
}
|
1044 |
+
}
|
1045 |
+
},
|
1046 |
+
{
|
1047 |
+
"Nigeria": {
|
1048 |
+
"atlasia/Sfaya-Moroccan-Darija-vs-All/model_multi_v3_2fpr.bin": {
|
1049 |
+
"f1_score": 0.0,
|
1050 |
+
"precision": 0.0,
|
1051 |
+
"recall": 0.0,
|
1052 |
+
"specificity": 1.0,
|
1053 |
+
"false_positive_rate": 0.0,
|
1054 |
+
"false_negative_rate": 0.0,
|
1055 |
+
"negative_predictive_value": 1.0,
|
1056 |
+
"n_test_samples": 0
|
1057 |
+
},
|
1058 |
+
"cis-lmu/glotlid/model.bin": {
|
1059 |
+
"f1_score": 0.0,
|
1060 |
+
"precision": 0.0,
|
1061 |
+
"recall": 0.0,
|
1062 |
+
"specificity": 1.0,
|
1063 |
+
"false_positive_rate": 0.0,
|
1064 |
+
"false_negative_rate": 0.0,
|
1065 |
+
"negative_predictive_value": 1.0,
|
1066 |
+
"n_test_samples": 0
|
1067 |
+
},
|
1068 |
+
"laurievb/OpenLID/model.bin": {
|
1069 |
+
"f1_score": 0.0,
|
1070 |
+
"precision": 0.0,
|
1071 |
+
"recall": 0.0,
|
1072 |
+
"specificity": 1.0,
|
1073 |
+
"false_positive_rate": 0.0,
|
1074 |
+
"false_negative_rate": 0.0,
|
1075 |
+
"negative_predictive_value": 1.0,
|
1076 |
+
"n_test_samples": 0
|
1077 |
+
}
|
1078 |
+
}
|
1079 |
+
},
|
1080 |
+
{
|
1081 |
+
"Mesopotamia": {
|
1082 |
+
"atlasia/Sfaya-Moroccan-Darija-vs-All/model_multi_v3_2fpr.bin": {
|
1083 |
+
"f1_score": 0.0,
|
1084 |
+
"precision": 0.0,
|
1085 |
+
"recall": 0.0,
|
1086 |
+
"specificity": 0.9993,
|
1087 |
+
"false_positive_rate": 0.0007,
|
1088 |
+
"false_negative_rate": 0.0,
|
1089 |
+
"negative_predictive_value": 1.0,
|
1090 |
+
"n_test_samples": 0
|
1091 |
+
},
|
1092 |
+
"cis-lmu/glotlid/model.bin": {
|
1093 |
+
"f1_score": 0.0,
|
1094 |
+
"precision": 0.0,
|
1095 |
+
"recall": 0.0,
|
1096 |
+
"specificity": 0.9983,
|
1097 |
+
"false_positive_rate": 0.0017,
|
1098 |
+
"false_negative_rate": 0.0,
|
1099 |
+
"negative_predictive_value": 1.0,
|
1100 |
+
"n_test_samples": 0
|
1101 |
+
},
|
1102 |
+
"laurievb/OpenLID/model.bin": {
|
1103 |
+
"f1_score": 0.0,
|
1104 |
+
"precision": 0.0,
|
1105 |
+
"recall": 0.0,
|
1106 |
+
"specificity": 0.9989,
|
1107 |
+
"false_positive_rate": 0.0011,
|
1108 |
+
"false_negative_rate": 0.0,
|
1109 |
+
"negative_predictive_value": 1.0,
|
1110 |
+
"n_test_samples": 0
|
1111 |
+
}
|
1112 |
+
}
|
1113 |
+
},
|
1114 |
+
{
|
1115 |
+
"Afghanistan": {
|
1116 |
+
"atlasia/Sfaya-Moroccan-Darija-vs-All/model_multi_v3_2fpr.bin": {
|
1117 |
+
"f1_score": 0.0,
|
1118 |
+
"precision": 0.0,
|
1119 |
+
"recall": 0.0,
|
1120 |
+
"specificity": 0.9998,
|
1121 |
+
"false_positive_rate": 0.0002,
|
1122 |
+
"false_negative_rate": 0.0,
|
1123 |
+
"negative_predictive_value": 1.0,
|
1124 |
+
"n_test_samples": 0
|
1125 |
+
},
|
1126 |
+
"cis-lmu/glotlid/model.bin": {
|
1127 |
+
"f1_score": 0.0,
|
1128 |
+
"precision": 0.0,
|
1129 |
+
"recall": 0.0,
|
1130 |
+
"specificity": 0.9999,
|
1131 |
+
"false_positive_rate": 0.0001,
|
1132 |
+
"false_negative_rate": 0.0,
|
1133 |
+
"negative_predictive_value": 1.0,
|
1134 |
+
"n_test_samples": 0
|
1135 |
+
},
|
1136 |
+
"laurievb/OpenLID/model.bin": {
|
1137 |
+
"f1_score": 0.0,
|
1138 |
+
"precision": 0.0,
|
1139 |
+
"recall": 0.0,
|
1140 |
+
"specificity": 0.9995,
|
1141 |
+
"false_positive_rate": 0.0005,
|
1142 |
+
"false_negative_rate": 0.0,
|
1143 |
+
"negative_predictive_value": 1.0,
|
1144 |
+
"n_test_samples": 0
|
1145 |
+
}
|
1146 |
+
}
|
1147 |
+
},
|
1148 |
+
{
|
1149 |
+
"Kurdistan": {
|
1150 |
+
"atlasia/Sfaya-Moroccan-Darija-vs-All/model_multi_v3_2fpr.bin": {
|
1151 |
+
"f1_score": 0.0,
|
1152 |
+
"precision": 0.0,
|
1153 |
+
"recall": 0.0,
|
1154 |
+
"specificity": 0.9997,
|
1155 |
+
"false_positive_rate": 0.0003,
|
1156 |
+
"false_negative_rate": 0.0,
|
1157 |
+
"negative_predictive_value": 1.0,
|
1158 |
+
"n_test_samples": 0
|
1159 |
+
},
|
1160 |
+
"cis-lmu/glotlid/model.bin": {
|
1161 |
+
"f1_score": 0.0,
|
1162 |
+
"precision": 0.0,
|
1163 |
+
"recall": 0.0,
|
1164 |
+
"specificity": 1.0,
|
1165 |
+
"false_positive_rate": 0.0,
|
1166 |
+
"false_negative_rate": 0.0,
|
1167 |
+
"negative_predictive_value": 1.0,
|
1168 |
+
"n_test_samples": 0
|
1169 |
+
},
|
1170 |
+
"laurievb/OpenLID/model.bin": {
|
1171 |
+
"f1_score": 0.0,
|
1172 |
+
"precision": 0.0,
|
1173 |
+
"recall": 0.0,
|
1174 |
+
"specificity": 0.9999,
|
1175 |
+
"false_positive_rate": 0.0001,
|
1176 |
+
"false_negative_rate": 0.0,
|
1177 |
+
"negative_predictive_value": 1.0,
|
1178 |
+
"n_test_samples": 0
|
1179 |
+
}
|
1180 |
+
}
|
1181 |
+
},
|
1182 |
+
{
|
1183 |
+
"Kashmir": {
|
1184 |
+
"atlasia/Sfaya-Moroccan-Darija-vs-All/model_multi_v3_2fpr.bin": {
|
1185 |
+
"f1_score": 0.0,
|
1186 |
+
"precision": 0.0,
|
1187 |
+
"recall": 0.0,
|
1188 |
+
"specificity": 0.9999,
|
1189 |
+
"false_positive_rate": 0.0001,
|
1190 |
+
"false_negative_rate": 0.0,
|
1191 |
+
"negative_predictive_value": 1.0,
|
1192 |
+
"n_test_samples": 0
|
1193 |
+
},
|
1194 |
+
"laurievb/OpenLID/model.bin": {
|
1195 |
+
"f1_score": 0.0,
|
1196 |
+
"precision": 0.0,
|
1197 |
+
"recall": 0.0,
|
1198 |
+
"specificity": 0.9993,
|
1199 |
+
"false_positive_rate": 0.0007,
|
1200 |
+
"false_negative_rate": 0.0,
|
1201 |
+
"negative_predictive_value": 1.0,
|
1202 |
+
"n_test_samples": 0
|
1203 |
+
}
|
1204 |
+
}
|
1205 |
+
},
|
1206 |
+
{
|
1207 |
+
"Iran": {
|
1208 |
+
"atlasia/Sfaya-Moroccan-Darija-vs-All/model_multi_v3_2fpr.bin": {
|
1209 |
+
"f1_score": 0.0,
|
1210 |
+
"precision": 0.0,
|
1211 |
+
"recall": 0.0,
|
1212 |
+
"specificity": 0.9994,
|
1213 |
+
"false_positive_rate": 0.0006,
|
1214 |
+
"false_negative_rate": 0.0,
|
1215 |
+
"negative_predictive_value": 1.0,
|
1216 |
+
"n_test_samples": 0
|
1217 |
+
},
|
1218 |
+
"cis-lmu/glotlid/model.bin": {
|
1219 |
+
"f1_score": 0.0,
|
1220 |
+
"precision": 0.0,
|
1221 |
+
"recall": 0.0,
|
1222 |
+
"specificity": 0.9999,
|
1223 |
+
"false_positive_rate": 0.0001,
|
1224 |
+
"false_negative_rate": 0.0,
|
1225 |
+
"negative_predictive_value": 1.0,
|
1226 |
+
"n_test_samples": 0
|
1227 |
+
}
|
1228 |
+
}
|
1229 |
+
},
|
1230 |
+
{
|
1231 |
+
"Indonesia": {
|
1232 |
+
"atlasia/Sfaya-Moroccan-Darija-vs-All/model_multi_v3_2fpr.bin": {
|
1233 |
+
"f1_score": 0.0,
|
1234 |
+
"precision": 0.0,
|
1235 |
+
"recall": 0.0,
|
1236 |
+
"specificity": 1.0,
|
1237 |
+
"false_positive_rate": 0.0,
|
1238 |
+
"false_negative_rate": 0.0,
|
1239 |
+
"negative_predictive_value": 1.0,
|
1240 |
+
"n_test_samples": 0
|
1241 |
+
},
|
1242 |
+
"cis-lmu/glotlid/model.bin": {
|
1243 |
+
"f1_score": 0.0,
|
1244 |
+
"precision": 0.0,
|
1245 |
+
"recall": 0.0,
|
1246 |
+
"specificity": 1.0,
|
1247 |
+
"false_positive_rate": 0.0,
|
1248 |
+
"false_negative_rate": 0.0,
|
1249 |
+
"negative_predictive_value": 1.0,
|
1250 |
+
"n_test_samples": 0
|
1251 |
+
},
|
1252 |
+
"laurievb/OpenLID/model.bin": {
|
1253 |
+
"f1_score": 0.0,
|
1254 |
+
"precision": 0.0,
|
1255 |
+
"recall": 0.0,
|
1256 |
+
"specificity": 0.9999,
|
1257 |
+
"false_positive_rate": 0.0001,
|
1258 |
+
"false_negative_rate": 0.0,
|
1259 |
+
"negative_predictive_value": 1.0,
|
1260 |
+
"n_test_samples": 0
|
1261 |
+
}
|
1262 |
+
}
|
1263 |
+
},
|
1264 |
+
{
|
1265 |
+
"Guinea": {
|
1266 |
+
"atlasia/Sfaya-Moroccan-Darija-vs-All/model_multi_v3_2fpr.bin": {
|
1267 |
+
"f1_score": 0.0,
|
1268 |
+
"precision": 0.0,
|
1269 |
+
"recall": 0.0,
|
1270 |
+
"specificity": 1.0,
|
1271 |
+
"false_positive_rate": 0.0,
|
1272 |
+
"false_negative_rate": 0.0,
|
1273 |
+
"negative_predictive_value": 1.0,
|
1274 |
+
"n_test_samples": 0
|
1275 |
+
}
|
1276 |
+
}
|
1277 |
+
},
|
1278 |
+
{
|
1279 |
+
"Chad": {
|
1280 |
+
"atlasia/Sfaya-Moroccan-Darija-vs-All/model_multi_v3_2fpr.bin": {
|
1281 |
+
"f1_score": 0.0,
|
1282 |
+
"precision": 0.0,
|
1283 |
+
"recall": 0.0,
|
1284 |
+
"specificity": 1.0,
|
1285 |
+
"false_positive_rate": 0.0,
|
1286 |
+
"false_negative_rate": 0.0,
|
1287 |
+
"negative_predictive_value": 1.0,
|
1288 |
+
"n_test_samples": 0
|
1289 |
+
}
|
1290 |
+
}
|
1291 |
+
},
|
1292 |
+
{
|
1293 |
+
"Azerbaijan": {
|
1294 |
+
"atlasia/Sfaya-Moroccan-Darija-vs-All/model_multi_v3_2fpr.bin": {
|
1295 |
+
"f1_score": 0.0,
|
1296 |
+
"precision": 0.0,
|
1297 |
+
"recall": 0.0,
|
1298 |
+
"specificity": 0.9997,
|
1299 |
+
"false_positive_rate": 0.0003,
|
1300 |
+
"false_negative_rate": 0.0,
|
1301 |
+
"negative_predictive_value": 1.0,
|
1302 |
+
"n_test_samples": 0
|
1303 |
+
},
|
1304 |
+
"cis-lmu/glotlid/model.bin": {
|
1305 |
+
"f1_score": 0.0,
|
1306 |
+
"precision": 0.0,
|
1307 |
+
"recall": 0.0,
|
1308 |
+
"specificity": 0.9999,
|
1309 |
+
"false_positive_rate": 0.0001,
|
1310 |
+
"false_negative_rate": 0.0,
|
1311 |
+
"negative_predictive_value": 1.0,
|
1312 |
+
"n_test_samples": 0
|
1313 |
+
},
|
1314 |
+
"laurievb/OpenLID/model.bin": {
|
1315 |
+
"f1_score": 0.0,
|
1316 |
+
"precision": 0.0,
|
1317 |
+
"recall": 0.0,
|
1318 |
+
"specificity": 1.0,
|
1319 |
+
"false_positive_rate": 0.0,
|
1320 |
+
"false_negative_rate": 0.0,
|
1321 |
+
"negative_predictive_value": 1.0,
|
1322 |
+
"n_test_samples": 0
|
1323 |
+
}
|
1324 |
+
}
|
1325 |
+
},
|
1326 |
+
{
|
1327 |
+
"Malaysia": {
|
1328 |
+
"atlasia/Sfaya-Moroccan-Darija-vs-All/model_multi_v3_2fpr.bin": {
|
1329 |
+
"f1_score": 0.0,
|
1330 |
+
"precision": 0.0,
|
1331 |
+
"recall": 0.0,
|
1332 |
+
"specificity": 1.0,
|
1333 |
+
"false_positive_rate": 0.0,
|
1334 |
+
"false_negative_rate": 0.0,
|
1335 |
+
"negative_predictive_value": 1.0,
|
1336 |
+
"n_test_samples": 0
|
1337 |
+
}
|
1338 |
+
}
|
1339 |
+
},
|
1340 |
+
{
|
1341 |
+
"Uighur (China)": {
|
1342 |
+
"cis-lmu/glotlid/model.bin": {
|
1343 |
+
"f1_score": 0.0,
|
1344 |
+
"precision": 0.0,
|
1345 |
+
"recall": 0.0,
|
1346 |
+
"specificity": 1.0,
|
1347 |
+
"false_positive_rate": 0.0,
|
1348 |
+
"false_negative_rate": 0.0,
|
1349 |
+
"negative_predictive_value": 1.0,
|
1350 |
+
"n_test_samples": 0
|
1351 |
+
},
|
1352 |
+
"laurievb/OpenLID/model.bin": {
|
1353 |
+
"f1_score": 0.0,
|
1354 |
+
"precision": 0.0,
|
1355 |
+
"recall": 0.0,
|
1356 |
+
"specificity": 1.0,
|
1357 |
+
"false_positive_rate": 0.0,
|
1358 |
+
"false_negative_rate": 0.0,
|
1359 |
+
"negative_predictive_value": 1.0,
|
1360 |
+
"n_test_samples": 0
|
1361 |
+
}
|
1362 |
+
}
|
1363 |
+
},
|
1364 |
+
{
|
1365 |
+
"Balochistan": {
|
1366 |
+
"cis-lmu/glotlid/model.bin": {
|
1367 |
+
"f1_score": 0.0,
|
1368 |
+
"precision": 0.0,
|
1369 |
+
"recall": 0.0,
|
1370 |
+
"specificity": 1.0,
|
1371 |
+
"false_positive_rate": 0.0,
|
1372 |
+
"false_negative_rate": 0.0,
|
1373 |
+
"negative_predictive_value": 1.0,
|
1374 |
+
"n_test_samples": 0
|
1375 |
+
}
|
1376 |
+
}
|
1377 |
+
}
|
1378 |
+
]
|
open_arabic_lid_arena.png
ADDED
Git LFS Details
|
utils.py
ADDED
@@ -0,0 +1,488 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import base64
|
2 |
+
from fasttext import load_model
|
3 |
+
from huggingface_hub import hf_hub_download
|
4 |
+
import os
|
5 |
+
import json
|
6 |
+
import pandas as pd
|
7 |
+
from sklearn.metrics import precision_score, recall_score, f1_score, confusion_matrix, balanced_accuracy_score, matthews_corrcoef
|
8 |
+
import numpy as np
|
9 |
+
from datasets import load_dataset
|
10 |
+
import fasttext
|
11 |
+
|
12 |
+
# Constants
|
13 |
+
MODEL_REPO = "atlasia/Sfaya-Moroccan-Darija-vs-All"
|
14 |
+
BIN_FILENAME = "model_multi_v3_2fpr.bin"
|
15 |
+
BINARY_LEADERBOARD_FILE = "darija_leaderboard_binary.json"
|
16 |
+
MULTILINGUAL_LEADERBOARD_FILE = "darija_leaderboard_multilingual.json"
|
17 |
+
DATA_PATH = "atlasia/No-Arabic-Dialect-Left-Behind-Filtered-Balanced"
|
18 |
+
|
19 |
+
target_label = "Morocco"
|
20 |
+
is_binary = False
|
21 |
+
|
22 |
+
metrics = [
|
23 |
+
'f1_score',
|
24 |
+
'precision',
|
25 |
+
'recall',
|
26 |
+
'specificity',
|
27 |
+
'false_positive_rate',
|
28 |
+
'false_negative_rate',
|
29 |
+
'negative_predictive_value',
|
30 |
+
'n_test_samples',
|
31 |
+
]
|
32 |
+
|
33 |
+
default_metrics = [
|
34 |
+
'f1_score',
|
35 |
+
'precision',
|
36 |
+
'recall',
|
37 |
+
'false_positive_rate',
|
38 |
+
'false_negative_rate'
|
39 |
+
]
|
40 |
+
|
41 |
+
language_mapping_dict = {
|
42 |
+
'ace_Arab': 'Acehnese',
|
43 |
+
'acm_Arab': 'Mesopotamia', # 'Gilit Mesopotamian'
|
44 |
+
'aeb_Arab': 'Tunisia',
|
45 |
+
'ajp_Arab': 'Levantine', # 'South Levantine'
|
46 |
+
'apc_Arab': 'Levantine',
|
47 |
+
'arb_Arab': 'MSA',
|
48 |
+
'arq_Arab': 'Algeria',
|
49 |
+
'ars_Arab': 'Saudi', # Najdi is primarily Saudi Arabian
|
50 |
+
'ary_Arab': 'Morocco',
|
51 |
+
'arz_Arab': 'Egypt',
|
52 |
+
'ayp_Arab': 'Mesopotamia', # 'North Mesopotamian'
|
53 |
+
'azb_Arab': 'Azerbaijan', # South Azerbaijani pertains to this region
|
54 |
+
'bcc_Arab': 'Balochistan', # Southern Balochi is from Balochistan
|
55 |
+
'bjn_Arab': 'Indonesia', # Banjar is spoken in Indonesia
|
56 |
+
'brh_Arab': 'Pakistan', # Brahui is spoken in Pakistan
|
57 |
+
'ckb_Arab': 'Kurdistan', # Central Kurdish is mainly in Iraq
|
58 |
+
'fuv_Arab': 'Nigeria', # Hausa States Fulfulde
|
59 |
+
'glk_Arab': 'Iran', # Gilaki is spoken in Iran
|
60 |
+
'hac_Arab': 'Iran', # Gurani is also primarily spoken in Iran
|
61 |
+
'kas_Arab': 'Kashmir',
|
62 |
+
'knc_Arab': 'Nigeria', # Central Kanuri is in Nigeria
|
63 |
+
'lki_Arab': 'Iran', # Laki is from Iran
|
64 |
+
'lrc_Arab': 'Iran', # Northern Luri is from Iran
|
65 |
+
'min_Arab': 'Indonesia', # Minangkabau is spoken in Indonesia
|
66 |
+
'mzn_Arab': 'Iran', # Mazanderani is spoken in Iran
|
67 |
+
'ota_Arab': 'Turkey', # Ottoman Turkish
|
68 |
+
'pbt_Arab': 'Afghanistan', # Southern Pashto
|
69 |
+
'pnb_Arab': 'Pakistan', # Western Panjabi
|
70 |
+
'sdh_Arab': 'Iraq', # Southern Kurdish
|
71 |
+
'shu_Arab': 'Chad', # Chadian Arabic
|
72 |
+
'skr_Arab': 'Pakistan', # Saraiki
|
73 |
+
'snd_Arab': 'Pakistan', # Sindhi
|
74 |
+
'sus_Arab': 'Guinea', # Susu
|
75 |
+
'tuk_Arab': 'Turkmenistan', # Turkmen
|
76 |
+
'uig_Arab': 'Uighur (China)', # Uighur
|
77 |
+
'urd_Arab': 'Pakistan', # Urdu
|
78 |
+
'uzs_Arab': 'Uzbekistan', # Southern Uzbek
|
79 |
+
'zsm_Arab': 'Malaysia' # Standard Malay
|
80 |
+
}
|
81 |
+
|
82 |
+
def predict_label(text, model, language_mapping_dict, use_mapping=False):
|
83 |
+
# Remove any newline characters and strip whitespace
|
84 |
+
text = str(text).strip().replace('\n', ' ')
|
85 |
+
|
86 |
+
if text == '':
|
87 |
+
return 'Other'
|
88 |
+
|
89 |
+
try:
|
90 |
+
# Get top prediction
|
91 |
+
prediction = model.predict(text, 1)
|
92 |
+
|
93 |
+
# Extract label and remove __label__ prefix
|
94 |
+
label = prediction[0][0].replace('__label__', '')
|
95 |
+
|
96 |
+
# Extract confidence score
|
97 |
+
confidence = prediction[1][0]
|
98 |
+
|
99 |
+
# map label to language using language_mapping_dict
|
100 |
+
if use_mapping:
|
101 |
+
label = language_mapping_dict.get(label, 'Other')
|
102 |
+
return label
|
103 |
+
|
104 |
+
except Exception as e:
|
105 |
+
print(f"Error processing text: {text}")
|
106 |
+
print(f"Exception: {e}")
|
107 |
+
return {'prediction_label': 'Error', 'prediction_confidence': 0.0}
|
108 |
+
|
109 |
+
def compute_classification_metrics(test_dataset):
|
110 |
+
"""
|
111 |
+
Compute comprehensive classification metrics for each class.
|
112 |
+
|
113 |
+
Args:
|
114 |
+
data (pd.DataFrame): DataFrame containing 'dialect' as true labels and 'preds' as predicted labels.
|
115 |
+
|
116 |
+
Returns:
|
117 |
+
pd.DataFrame: DataFrame with detailed metrics for each class.
|
118 |
+
"""
|
119 |
+
# transform the dataset into a DataFrame
|
120 |
+
data = pd.DataFrame(test_dataset)
|
121 |
+
# Extract true labels and predictions
|
122 |
+
true_labels = list(data['dialect'])
|
123 |
+
predicted_labels = list(data['preds'])
|
124 |
+
|
125 |
+
# Handle all unique labels
|
126 |
+
labels = sorted(list(set(true_labels + predicted_labels)))
|
127 |
+
label_to_index = {label: index for index, label in enumerate(labels)}
|
128 |
+
|
129 |
+
# Convert labels to indices
|
130 |
+
true_indices = [label_to_index[label] for label in true_labels]
|
131 |
+
pred_indices = [label_to_index[label] for label in predicted_labels]
|
132 |
+
|
133 |
+
# Compute basic metrics
|
134 |
+
f1_scores = f1_score(true_indices, pred_indices, average=None, labels=range(len(labels)))
|
135 |
+
precision_scores = precision_score(true_indices, pred_indices, average=None, labels=range(len(labels)))
|
136 |
+
recall_scores = recall_score(true_indices, pred_indices, average=None, labels=range(len(labels)))
|
137 |
+
|
138 |
+
# Compute confusion matrix
|
139 |
+
conf_mat = confusion_matrix(true_indices, pred_indices, labels=range(len(labels)))
|
140 |
+
|
141 |
+
# Calculate various metrics per class
|
142 |
+
FP = conf_mat.sum(axis=0) - np.diag(conf_mat) # False Positives
|
143 |
+
FN = conf_mat.sum(axis=1) - np.diag(conf_mat) # False Negatives
|
144 |
+
TP = np.diag(conf_mat) # True Positives
|
145 |
+
TN = conf_mat.sum() - (FP + FN + TP) # True Negatives
|
146 |
+
|
147 |
+
# Calculate sample counts per class
|
148 |
+
samples_per_class = np.bincount(true_indices, minlength=len(labels))
|
149 |
+
|
150 |
+
# Calculate additional metrics
|
151 |
+
with np.errstate(divide='ignore', invalid='ignore'):
|
152 |
+
fp_rate = FP / (FP + TN) # False Positive Rate
|
153 |
+
fn_rate = FN / (FN + TP) # False Negative Rate
|
154 |
+
specificity = TN / (TN + FP) # True Negative Rate
|
155 |
+
npv = TN / (TN + FN) # Negative Predictive Value
|
156 |
+
|
157 |
+
# Replace NaN/inf with 0
|
158 |
+
metrics = [fp_rate, fn_rate, specificity, npv]
|
159 |
+
metrics = [np.nan_to_num(m, nan=0.0, posinf=0.0, neginf=0.0) for m in metrics]
|
160 |
+
fp_rate, fn_rate, specificity, npv = metrics
|
161 |
+
|
162 |
+
# Calculate overall metrics
|
163 |
+
balanced_acc = balanced_accuracy_score(true_indices, pred_indices)
|
164 |
+
mcc = matthews_corrcoef(true_indices, pred_indices)
|
165 |
+
|
166 |
+
# Compile results into a DataFrame
|
167 |
+
result_df = pd.DataFrame({
|
168 |
+
'country': labels,
|
169 |
+
'samples': samples_per_class,
|
170 |
+
'f1_score': f1_scores,
|
171 |
+
'precision': precision_scores,
|
172 |
+
'recall': recall_scores,
|
173 |
+
'specificity': specificity,
|
174 |
+
'false_positive_rate': fp_rate,
|
175 |
+
'false_negative_rate': fn_rate,
|
176 |
+
'true_positives': TP,
|
177 |
+
'false_positives': FP,
|
178 |
+
'true_negatives': TN,
|
179 |
+
'false_negatives': FN,
|
180 |
+
'negative_predictive_value': npv
|
181 |
+
})
|
182 |
+
|
183 |
+
# Sort by number of samples (descending)
|
184 |
+
result_df = result_df.sort_values('samples', ascending=False)
|
185 |
+
|
186 |
+
# Calculate and add summary metrics
|
187 |
+
summary_metrics = {
|
188 |
+
'macro_f1': f1_score(true_indices, pred_indices, average='macro'),
|
189 |
+
'weighted_f1': f1_score(true_indices, pred_indices, average='weighted'),
|
190 |
+
'micro_f1': f1_score(true_indices, pred_indices, average='micro'),
|
191 |
+
'balanced_accuracy': balanced_acc,
|
192 |
+
'matthews_correlation': mcc
|
193 |
+
}
|
194 |
+
|
195 |
+
# Format all numeric columns to 4 decimal places
|
196 |
+
numeric_cols = result_df.select_dtypes(include=[np.number]).columns
|
197 |
+
result_df[numeric_cols] = result_df[numeric_cols].round(4)
|
198 |
+
|
199 |
+
print(f'result_df: {result_df}')
|
200 |
+
|
201 |
+
return result_df, summary_metrics
|
202 |
+
|
203 |
+
def make_binary(dialect, target):
|
204 |
+
if dialect != target:
|
205 |
+
return 'Other'
|
206 |
+
return target
|
207 |
+
|
208 |
+
def run_eval_one_vs_all(model, data_test, TARGET_LANG='Morocco', language_mapping_dict=None, use_mapping=False):
|
209 |
+
|
210 |
+
# Predict labels using the model
|
211 |
+
print(f"[INFO] Running predictions...")
|
212 |
+
data_test['preds'] = data_test['text'].apply(lambda text: predict_label(text, model, language_mapping_dict, use_mapping=use_mapping))
|
213 |
+
|
214 |
+
# map to binary
|
215 |
+
df_test_preds = data_test.copy()
|
216 |
+
df_test_preds.loc[df_test_preds['dialect'] == TARGET_LANG, 'dialect'] = TARGET_LANG
|
217 |
+
df_test_preds.loc[df_test_preds['dialect'] != TARGET_LANG, 'dialect'] = 'Other'
|
218 |
+
|
219 |
+
# compute the fpr per dialect
|
220 |
+
dialect_counts = data_test.groupby('dialect')['dialect'].count().reset_index(name='size')
|
221 |
+
result_df = pd.merge(dialect_counts, data_test, on='dialect')
|
222 |
+
result_df = result_df.groupby(['dialect', 'size', 'preds'])['preds'].count()/result_df.groupby(['dialect', 'size'])['preds'].count()
|
223 |
+
result_df.sort_index(ascending=False, level='size', inplace=True)
|
224 |
+
|
225 |
+
# group by dialect and get the false positive rate
|
226 |
+
out = result_df.copy()
|
227 |
+
out.name = 'false_positive_rate'
|
228 |
+
out = out.reset_index()
|
229 |
+
out = out[out['preds']==TARGET_LANG].drop(columns=['preds', 'size'])
|
230 |
+
|
231 |
+
return out
|
232 |
+
|
233 |
+
def update_darija_binary_leaderboard(result_df, model_name, BINARY_LEADERBOARD_FILE="darija_leaderboard_binary.json"):
|
234 |
+
try:
|
235 |
+
with open(BINARY_LEADERBOARD_FILE, "r") as f:
|
236 |
+
data = json.load(f)
|
237 |
+
except FileNotFoundError:
|
238 |
+
data = []
|
239 |
+
|
240 |
+
# Process the results for each dialect/country
|
241 |
+
for _, row in result_df.iterrows():
|
242 |
+
country = row['dialect']
|
243 |
+
# skip 'Other' class, it is considered as the null space
|
244 |
+
if country == 'Other':
|
245 |
+
continue
|
246 |
+
|
247 |
+
# Find existing country entry or create new one
|
248 |
+
country_entry = next((item for item in data if country in item), None)
|
249 |
+
if country_entry is None:
|
250 |
+
country_entry = {country: {}}
|
251 |
+
data.append(country_entry)
|
252 |
+
|
253 |
+
# Update the model metrics directly under the model name
|
254 |
+
if country not in country_entry:
|
255 |
+
country_entry[country] = {}
|
256 |
+
country_entry[country][model_name] = float(row['false_positive_rate'])
|
257 |
+
|
258 |
+
if country_entry[country].get("n_test_samples") is None:
|
259 |
+
country_entry[country]["n_test_samples"] = int(row['size'])
|
260 |
+
|
261 |
+
# Save updated leaderboard data
|
262 |
+
with open(MULTILINGUAL_LEADERBOARD_FILE, "w") as f:
|
263 |
+
json.dump(data, f, indent=4)
|
264 |
+
|
265 |
+
def handle_evaluation(model_path, model_path_bin, use_mapping=False):
|
266 |
+
# run the evaluation
|
267 |
+
result_df, _ = run_eval(model_path, model_path_bin, language_mapping_dict, use_mapping=use_mapping)
|
268 |
+
# set the model name
|
269 |
+
model_name = model_path + '/' + model_path_bin
|
270 |
+
# update the leaderboard
|
271 |
+
update_darija_multilingual_leaderboard(result_df, model_name, MULTILINGUAL_LEADERBOARD_FILE)
|
272 |
+
# update the leaderboard table
|
273 |
+
df = load_leaderboard_multilingual()
|
274 |
+
|
275 |
+
return create_leaderboard_display_multilingual(df, 'Morocco', default_metrics)
|
276 |
+
|
277 |
+
def run_eval(model_path, model_path_bin, language_mapping_dict=None, use_mapping=False):
|
278 |
+
"""Run evaluation on a dataset and compute metrics.
|
279 |
+
|
280 |
+
Args:
|
281 |
+
model: The model to evaluate.
|
282 |
+
DATA_PATH (str): Path to the dataset.
|
283 |
+
is_binary (bool): If True, evaluate as binary classification.
|
284 |
+
If False, evaluate as multi-class classification.
|
285 |
+
target_label (str): The target class label in binary mode.
|
286 |
+
|
287 |
+
Returns:
|
288 |
+
pd.DataFrame: A DataFrame containing evaluation metrics.
|
289 |
+
"""
|
290 |
+
|
291 |
+
# download model and get the model path
|
292 |
+
model_path = hf_hub_download(repo_id=model_path, filename=model_path_bin, cache_dir=None)
|
293 |
+
|
294 |
+
# Load the trained model
|
295 |
+
print(f"[INFO] Loading model from Path: {model_path}, using version {model_path_bin}...")
|
296 |
+
model = fasttext.load_model(model_path)
|
297 |
+
|
298 |
+
# Load the evaluation dataset
|
299 |
+
print(f"[INFO] Loading evaluation dataset from Path: atlasia/No-Arabic-Dialect-Left-Behind-Filtered-Balanced...")
|
300 |
+
eval_dataset = load_dataset("atlasia/No-Arabic-Dialect-Left-Behind-Filtered-Balanced", split='test')
|
301 |
+
|
302 |
+
# Transform to pandas DataFrame
|
303 |
+
print(f"[INFO] Converting evaluation dataset to Pandas DataFrame...")
|
304 |
+
df_eval = pd.DataFrame(eval_dataset)
|
305 |
+
|
306 |
+
# Predict labels using the model
|
307 |
+
print(f"[INFO] Running predictions...")
|
308 |
+
df_eval['preds'] = df_eval['text'].apply(lambda text: predict_label(text, model, language_mapping_dict, use_mapping=use_mapping))
|
309 |
+
|
310 |
+
# now drop the columns that are not needed, i.e. 'text'
|
311 |
+
df_eval = df_eval.drop(columns=['text', 'metadata', 'dataset_source'])
|
312 |
+
|
313 |
+
# Compute evaluation metrics
|
314 |
+
print(f"[INFO] Computing metrics...")
|
315 |
+
result_df, _ = compute_classification_metrics(df_eval)
|
316 |
+
|
317 |
+
# update_darija_multilingual_leaderboard(result_df, model_path, MULTILINGUAL_LEADERBOARD_FILE)
|
318 |
+
|
319 |
+
return result_df, df_eval
|
320 |
+
|
321 |
+
def process_results_file(file, uploaded_model_name, base_path_save="./atlasia/submissions/"):
|
322 |
+
try:
|
323 |
+
if file is None:
|
324 |
+
return "Please upload a file."
|
325 |
+
|
326 |
+
# Clean the model name to be safe for file paths
|
327 |
+
uploaded_model_name = uploaded_model_name.strip().replace(" ", "_")
|
328 |
+
print(f"[INFO] uploaded_model_name: {uploaded_model_name}")
|
329 |
+
|
330 |
+
# Create the directory for saving submissions
|
331 |
+
path_saving = os.path.join(base_path_save, uploaded_model_name)
|
332 |
+
os.makedirs(path_saving, exist_ok=True)
|
333 |
+
|
334 |
+
# Define the full path to save the file
|
335 |
+
saved_file_path = os.path.join(path_saving, 'submission.csv')
|
336 |
+
|
337 |
+
# Read the uploaded file as DataFrame
|
338 |
+
print(f"[INFO] Loading results...")
|
339 |
+
df_eval = pd.read_csv(file.name)
|
340 |
+
|
341 |
+
# Save the DataFrame
|
342 |
+
print(f"[INFO] Saving the file locally in: {saved_file_path}")
|
343 |
+
df_eval.to_csv(saved_file_path, index=False)
|
344 |
+
|
345 |
+
except Exception as e:
|
346 |
+
return f"Error processing file: {str(e)}"
|
347 |
+
|
348 |
+
# Compute evaluation metrics
|
349 |
+
print(f"[INFO] Computing metrics...")
|
350 |
+
result_df, _ = compute_classification_metrics(df_eval)
|
351 |
+
|
352 |
+
# Update the leaderboards
|
353 |
+
update_darija_multilingual_leaderboard(result_df, uploaded_model_name, MULTILINGUAL_LEADERBOARD_FILE)
|
354 |
+
|
355 |
+
# result_df_binary = run_eval_one_vs_all(model, data_test, TARGET_LANG='Morocco', language_mapping_dict=None, use_mapping=False)
|
356 |
+
# update_darija_binary_leaderboard(result_df, uploaded_model_name, BINARY_LEADERBOARD_FILE)
|
357 |
+
|
358 |
+
# update the leaderboard table
|
359 |
+
df = load_leaderboard_multilingual()
|
360 |
+
|
361 |
+
return create_leaderboard_display_multilingual(df, 'Morocco', default_metrics)
|
362 |
+
|
363 |
+
def update_darija_multilingual_leaderboard(result_df, model_name, MULTILINGUAL_LEADERBOARD_FILE="darija_leaderboard_multilingual.json"):
|
364 |
+
|
365 |
+
# Load leaderboard data
|
366 |
+
current_dir = os.path.dirname(os.path.abspath(__file__))
|
367 |
+
MULTILINGUAL_LEADERBOARD_FILE = os.path.join(current_dir, MULTILINGUAL_LEADERBOARD_FILE)
|
368 |
+
|
369 |
+
try:
|
370 |
+
with open(MULTILINGUAL_LEADERBOARD_FILE, "r") as f:
|
371 |
+
data = json.load(f)
|
372 |
+
except FileNotFoundError:
|
373 |
+
data = []
|
374 |
+
|
375 |
+
# Process the results for each dialect/country
|
376 |
+
for _, row in result_df.iterrows():
|
377 |
+
country = row['country']
|
378 |
+
# skip 'Other' class, it is considered as the null space
|
379 |
+
if country == 'Other':
|
380 |
+
continue
|
381 |
+
|
382 |
+
# Create metrics dictionary directly
|
383 |
+
metrics = {
|
384 |
+
'f1_score': float(row['f1_score']),
|
385 |
+
'precision': float(row['precision']),
|
386 |
+
'recall': float(row['recall']),
|
387 |
+
'specificity': float(row['specificity']),
|
388 |
+
'false_positive_rate': float(row['false_positive_rate']),
|
389 |
+
'false_negative_rate': float(row['false_negative_rate']),
|
390 |
+
'negative_predictive_value': float(row['negative_predictive_value']),
|
391 |
+
'n_test_samples': int(row['samples'])
|
392 |
+
}
|
393 |
+
|
394 |
+
# Find existing country entry or create new one
|
395 |
+
country_entry = next((item for item in data if country in item), None)
|
396 |
+
if country_entry is None:
|
397 |
+
country_entry = {country: {}}
|
398 |
+
data.append(country_entry)
|
399 |
+
|
400 |
+
# Update the model metrics directly under the model name
|
401 |
+
if country not in country_entry:
|
402 |
+
country_entry[country] = {}
|
403 |
+
country_entry[country][model_name] = metrics
|
404 |
+
|
405 |
+
# Save updated leaderboard data
|
406 |
+
with open(MULTILINGUAL_LEADERBOARD_FILE, "w") as f:
|
407 |
+
json.dump(data, f, indent=4)
|
408 |
+
|
409 |
+
|
410 |
+
def load_leaderboard_multilingual(MULTILINGUAL_LEADERBOARD_FILE="darija_leaderboard_multilingual.json"):
|
411 |
+
current_dir = os.path.dirname(os.path.abspath(__file__))
|
412 |
+
MULTILINGUAL_LEADERBOARD_FILE = os.path.join(current_dir, MULTILINGUAL_LEADERBOARD_FILE)
|
413 |
+
|
414 |
+
with open(MULTILINGUAL_LEADERBOARD_FILE, "r") as f:
|
415 |
+
data = json.load(f)
|
416 |
+
|
417 |
+
# Initialize lists to store the flattened data
|
418 |
+
rows = []
|
419 |
+
|
420 |
+
# Process each country's data
|
421 |
+
for country_data in data:
|
422 |
+
for country, models in country_data.items():
|
423 |
+
for model_name, metrics in models.items():
|
424 |
+
row = {
|
425 |
+
'country': country,
|
426 |
+
'model': model_name,
|
427 |
+
}
|
428 |
+
# Add all metrics to the row
|
429 |
+
row.update(metrics)
|
430 |
+
rows.append(row)
|
431 |
+
|
432 |
+
# Convert to DataFrame
|
433 |
+
df = pd.DataFrame(rows)
|
434 |
+
return df
|
435 |
+
|
436 |
+
def create_leaderboard_display_multilingual(df, selected_country, selected_metrics):
|
437 |
+
# Filter by country if specified
|
438 |
+
if selected_country and selected_country.upper() != 'ALL':
|
439 |
+
print(f"Filtering leaderboard by country: {selected_country}")
|
440 |
+
df = df[df['country'] == selected_country]
|
441 |
+
df = df.drop(columns=['country'])
|
442 |
+
|
443 |
+
# Select only the chosen metrics (plus 'model' column)
|
444 |
+
columns_to_show = ['model'] + [metric for metric in selected_metrics if metric in df.columns]
|
445 |
+
|
446 |
+
else:
|
447 |
+
# Select all metrics (plus 'country' and 'model' columns), if no country is selected or 'All' is selected for ease of comparison
|
448 |
+
columns_to_show = ['model', 'country'] + selected_metrics
|
449 |
+
|
450 |
+
# Sort by first selected metric by default
|
451 |
+
if selected_metrics:
|
452 |
+
df = df.sort_values(by=selected_metrics[0], ascending=False)
|
453 |
+
|
454 |
+
df = df[columns_to_show]
|
455 |
+
|
456 |
+
# Format numeric columns to 4 decimal places
|
457 |
+
numeric_cols = df.select_dtypes(include=['float64']).columns
|
458 |
+
df[numeric_cols] = df[numeric_cols].round(4)
|
459 |
+
|
460 |
+
return df
|
461 |
+
|
462 |
+
def update_leaderboard_multilingual(country, selected_metrics):
|
463 |
+
if not selected_metrics: # If no metrics selected, show all
|
464 |
+
selected_metrics = metrics
|
465 |
+
df = load_leaderboard_multilingual()
|
466 |
+
display_df = create_leaderboard_display_multilingual(df, country, selected_metrics)
|
467 |
+
return display_df
|
468 |
+
|
469 |
+
def encode_image_to_base64(image_path):
|
470 |
+
with open(image_path, "rb") as image_file:
|
471 |
+
encoded_string = base64.b64encode(image_file.read()).decode()
|
472 |
+
return encoded_string
|
473 |
+
|
474 |
+
def create_html_image(image_path):
|
475 |
+
# Get base64 string of image
|
476 |
+
img_base64 = encode_image_to_base64(image_path)
|
477 |
+
|
478 |
+
# Create HTML string with embedded image and centering styles
|
479 |
+
html_string = f"""
|
480 |
+
<div style="display: flex; justify-content: center; align-items: center; width: 100%; text-align: center;">
|
481 |
+
<div style="max-width: 800px; margin: auto;">
|
482 |
+
<img src="data:image/jpeg;base64,{img_base64}"
|
483 |
+
style="max-width: 75%; height: auto; display: block; margin: 0 auto; margin-top: 50px;"
|
484 |
+
alt="Displayed Image">
|
485 |
+
</div>
|
486 |
+
</div>
|
487 |
+
"""
|
488 |
+
return html_string
|