Spaces:
Runtime error
Runtime error
| import argparse | |
| import os | |
| import re | |
| import time | |
| from contextlib import nullcontext | |
| from itertools import islice | |
| from random import randint | |
| import gradio as gr | |
| import numpy as np | |
| import torch | |
| from PIL import Image | |
| from einops import rearrange, repeat | |
| from omegaconf import OmegaConf | |
| from pytorch_lightning import seed_everything | |
| from torch import autocast | |
| from torchvision.utils import make_grid | |
| from tqdm import tqdm, trange | |
| from transformers import logging | |
| from ldmlib.util import instantiate_from_config | |
| from optimUtils import split_weighted_subprompts, logger | |
| logging.set_verbosity_error() | |
| import mimetypes | |
| mimetypes.init() | |
| mimetypes.add_type("application/javascript", ".js") | |
| def chunk(it, size): | |
| it = iter(it) | |
| return iter(lambda: tuple(islice(it, size)), ()) | |
| def load_model_from_config(ckpt, verbose=False): | |
| print(f"Loading model from {ckpt}") | |
| pl_sd = torch.load(ckpt, map_location="cpu") | |
| if "global_step" in pl_sd: | |
| print(f"Global Step: {pl_sd['global_step']}") | |
| sd = pl_sd["state_dict"] | |
| return sd | |
| def load_img(image, h0, w0): | |
| image = image.convert("RGB") | |
| w, h = image.size | |
| print(f"loaded input image of size ({w}, {h})") | |
| if h0 is not None and w0 is not None: | |
| h, w = h0, w0 | |
| w, h = map(lambda x: x - x % 64, (w, h)) # resize to integer multiple of 32 | |
| print(f"New image size ({w}, {h})") | |
| image = image.resize((w, h), resample=Image.LANCZOS) | |
| image = np.array(image).astype(np.float32) / 255.0 | |
| image = image[None].transpose(0, 3, 1, 2) | |
| image = torch.from_numpy(image) | |
| return 2.0 * image - 1.0 | |
| def load_mask(mask, h0, w0, newH, newW, invert=False): | |
| image = mask.convert("RGB") | |
| w, h = image.size | |
| print(f"loaded input mask of size ({w}, {h})") | |
| if h0 is not None and w0 is not None: | |
| h, w = h0, w0 | |
| w, h = map(lambda x: x - x % 64, (w, h)) # resize to integer multiple of 32 | |
| print(f"New mask size ({w}, {h})") | |
| image = image.resize((newW, newH), resample=Image.LANCZOS) | |
| # image = image.resize((64, 64), resample=Image.LANCZOS) | |
| image = np.array(image) | |
| if invert: | |
| print("inverted") | |
| where_0, where_1 = np.where(image == 0), np.where(image == 255) | |
| image[where_0], image[where_1] = 255, 0 | |
| image = image.astype(np.float32) / 255.0 | |
| image = image[None].transpose(0, 3, 1, 2) | |
| image = torch.from_numpy(image) | |
| return image | |
| def generate( | |
| image, | |
| mask_image, | |
| prompt, | |
| strength, | |
| ddim_steps, | |
| n_iter, | |
| batch_size, | |
| Height, | |
| Width, | |
| scale, | |
| ddim_eta, | |
| unet_bs, | |
| device, | |
| seed, | |
| outdir, | |
| img_format, | |
| turbo, | |
| full_precision, | |
| ): | |
| if seed == "": | |
| seed = randint(0, 1000000) | |
| seed = int(seed) | |
| seed_everything(seed) | |
| sampler = "ddim" | |
| # Logging | |
| logger(locals(), log_csv="logs/inpaint_gradio_logs.csv") | |
| init_image = load_img(image['image'], Height, Width).to(device) | |
| model.unet_bs = unet_bs | |
| model.turbo = turbo | |
| model.cdevice = device | |
| modelCS.cond_stage_model.device = device | |
| if device != "cpu" and full_precision == False: | |
| model.half() | |
| modelCS.half() | |
| modelFS.half() | |
| init_image = init_image.half() | |
| # mask.half() | |
| tic = time.time() | |
| os.makedirs(outdir, exist_ok=True) | |
| outpath = outdir | |
| sample_path = os.path.join(outpath, "_".join(re.split(":| ", prompt)))[:150] | |
| os.makedirs(sample_path, exist_ok=True) | |
| base_count = len(os.listdir(sample_path)) | |
| # n_rows = opt.n_rows if opt.n_rows > 0 else batch_size | |
| assert prompt is not None | |
| data = [batch_size * [prompt]] | |
| modelFS.to(device) | |
| init_latent = modelFS.get_first_stage_encoding(modelFS.encode_first_stage(init_image)) # move to latent space | |
| init_latent = repeat(init_latent, "1 ... -> b ...", b=batch_size) | |
| if mask_image is None: | |
| mask = load_mask(image['mask'], Height, Width, init_latent.shape[2], init_latent.shape[3], True).to(device) | |
| else: | |
| image['mask']=mask_image | |
| mask = load_mask(mask_image, Height, Width, init_latent.shape[2], init_latent.shape[3], True).to(device) | |
| mask = mask[0][0].unsqueeze(0).repeat(4, 1, 1).unsqueeze(0) | |
| mask = repeat(mask, '1 ... -> b ...', b=batch_size) | |
| if device != "cpu": | |
| mem = torch.cuda.memory_allocated() / 1e6 | |
| modelFS.to("cpu") | |
| while torch.cuda.memory_allocated() / 1e6 >= mem: | |
| time.sleep(1) | |
| if strength == 1: | |
| print("strength should be less than 1, setting it to 0.999") | |
| strength = 0.999 | |
| assert 0.0 <= strength < 1.0, "can only work with strength in [0.0, 1.0]" | |
| t_enc = int(strength * ddim_steps) | |
| print(f"target t_enc is {t_enc} steps") | |
| if full_precision == False and device != "cpu": | |
| precision_scope = autocast | |
| else: | |
| precision_scope = nullcontext | |
| all_samples = [] | |
| seeds = "" | |
| with torch.no_grad(): | |
| all_samples = list() | |
| for _ in trange(n_iter, desc="Sampling"): | |
| for prompts in tqdm(data, desc="data"): | |
| with precision_scope("cuda"): | |
| modelCS.to(device) | |
| uc = None | |
| if scale != 1.0: | |
| uc = modelCS.get_learned_conditioning(batch_size * [""]) | |
| if isinstance(prompts, tuple): | |
| prompts = list(prompts) | |
| subprompts, weights = split_weighted_subprompts(prompts[0]) | |
| if len(subprompts) > 1: | |
| c = torch.zeros_like(uc) | |
| totalWeight = sum(weights) | |
| # normalize each "sub prompt" and add it | |
| for i in range(len(subprompts)): | |
| weight = weights[i] | |
| # if not skip_normalize: | |
| weight = weight / totalWeight | |
| c = torch.add(c, modelCS.get_learned_conditioning(subprompts[i]), alpha=weight) | |
| else: | |
| c = modelCS.get_learned_conditioning(prompts) | |
| if device != "cpu": | |
| mem = torch.cuda.memory_allocated() / 1e6 | |
| modelCS.to("cpu") | |
| while torch.cuda.memory_allocated() / 1e6 >= mem: | |
| time.sleep(1) | |
| # encode (scaled latent) | |
| z_enc = model.stochastic_encode( | |
| init_latent, torch.tensor([t_enc] * batch_size).to(device), | |
| seed, ddim_eta, ddim_steps) | |
| # decode it | |
| samples_ddim = model.sample( | |
| t_enc, | |
| c, | |
| z_enc, | |
| unconditional_guidance_scale=scale, | |
| unconditional_conditioning=uc, | |
| mask=mask, | |
| x_T=init_latent, | |
| sampler=sampler, | |
| ) | |
| modelFS.to(device) | |
| print("saving images") | |
| for i in range(batch_size): | |
| x_samples_ddim = modelFS.decode_first_stage(samples_ddim[i].unsqueeze(0)) | |
| x_sample = torch.clamp((x_samples_ddim + 1.0) / 2.0, min=0.0, max=1.0) | |
| all_samples.append(x_sample.to("cpu")) | |
| x_sample = 255.0 * rearrange(x_sample[0].cpu().numpy(), "c h w -> h w c") | |
| Image.fromarray(x_sample.astype(np.uint8)).save( | |
| os.path.join(sample_path, "seed_" + str(seed) + "_" + f"{base_count:05}.{img_format}") | |
| ) | |
| seeds += str(seed) + "," | |
| seed += 1 | |
| base_count += 1 | |
| if device != "cpu": | |
| mem = torch.cuda.memory_allocated() / 1e6 | |
| modelFS.to("cpu") | |
| while torch.cuda.memory_allocated() / 1e6 >= mem: | |
| time.sleep(1) | |
| del samples_ddim | |
| del x_sample | |
| del x_samples_ddim | |
| print("memory_final = ", torch.cuda.memory_allocated() / 1e6) | |
| toc = time.time() | |
| time_taken = (toc - tic) / 60.0 | |
| grid = torch.cat(all_samples, 0) | |
| grid = make_grid(grid, nrow=n_iter) | |
| grid = 255.0 * rearrange(grid, "c h w -> h w c").cpu().numpy() | |
| txt = ( | |
| "Samples finished in " | |
| + str(round(time_taken, 3)) | |
| + " minutes and exported to \n" | |
| + sample_path | |
| + "\nSeeds used = " | |
| + seeds[:-1] | |
| ) | |
| return Image.fromarray(grid.astype(np.uint8)), image['mask'], txt | |
| if __name__ == '__main__': | |
| parser = argparse.ArgumentParser(description='txt2img using gradio') | |
| parser.add_argument('--config_path', default="optimizedSD/v1-inference.yaml", type=str, help='config path') | |
| parser.add_argument('--ckpt_path', default="models/ldm/stable-diffusion-v1/model.ckpt", type=str, help='ckpt path') | |
| args = parser.parse_args() | |
| config = args.config_path | |
| ckpt = args.ckpt_path | |
| sd = load_model_from_config(f"{ckpt}") | |
| li, lo = [], [] | |
| for key, v_ in sd.items(): | |
| sp = key.split(".") | |
| if (sp[0]) == "model": | |
| if "input_blocks" in sp: | |
| li.append(key) | |
| elif "middle_block" in sp: | |
| li.append(key) | |
| elif "time_embed" in sp: | |
| li.append(key) | |
| else: | |
| lo.append(key) | |
| for key in li: | |
| sd["model1." + key[6:]] = sd.pop(key) | |
| for key in lo: | |
| sd["model2." + key[6:]] = sd.pop(key) | |
| config = OmegaConf.load(f"{config}") | |
| model = instantiate_from_config(config.modelUNet) | |
| _, _ = model.load_state_dict(sd, strict=False) | |
| model.eval() | |
| modelCS = instantiate_from_config(config.modelCondStage) | |
| _, _ = modelCS.load_state_dict(sd, strict=False) | |
| modelCS.eval() | |
| modelFS = instantiate_from_config(config.modelFirstStage) | |
| _, _ = modelFS.load_state_dict(sd, strict=False) | |
| modelFS.eval() | |
| del sd | |
| demo = gr.Interface( | |
| fn=generate, | |
| inputs=[ | |
| gr.Image(tool="sketch", type="pil"), | |
| gr.Image(tool="editor", type="pil"), | |
| "text", | |
| gr.Slider(0, 0.99, value=0.99, step=0.01), | |
| gr.Slider(1, 1000, value=50), | |
| gr.Slider(1, 100, step=1), | |
| gr.Slider(1, 100, step=1), | |
| gr.Slider(64, 4096, value=512, step=64), | |
| gr.Slider(64, 4096, value=512, step=64), | |
| gr.Slider(0, 50, value=7.5, step=0.1), | |
| gr.Slider(0, 1, step=0.01), | |
| gr.Slider(1, 2, value=1, step=1), | |
| gr.Text(value="cuda"), | |
| "text", | |
| gr.Text(value="outputs/inpaint-samples"), | |
| gr.Radio(["png", "jpg"], value='png'), | |
| "checkbox", | |
| "checkbox", | |
| ], | |
| outputs=["image", "image", "text"], | |
| ) | |
| demo.launch() | |