import streamlit as st
import streamlit.components.v1 as components
import openai
import os
import base64
import glob
import io
import json
import mistune
import pytz
import math
import requests
import sys
import time
import re
import textract
import zipfile
import random
from datetime import datetime
from openai import ChatCompletion
from xml.etree import ElementTree as ET
from bs4 import BeautifulSoup
from collections import deque
from audio_recorder_streamlit import audio_recorder
from dotenv import load_dotenv
from PyPDF2 import PdfReader
from langchain.text_splitter import CharacterTextSplitter
from langchain.embeddings import OpenAIEmbeddings
from langchain.vectorstores import FAISS
from langchain.chat_models import ChatOpenAI
from langchain.memory import ConversationBufferMemory
from langchain.chains import ConversationalRetrievalChain
from templates import css, bot_template, user_template
from io import BytesIO
# page config and sidebar declares up front allow all other functions to see global class variables
st.set_page_config(page_title="GPT Streamlit Document Reasoner", layout="wide")
should_save = st.sidebar.checkbox("๐พ Save", value=True)
col1, col2, col3, col4 = st.columns(4)
with col1:
with st.expander("Settings ๐ง ๐พ", expanded=True):
# File type for output, model choice
menu = ["txt", "htm", "xlsx", "csv", "md", "py"]
choice = st.sidebar.selectbox("Output File Type:", menu)
model_choice = st.sidebar.radio("Select Model:", ('gpt-3.5-turbo', 'gpt-3.5-turbo-0301'))
# Read it aloud
def readitaloud(result):
documentHTML5='''
Read It Aloud
๐ Read It Aloud
'''
components.html(documentHTML5, width=800, height=300)
#return result
def generate_filename(prompt, file_type):
central = pytz.timezone('US/Central')
safe_date_time = datetime.now(central).strftime("%m%d_%H%M")
replaced_prompt = prompt.replace(" ", "_").replace("\n", "_")
safe_prompt = "".join(x for x in replaced_prompt if x.isalnum() or x == "_")[:90]
return f"{safe_date_time}_{safe_prompt}.{file_type}"
# Chat and Chat with files
def chat_with_model(prompt, document_section, model_choice='gpt-3.5-turbo'):
model = model_choice
conversation = [{'role': 'system', 'content': 'You are a helpful assistant.'}]
conversation.append({'role': 'user', 'content': prompt})
if len(document_section)>0:
conversation.append({'role': 'assistant', 'content': document_section})
start_time = time.time()
report = []
res_box = st.empty()
collected_chunks = []
collected_messages = []
key = os.getenv('OPENAI_API_KEY')
openai.api_key = key
for chunk in openai.ChatCompletion.create(
model='gpt-3.5-turbo',
messages=conversation,
temperature=0.5,
stream=True
):
collected_chunks.append(chunk) # save the event response
chunk_message = chunk['choices'][0]['delta'] # extract the message
collected_messages.append(chunk_message) # save the message
content=chunk["choices"][0].get("delta",{}).get("content")
try:
report.append(content)
if len(content) > 0:
result = "".join(report).strip()
res_box.markdown(f'*{result}*')
except:
st.write(' ')
full_reply_content = ''.join([m.get('content', '') for m in collected_messages])
st.write("Elapsed time:")
st.write(time.time() - start_time)
readitaloud(full_reply_content)
filename = generate_filename(full_reply_content, choice)
create_file(filename, prompt, full_reply_content, should_save)
return full_reply_content
def chat_with_file_contents(prompt, file_content, model_choice='gpt-3.5-turbo'):
conversation = [{'role': 'system', 'content': 'You are a helpful assistant.'}]
conversation.append({'role': 'user', 'content': prompt})
if len(file_content)>0:
conversation.append({'role': 'assistant', 'content': file_content})
response = openai.ChatCompletion.create(model=model_choice, messages=conversation)
return response['choices'][0]['message']['content']
def link_button_with_emoji(url, title, emoji_summary):
emojis = ["๐", "๐ฅ", "๐ก๏ธ", "๐ฉบ", "๐ฌ", "๐", "๐งช", "๐จโโ๏ธ", "๐ฉโโ๏ธ"]
random_emoji = random.choice(emojis)
st.markdown(f"[{random_emoji} {emoji_summary} - {title}]({url})")
# Define function to add paper buttons and links
def add_paper_buttons_and_links():
col1, col2, col3, col4 = st.columns(4)
with col1:
with st.expander("MemGPT ๐ง ๐พ", expanded=False):
link_button_with_emoji("https://arxiv.org/abs/2310.08560", "MemGPT", "๐ง ๐พ Memory OS")
outline_memgpt = "Memory Hierarchy, Context Paging, Self-directed Memory Updates, Memory Editing, Memory Retrieval, Preprompt Instructions, Semantic Memory, Episodic Memory, Emotional Contextual Understanding"
if st.button("Discuss MemGPT Features"):
chat_with_model("Discuss the key features of MemGPT: " + outline_memgpt, "MemGPT")
with col2:
with st.expander("AutoGen ๐ค๐", expanded=False):
link_button_with_emoji("https://arxiv.org/abs/2308.08155", "AutoGen", "๐ค๐ Multi-Agent LLM")
outline_autogen = "Cooperative Conversations, Combining Capabilities, Complex Task Solving, Divergent Thinking, Factuality, Highly Capable Agents, Generic Abstraction, Effective Implementation"
if st.button("Explore AutoGen Multi-Agent LLM"):
chat_with_model("Explore the key features of AutoGen: " + outline_autogen, "AutoGen")
with col3:
with st.expander("Whisper ๐๐งโ๐", expanded=False):
link_button_with_emoji("https://arxiv.org/abs/2212.04356", "Whisper", "๐๐งโ๐ Robust STT")
outline_whisper = "Scaling, Deep Learning Approaches, Weak Supervision, Zero-shot Transfer Learning, Accuracy & Robustness, Pre-training Techniques, Broad Range of Environments, Combining Multiple Datasets"
if st.button("Learn About Whisper STT"):
chat_with_model("Learn about the key features of Whisper: " + outline_whisper, "Whisper")
with col4:
with st.expander("ChatDev ๐ฌ๐ป", expanded=False):
link_button_with_emoji("https://arxiv.org/pdf/2307.07924.pdf", "ChatDev", "๐ฌ๐ป Comm. Agents")
outline_chatdev = "Effective Communication, Comprehensive Software Solutions, Diverse Social Identities, Tailored Codes, Environment Dependencies, User Manuals"
if st.button("Deep Dive into ChatDev"):
chat_with_model("Deep dive into the features of ChatDev: " + outline_chatdev, "ChatDev")
add_paper_buttons_and_links()
# Process user input is a post processor algorithm which runs after document embedding vector DB play of GPT on context of documents..
def process_user_input(user_question):
# Check and initialize 'conversation' in session state if not present
if 'conversation' not in st.session_state:
st.session_state.conversation = {} # Initialize with an empty dictionary or an appropriate default value
response = st.session_state.conversation({'question': user_question})
st.session_state.chat_history = response['chat_history']
for i, message in enumerate(st.session_state.chat_history):
template = user_template if i % 2 == 0 else bot_template
st.write(template.replace("{{MSG}}", message.content), unsafe_allow_html=True)
# Save file output from PDF query results
filename = generate_filename(user_question, 'txt')
create_file(filename, user_question, message.content, should_save)
# New functionality to create expanders and buttons
create_expanders_and_buttons(message.content)
def create_expanders_and_buttons(content):
# Split the content into paragraphs
paragraphs = content.split("\n\n")
for paragraph in paragraphs:
# Identify the header and detail in the paragraph
header, detail = extract_feature_and_detail(paragraph)
if header and detail:
with st.expander(header, expanded=False):
if st.button(f"Explore {header}"):
expanded_outline = "Expand on the feature: " + detail
chat_with_model(expanded_outline, header)
def extract_feature_and_detail(paragraph):
# Use regex to find the header and detail in the paragraph
match = re.match(r"(.*?):(.*)", paragraph)
if match:
header = match.group(1).strip()
detail = match.group(2).strip()
return header, detail
return None, None
def transcribe_audio(file_path, model):
key = os.getenv('OPENAI_API_KEY')
headers = {
"Authorization": f"Bearer {key}",
}
with open(file_path, 'rb') as f:
data = {'file': f}
st.write("Read file {file_path}", file_path)
OPENAI_API_URL = "https://api.openai.com/v1/audio/transcriptions"
response = requests.post(OPENAI_API_URL, headers=headers, files=data, data={'model': model})
if response.status_code == 200:
st.write(response.json())
chatResponse = chat_with_model(response.json().get('text'), '') # *************************************
transcript = response.json().get('text')
#st.write('Responses:')
#st.write(chatResponse)
filename = generate_filename(transcript, 'txt')
#create_file(filename, transcript, chatResponse)
response = chatResponse
user_prompt = transcript
create_file(filename, user_prompt, response, should_save)
return transcript
else:
st.write(response.json())
st.error("Error in API call.")
return None
def save_and_play_audio(audio_recorder):
audio_bytes = audio_recorder()
if audio_bytes:
filename = generate_filename("Recording", "wav")
with open(filename, 'wb') as f:
f.write(audio_bytes)
st.audio(audio_bytes, format="audio/wav")
return filename
return None
# Define a context dictionary to maintain the state between exec calls
context = {}
def create_file(filename, prompt, response, should_save=True):
if not should_save:
return
# Extract base filename without extension
base_filename, ext = os.path.splitext(filename)
# Initialize the combined content
combined_content = ""
# Add Prompt with markdown title and emoji
combined_content += "# Prompt ๐\n" + prompt + "\n\n"
# Add Response with markdown title and emoji
combined_content += "# Response ๐ฌ\n" + response + "\n\n"
# Check for code blocks in the response
resources = re.findall(r"```([\s\S]*?)```", response)
for resource in resources:
# Check if the resource contains Python code
if "python" in resource.lower():
# Remove the 'python' keyword from the code block
cleaned_code = re.sub(r'^\s*python', '', resource, flags=re.IGNORECASE | re.MULTILINE)
# Add Code Results title with markdown and emoji
combined_content += "# Code Results ๐\n"
# Redirect standard output to capture it
original_stdout = sys.stdout
sys.stdout = io.StringIO()
# Execute the cleaned Python code within the context
try:
exec(cleaned_code, context)
code_output = sys.stdout.getvalue()
combined_content += f"```\n{code_output}\n```\n\n"
realtimeEvalResponse = "# Code Results ๐\n" + "```" + code_output + "```\n\n"
st.write(realtimeEvalResponse)
except Exception as e:
combined_content += f"```python\nError executing Python code: {e}\n```\n\n"
# Restore the original standard output
sys.stdout = original_stdout
else:
# Add non-Python resources with markdown and emoji
combined_content += "# Resource ๐ ๏ธ\n" + "```" + resource + "```\n\n"
# Save the combined content to a Markdown file
if should_save:
with open(f"{base_filename}.md", 'w') as file:
file.write(combined_content)
def truncate_document(document, length):
return document[:length]
def divide_document(document, max_length):
return [document[i:i+max_length] for i in range(0, len(document), max_length)]
def get_table_download_link(file_path):
with open(file_path, 'r') as file:
try:
data = file.read()
except:
st.write('')
return file_path
b64 = base64.b64encode(data.encode()).decode()
file_name = os.path.basename(file_path)
ext = os.path.splitext(file_name)[1] # get the file extension
if ext == '.txt':
mime_type = 'text/plain'
elif ext == '.py':
mime_type = 'text/plain'
elif ext == '.xlsx':
mime_type = 'text/plain'
elif ext == '.csv':
mime_type = 'text/plain'
elif ext == '.htm':
mime_type = 'text/html'
elif ext == '.md':
mime_type = 'text/markdown'
else:
mime_type = 'application/octet-stream' # general binary data type
href = f'{file_name}'
return href
def CompressXML(xml_text):
root = ET.fromstring(xml_text)
for elem in list(root.iter()):
if isinstance(elem.tag, str) and 'Comment' in elem.tag:
elem.parent.remove(elem)
return ET.tostring(root, encoding='unicode', method="xml")
def read_file_content(file,max_length):
if file.type == "application/json":
content = json.load(file)
return str(content)
elif file.type == "text/html" or file.type == "text/htm":
content = BeautifulSoup(file, "html.parser")
return content.text
elif file.type == "application/xml" or file.type == "text/xml":
tree = ET.parse(file)
root = tree.getroot()
xml = CompressXML(ET.tostring(root, encoding='unicode'))
return xml
elif file.type == "text/markdown" or file.type == "text/md":
md = mistune.create_markdown()
content = md(file.read().decode())
return content
elif file.type == "text/plain":
return file.getvalue().decode()
else:
return ""
def extract_mime_type(file):
# Check if the input is a string
if isinstance(file, str):
pattern = r"type='(.*?)'"
match = re.search(pattern, file)
if match:
return match.group(1)
else:
raise ValueError(f"Unable to extract MIME type from {file}")
# If it's not a string, assume it's a streamlit.UploadedFile object
elif isinstance(file, streamlit.UploadedFile):
return file.type
else:
raise TypeError("Input should be a string or a streamlit.UploadedFile object")
def extract_file_extension(file):
# get the file name directly from the UploadedFile object
file_name = file.name
pattern = r".*?\.(.*?)$"
match = re.search(pattern, file_name)
if match:
return match.group(1)
else:
raise ValueError(f"Unable to extract file extension from {file_name}")
def pdf2txt(docs):
text = ""
for file in docs:
file_extension = extract_file_extension(file)
# print the file extension
st.write(f"File type extension: {file_extension}")
# read the file according to its extension
try:
if file_extension.lower() in ['py', 'txt', 'html', 'htm', 'xml', 'json']:
text += file.getvalue().decode('utf-8')
elif file_extension.lower() == 'pdf':
from PyPDF2 import PdfReader
pdf = PdfReader(BytesIO(file.getvalue()))
for page in range(len(pdf.pages)):
text += pdf.pages[page].extract_text() # new PyPDF2 syntax
except Exception as e:
st.write(f"Error processing file {file.name}: {e}")
return text
def txt2chunks(text):
text_splitter = CharacterTextSplitter(separator="\n", chunk_size=1000, chunk_overlap=200, length_function=len)
return text_splitter.split_text(text)
def vector_store(text_chunks):
key = os.getenv('OPENAI_API_KEY')
embeddings = OpenAIEmbeddings(openai_api_key=key)
return FAISS.from_texts(texts=text_chunks, embedding=embeddings)
def get_chain(vectorstore):
llm = ChatOpenAI()
memory = ConversationBufferMemory(memory_key='chat_history', return_messages=True)
return ConversationalRetrievalChain.from_llm(llm=llm, retriever=vectorstore.as_retriever(), memory=memory)
def divide_prompt(prompt, max_length):
words = prompt.split()
chunks = []
current_chunk = []
current_length = 0
for word in words:
if len(word) + current_length <= max_length:
current_length += len(word) + 1 # Adding 1 to account for spaces
current_chunk.append(word)
else:
chunks.append(' '.join(current_chunk))
current_chunk = [word]
current_length = len(word)
chunks.append(' '.join(current_chunk)) # Append the final chunk
return chunks
def create_zip_of_files(files):
"""
Create a zip file from a list of files.
"""
zip_name = "all_files.zip"
with zipfile.ZipFile(zip_name, 'w') as zipf:
for file in files:
zipf.write(file)
return zip_name
def get_zip_download_link(zip_file):
"""
Generate a link to download the zip file.
"""
with open(zip_file, 'rb') as f:
data = f.read()
b64 = base64.b64encode(data).decode()
href = f'Download All'
return href
def main():
# Audio, transcribe, GPT:
filename = save_and_play_audio(audio_recorder)
if filename is not None:
try:
transcription = transcribe_audio(filename, "whisper-1")
except:
st.write(' ')
st.sidebar.markdown(get_table_download_link(filename), unsafe_allow_html=True)
filename = None
# prompt interfaces
user_prompt = st.text_area("Enter prompts, instructions & questions:", '', height=100)
# file section interface for prompts against large documents as context
collength, colupload = st.columns([2,3]) # adjust the ratio as needed
with collength:
max_length = st.slider("File section length for large files", min_value=1000, max_value=128000, value=12000, step=1000)
with colupload:
uploaded_file = st.file_uploader("Add a file for context:", type=["pdf", "xml", "json", "xlsx", "csv", "html", "htm", "md", "txt"])
# Document section chat
document_sections = deque()
document_responses = {}
if uploaded_file is not None:
file_content = read_file_content(uploaded_file, max_length)
document_sections.extend(divide_document(file_content, max_length))
if len(document_sections) > 0:
if st.button("๐๏ธ View Upload"):
st.markdown("**Sections of the uploaded file:**")
for i, section in enumerate(list(document_sections)):
st.markdown(f"**Section {i+1}**\n{section}")
st.markdown("**Chat with the model:**")
for i, section in enumerate(list(document_sections)):
if i in document_responses:
st.markdown(f"**Section {i+1}**\n{document_responses[i]}")
else:
if st.button(f"Chat about Section {i+1}"):
st.write('Reasoning with your inputs...')
response = chat_with_model(user_prompt, section, model_choice)
st.write('Response:')
st.write(response)
document_responses[i] = response
filename = generate_filename(f"{user_prompt}_section_{i+1}", choice)
create_file(filename, user_prompt, response, should_save)
st.sidebar.markdown(get_table_download_link(filename), unsafe_allow_html=True)
if st.button('๐ฌ Chat'):
st.write('Reasoning with your inputs...')
# Divide the user_prompt into smaller sections
user_prompt_sections = divide_prompt(user_prompt, max_length)
full_response = ''
for prompt_section in user_prompt_sections:
# Process each section with the model
response = chat_with_model(prompt_section, ''.join(list(document_sections)), model_choice)
full_response += response + '\n' # Combine the responses
response = full_response
st.write('Response:')
st.write(response)
filename = generate_filename(user_prompt, choice)
create_file(filename, user_prompt, response, should_save)
st.sidebar.markdown(get_table_download_link(filename), unsafe_allow_html=True)
all_files = glob.glob("*.*")
all_files = [file for file in all_files if len(os.path.splitext(file)[0]) >= 20] # exclude files with short names
all_files.sort(key=lambda x: (os.path.splitext(x)[1], x), reverse=True) # sort by file type and file name in descending order
# Sidebar buttons Download All and Delete All
colDownloadAll, colDeleteAll = st.sidebar.columns([3,3])
with colDownloadAll:
if st.button("โฌ๏ธ Download All"):
zip_file = create_zip_of_files(all_files)
st.markdown(get_zip_download_link(zip_file), unsafe_allow_html=True)
with colDeleteAll:
if st.button("๐ Delete All"):
for file in all_files:
os.remove(file)
st.experimental_rerun()
# Sidebar of Files Saving History and surfacing files as context of prompts and responses
file_contents=''
next_action=''
for file in all_files:
col1, col2, col3, col4, col5 = st.sidebar.columns([1,6,1,1,1]) # adjust the ratio as needed
with col1:
if st.button("๐", key="md_"+file): # md emoji button
with open(file, 'r') as f:
file_contents = f.read()
next_action='md'
with col2:
st.markdown(get_table_download_link(file), unsafe_allow_html=True)
with col3:
if st.button("๐", key="open_"+file): # open emoji button
with open(file, 'r') as f:
file_contents = f.read()
next_action='open'
with col4:
if st.button("๐", key="read_"+file): # search emoji button
with open(file, 'r') as f:
file_contents = f.read()
next_action='search'
with col5:
if st.button("๐", key="delete_"+file):
os.remove(file)
st.experimental_rerun()
if len(file_contents) > 0:
if next_action=='open':
file_content_area = st.text_area("File Contents:", file_contents, height=500)
if next_action=='md':
st.markdown(file_contents)
if next_action=='search':
file_content_area = st.text_area("File Contents:", file_contents, height=500)
st.write('Reasoning with your inputs...')
response = chat_with_model(user_prompt, file_contents, model_choice)
filename = generate_filename(file_contents, choice)
create_file(filename, user_prompt, response, should_save)
st.experimental_rerun()
if __name__ == "__main__":
main()
load_dotenv()
st.write(css, unsafe_allow_html=True)
st.header("Chat with documents :books:")
user_question = st.text_input("Ask a question about your documents:")
if user_question:
process_user_input(user_question)
with st.sidebar:
st.subheader("Your documents")
docs = st.file_uploader("import documents", accept_multiple_files=True)
with st.spinner("Processing"):
raw = pdf2txt(docs)
if len(raw) > 0:
length = str(len(raw))
text_chunks = txt2chunks(raw)
vectorstore = vector_store(text_chunks)
st.session_state.conversation = get_chain(vectorstore)
st.markdown('# AI Search Index of Length:' + length + ' Created.') # add timing
filename = generate_filename(raw, 'txt')
create_file(filename, raw, '', should_save)