Create app.py.v1
Browse files
app.py.v1
ADDED
@@ -0,0 +1,413 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# app.py
|
2 |
+
import gradio as gr
|
3 |
+
import pandas as pd
|
4 |
+
import requests
|
5 |
+
import io
|
6 |
+
import dask.dataframe as dd
|
7 |
+
from datasets import load_dataset, Image
|
8 |
+
from mlcroissant import Dataset as CroissantDataset
|
9 |
+
from huggingface_hub import get_token
|
10 |
+
import polars as pl
|
11 |
+
import warnings
|
12 |
+
import traceback
|
13 |
+
import json
|
14 |
+
import tempfile # Added for creating temporary files
|
15 |
+
|
16 |
+
# π€« Let's ignore those pesky warnings, shall we?
|
17 |
+
warnings.filterwarnings("ignore")
|
18 |
+
|
19 |
+
# --- βοΈ Configuration & Constants ---
|
20 |
+
DATASET_CONFIG = {
|
21 |
+
"caselaw": {
|
22 |
+
"name": "common-pile/caselaw_access_project", "emoji": "βοΈ",
|
23 |
+
"methods": ["π¨ API (requests)", "π§ Dask", "π₯ Croissant"], "is_public": True,
|
24 |
+
},
|
25 |
+
"prompts": {
|
26 |
+
"name": "fka/awesome-chatgpt-prompts", "emoji": "π€",
|
27 |
+
"methods": ["πΌ Pandas", "π¨ API (requests)", "π₯ Croissant"], "is_public": True,
|
28 |
+
},
|
29 |
+
"finance": {
|
30 |
+
"name": "snorkelai/agent-finance-reasoning", "emoji": "π°",
|
31 |
+
"methods": ["πΌ Pandas", "π§ Polars", "π¨ API (requests)", "π₯ Croissant"], "is_public": False,
|
32 |
+
},
|
33 |
+
"medical": {
|
34 |
+
"name": "FreedomIntelligence/medical-o1-reasoning-SFT", "emoji": "π©Ί",
|
35 |
+
"methods": ["πΌ Pandas", "π§ Polars", "π¨ API (requests)", "π₯ Croissant"], "is_public": False,
|
36 |
+
},
|
37 |
+
"inscene": {
|
38 |
+
"name": "peteromallet/InScene-Dataset", "emoji": "πΌοΈ",
|
39 |
+
"methods": ["π€ Datasets", "πΌ Pandas", "π§ Polars", "π¨ API (requests)", "π₯ Croissant"], "is_public": False,
|
40 |
+
},
|
41 |
+
}
|
42 |
+
|
43 |
+
# --- π§ Helpers & Utility Functions ---
|
44 |
+
|
45 |
+
def get_auth_headers():
|
46 |
+
token = get_token()
|
47 |
+
return {"Authorization": f"Bearer {token}"} if token else {}
|
48 |
+
|
49 |
+
# --- β¨ FIXED: dataframe_to_outputs to use temporary files ---
|
50 |
+
def dataframe_to_outputs(df: pd.DataFrame):
|
51 |
+
"""
|
52 |
+
π Takes a DataFrame and transforms it into various formats.
|
53 |
+
Now uses temporary files for maximum Gradio compatibility.
|
54 |
+
"""
|
55 |
+
if df.empty:
|
56 |
+
return "No results found. π€·", None, None, "No results to copy."
|
57 |
+
|
58 |
+
df_str = df.astype(str)
|
59 |
+
markdown_output = df_str.to_markdown(index=False)
|
60 |
+
|
61 |
+
# Create a temporary CSV file
|
62 |
+
with tempfile.NamedTemporaryFile(mode='w+', delete=False, suffix='.csv', encoding='utf-8') as tmp_csv:
|
63 |
+
df.to_csv(tmp_csv.name, index=False)
|
64 |
+
csv_path = tmp_csv.name
|
65 |
+
|
66 |
+
# Create a temporary XLSX file
|
67 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix='.xlsx') as tmp_xlsx:
|
68 |
+
df.to_excel(tmp_xlsx.name, index=False, engine='openpyxl')
|
69 |
+
xlsx_path = tmp_xlsx.name
|
70 |
+
|
71 |
+
tab_delimited_output = df.to_csv(sep='\t', index=False)
|
72 |
+
|
73 |
+
return (
|
74 |
+
markdown_output,
|
75 |
+
csv_path,
|
76 |
+
xlsx_path,
|
77 |
+
tab_delimited_output,
|
78 |
+
)
|
79 |
+
|
80 |
+
def handle_error(e: Exception, request=None, response=None):
|
81 |
+
"""
|
82 |
+
π± Oh no! An error! This function now creates a detailed debug log.
|
83 |
+
"""
|
84 |
+
error_message = f"π¨ An error occurred: {str(e)}\n"
|
85 |
+
auth_tip = "π For gated datasets, did you log in? Try `huggingface-cli login` in your terminal."
|
86 |
+
full_trace = traceback.format_exc()
|
87 |
+
print(full_trace)
|
88 |
+
if "401" in str(e) or "Gated" in str(e):
|
89 |
+
error_message += auth_tip
|
90 |
+
|
91 |
+
debug_log = f"""--- π DEBUG LOG ---\nTraceback:\n{full_trace}\n\nException Type: {type(e).__name__}\nException Details: {e}\n"""
|
92 |
+
if request:
|
93 |
+
debug_log += f"""\n--- REQUEST ---\nMethod: {request.method}\nURL: {request.url}\nHeaders: {json.dumps(dict(request.headers), indent=2)}\n"""
|
94 |
+
if response is not None:
|
95 |
+
try:
|
96 |
+
response_text = json.dumps(response.json(), indent=2)
|
97 |
+
except json.JSONDecodeError:
|
98 |
+
response_text = response.text
|
99 |
+
debug_log += f"""\n--- RESPONSE ---\nStatus Code: {response.status_code}\nHeaders: {json.dumps(dict(response.headers), indent=2)}\nContent:\n{response_text}\n"""
|
100 |
+
|
101 |
+
return (
|
102 |
+
pd.DataFrame(), gr.Gallery(None), f"### π¨ Error\nAn error occurred. See the debug log below for details.",
|
103 |
+
"", None, None, "", f"```python\n# π¨ Error during execution:\n# {e}\n```",
|
104 |
+
gr.Code(value=debug_log, visible=True)
|
105 |
+
)
|
106 |
+
|
107 |
+
def search_dataframe(df: pd.DataFrame, query: str):
|
108 |
+
if not query:
|
109 |
+
return df.head(100)
|
110 |
+
string_cols = df.select_dtypes(include=['object', 'string']).columns
|
111 |
+
if string_cols.empty:
|
112 |
+
return pd.DataFrame()
|
113 |
+
mask = pd.Series([False] * len(df))
|
114 |
+
for col in string_cols:
|
115 |
+
mask |= df[col].astype(str).str.contains(query, case=False, na=False)
|
116 |
+
return df[mask]
|
117 |
+
|
118 |
+
def generate_code_snippet(dataset_key: str, access_method: str, query: str):
|
119 |
+
"""
|
120 |
+
π» Generate Python code snippet for the current operation
|
121 |
+
"""
|
122 |
+
config = DATASET_CONFIG[dataset_key]
|
123 |
+
repo_id = config["name"]
|
124 |
+
|
125 |
+
if "API" in access_method:
|
126 |
+
return f'''# π API Access for {repo_id}
|
127 |
+
import requests
|
128 |
+
import pandas as pd
|
129 |
+
|
130 |
+
url = "https://datasets-server.huggingface.co/rows"
|
131 |
+
params = {{
|
132 |
+
"dataset": "{repo_id}",
|
133 |
+
"config": "default",
|
134 |
+
"split": "train",
|
135 |
+
"offset": 0,
|
136 |
+
"length": 100
|
137 |
+
}}
|
138 |
+
|
139 |
+
headers = {{"Authorization": "Bearer YOUR_HF_TOKEN"}} if needed else {{}}
|
140 |
+
response = requests.get(url, params=params, headers=headers)
|
141 |
+
|
142 |
+
if response.status_code == 200:
|
143 |
+
data = response.json()
|
144 |
+
rows_data = [item['row'] for item in data['rows']]
|
145 |
+
df = pd.json_normalize(rows_data)
|
146 |
+
|
147 |
+
# Search for: "{query}"
|
148 |
+
if "{query}":
|
149 |
+
string_cols = df.select_dtypes(include=['object', 'string']).columns
|
150 |
+
mask = pd.Series([False] * len(df))
|
151 |
+
for col in string_cols:
|
152 |
+
mask |= df[col].astype(str).str.contains("{query}", case=False, na=False)
|
153 |
+
df = df[mask]
|
154 |
+
|
155 |
+
print(f"Found {{len(df)}} results")
|
156 |
+
print(df.head())
|
157 |
+
else:
|
158 |
+
print(f"Error: {{response.status_code}} - {{response.text}}")
|
159 |
+
'''
|
160 |
+
|
161 |
+
elif "Pandas" in access_method:
|
162 |
+
file_path = "prompts.csv" if repo_id == "fka/awesome-chatgpt-prompts" else "train.parquet"
|
163 |
+
return f'''# πΌ Pandas Access for {repo_id}
|
164 |
+
import pandas as pd
|
165 |
+
|
166 |
+
# You may need: huggingface-cli login
|
167 |
+
df = pd.read_{"csv" if "csv" in file_path else "parquet"}("hf://datasets/{repo_id}/{file_path}")
|
168 |
+
|
169 |
+
# Search for: "{query}"
|
170 |
+
if "{query}":
|
171 |
+
string_cols = df.select_dtypes(include=['object', 'string']).columns
|
172 |
+
mask = pd.Series([False] * len(df))
|
173 |
+
for col in string_cols:
|
174 |
+
mask |= df[col].astype(str).str.contains("{query}", case=False, na=False)
|
175 |
+
df = df[mask]
|
176 |
+
|
177 |
+
print(f"Found {{len(df)}} results")
|
178 |
+
print(df.head())
|
179 |
+
'''
|
180 |
+
|
181 |
+
elif "Datasets" in access_method:
|
182 |
+
return f'''# π€ Datasets Library Access for {repo_id}
|
183 |
+
from datasets import load_dataset
|
184 |
+
import pandas as pd
|
185 |
+
|
186 |
+
# You may need: huggingface-cli login
|
187 |
+
ds = load_dataset("{repo_id}", split="train", streaming=True)
|
188 |
+
data = list(ds.take(1000))
|
189 |
+
df = pd.DataFrame(data)
|
190 |
+
|
191 |
+
# Search for: "{query}"
|
192 |
+
if "{query}":
|
193 |
+
string_cols = df.select_dtypes(include=['object', 'string']).columns
|
194 |
+
mask = pd.Series([False] * len(df))
|
195 |
+
for col in string_cols:
|
196 |
+
mask |= df[col].astype(str).str.contains("{query}", case=False, na=False)
|
197 |
+
df = df[mask]
|
198 |
+
|
199 |
+
print(f"Found {{len(df)}} results")
|
200 |
+
print(df.head())
|
201 |
+
'''
|
202 |
+
|
203 |
+
else:
|
204 |
+
return f"# Code generation for {access_method} not implemented yet"
|
205 |
+
|
206 |
+
# --- π£ Data Fetching & Processing Functions ---
|
207 |
+
def fetch_data(dataset_key: str, access_method: str, query: str):
|
208 |
+
"""
|
209 |
+
π Main mission control. Always yields a tuple of 9 values to match the UI components.
|
210 |
+
"""
|
211 |
+
outputs = [pd.DataFrame(), None, "π Ready.", "", None, None, "", "", gr.Code(visible=False)]
|
212 |
+
req, res = None, None
|
213 |
+
try:
|
214 |
+
config = DATASET_CONFIG[dataset_key]
|
215 |
+
repo_id = config["name"]
|
216 |
+
|
217 |
+
# Generate code snippet
|
218 |
+
code_snippet = generate_code_snippet(dataset_key, access_method, query)
|
219 |
+
outputs[7] = code_snippet
|
220 |
+
|
221 |
+
if "API" in access_method:
|
222 |
+
all_results_df = pd.DataFrame()
|
223 |
+
MAX_PAGES = 5
|
224 |
+
PAGE_SIZE = 100
|
225 |
+
|
226 |
+
if not query:
|
227 |
+
MAX_PAGES = 1
|
228 |
+
outputs[2] = "β³ No search term. Fetching first 100 records as a sample..."
|
229 |
+
yield tuple(outputs)
|
230 |
+
|
231 |
+
for page in range(MAX_PAGES):
|
232 |
+
if query:
|
233 |
+
outputs[2] = f"β³ Searching page {page + 1}..."
|
234 |
+
yield tuple(outputs)
|
235 |
+
|
236 |
+
offset = page * PAGE_SIZE
|
237 |
+
url = f"https://datasets-server.huggingface.co/rows?dataset={repo_id}&config=default&split=train&offset={offset}&length={PAGE_SIZE}"
|
238 |
+
headers = get_auth_headers() if not config["is_public"] else {}
|
239 |
+
|
240 |
+
res = requests.get(url, headers=headers)
|
241 |
+
req = res.request
|
242 |
+
res.raise_for_status()
|
243 |
+
data = res.json()
|
244 |
+
|
245 |
+
if not data.get('rows'):
|
246 |
+
outputs[2] = "π No more data to search."
|
247 |
+
yield tuple(outputs)
|
248 |
+
break
|
249 |
+
|
250 |
+
# --- β¨ FIXED: JSON processing logic ---
|
251 |
+
# Extract the actual data from the 'row' key of each item in the list
|
252 |
+
rows_data = [item['row'] for item in data['rows']]
|
253 |
+
page_df = pd.json_normalize(rows_data)
|
254 |
+
|
255 |
+
found_in_page = search_dataframe(page_df, query)
|
256 |
+
|
257 |
+
if not found_in_page.empty:
|
258 |
+
all_results_df = pd.concat([all_results_df, found_in_page]).reset_index(drop=True)
|
259 |
+
outputs[0] = all_results_df
|
260 |
+
outputs[3], outputs[4], outputs[5], outputs[6] = dataframe_to_outputs(all_results_df)
|
261 |
+
outputs[2] = f"β
Found **{len(all_results_df)}** results so far..."
|
262 |
+
|
263 |
+
if dataset_key == 'inscene':
|
264 |
+
gallery_data = [(row['image'], row.get('text', '')) for _, row in all_results_df.iterrows() if 'image' in row and isinstance(row['image'], Image.Image)]
|
265 |
+
outputs[1] = gr.Gallery(gallery_data, label="πΌοΈ Image Results", height=400)
|
266 |
+
yield tuple(outputs)
|
267 |
+
|
268 |
+
outputs[2] = f"π Search complete. Found a total of **{len(all_results_df)}** results."
|
269 |
+
yield tuple(outputs)
|
270 |
+
return
|
271 |
+
|
272 |
+
outputs[2] = f"β³ Loading data via `{access_method}`..."
|
273 |
+
yield tuple(outputs)
|
274 |
+
|
275 |
+
df = pd.DataFrame()
|
276 |
+
|
277 |
+
if "Pandas" in access_method:
|
278 |
+
file_path = f"hf://datasets/{repo_id}/"
|
279 |
+
if repo_id == "fka/awesome-chatgpt-prompts":
|
280 |
+
file_path += "prompts.csv"
|
281 |
+
df = pd.read_csv(file_path)
|
282 |
+
else:
|
283 |
+
try:
|
284 |
+
df = pd.read_parquet(f"{file_path}data/train-00000-of-00001.parquet")
|
285 |
+
except:
|
286 |
+
try:
|
287 |
+
df = pd.read_parquet(f"{file_path}train.parquet")
|
288 |
+
except:
|
289 |
+
df = pd.read_json(f"{file_path}medical_o1_sft.json")
|
290 |
+
|
291 |
+
elif "Datasets" in access_method:
|
292 |
+
ds = load_dataset(repo_id, split='train', streaming=True).take(1000)
|
293 |
+
df = pd.DataFrame(ds)
|
294 |
+
|
295 |
+
elif "Polars" in access_method:
|
296 |
+
outputs[2] = "β³ Loading with Polars..."
|
297 |
+
yield tuple(outputs)
|
298 |
+
if repo_id == "fka/awesome-chatgpt-prompts":
|
299 |
+
pl_df = pl.read_csv(f"hf://datasets/{repo_id}/prompts.csv")
|
300 |
+
else:
|
301 |
+
pl_df = pl.read_parquet(f"hf://datasets/{repo_id}/train.parquet")
|
302 |
+
df = pl_df.to_pandas()
|
303 |
+
|
304 |
+
elif "Dask" in access_method:
|
305 |
+
outputs[2] = "β³ Loading with Dask..."
|
306 |
+
yield tuple(outputs)
|
307 |
+
dask_df = dd.read_json(f"hf://datasets/{repo_id}/**/*.jsonl.gz")
|
308 |
+
df = dask_df.head(1000) # Convert to pandas for processing
|
309 |
+
|
310 |
+
elif "Croissant" in access_method:
|
311 |
+
outputs[2] = "β³ Loading with Croissant..."
|
312 |
+
yield tuple(outputs)
|
313 |
+
headers = get_auth_headers() if not config["is_public"] else {}
|
314 |
+
croissant_url = f"https://huggingface.co/api/datasets/{repo_id}/croissant"
|
315 |
+
response = requests.get(croissant_url, headers=headers)
|
316 |
+
response.raise_for_status()
|
317 |
+
jsonld = response.json()
|
318 |
+
ds = CroissantDataset(jsonld=jsonld)
|
319 |
+
records = list(ds.records("default"))[:1000] # Take first 1000
|
320 |
+
df = pd.DataFrame(records)
|
321 |
+
|
322 |
+
outputs[2] = "π Searching loaded data..."
|
323 |
+
yield tuple(outputs)
|
324 |
+
|
325 |
+
final_df = search_dataframe(df, query)
|
326 |
+
|
327 |
+
outputs[0] = final_df
|
328 |
+
outputs[3], outputs[4], outputs[5], outputs[6] = dataframe_to_outputs(final_df)
|
329 |
+
outputs[2] = f"π Search complete. Found **{len(final_df)}** results."
|
330 |
+
|
331 |
+
if dataset_key == 'inscene' and not final_df.empty:
|
332 |
+
gallery_data = [(row['image'], row.get('text', '')) for _, row in final_df.iterrows() if 'image' in row and isinstance(row.get('image'), Image.Image)]
|
333 |
+
outputs[1] = gr.Gallery(gallery_data, label="πΌοΈ Image Results", height=400)
|
334 |
+
|
335 |
+
yield tuple(outputs)
|
336 |
+
|
337 |
+
except Exception as e:
|
338 |
+
yield handle_error(e, req, res)
|
339 |
+
|
340 |
+
|
341 |
+
# --- πΌοΈ UI Generation ---
|
342 |
+
def create_dataset_tab(dataset_key: str):
|
343 |
+
config = DATASET_CONFIG[dataset_key]
|
344 |
+
|
345 |
+
with gr.Tab(f"{config['emoji']} {dataset_key.capitalize()}"):
|
346 |
+
gr.Markdown(f"## {config['emoji']} Query the `{config['name']}` Dataset")
|
347 |
+
if not config['is_public']:
|
348 |
+
gr.Markdown("**Note:** This is a gated dataset. Please log in via `huggingface-cli login` in your terminal first.")
|
349 |
+
|
350 |
+
with gr.Row():
|
351 |
+
access_method = gr.Radio(config['methods'], label="π Access Method", value=config['methods'][0])
|
352 |
+
query = gr.Textbox(label="π Search Query", placeholder="Enter any text to search, or leave blank for samples...")
|
353 |
+
|
354 |
+
fetch_button = gr.Button("π Go Fetch!")
|
355 |
+
status_output = gr.Markdown("π Ready to search.")
|
356 |
+
df_output = gr.DataFrame(label="π Results DataFrame", interactive=False, wrap=True)
|
357 |
+
gallery_output = gr.Gallery(visible=(dataset_key == 'inscene'), label="πΌοΈ Image Results")
|
358 |
+
|
359 |
+
with gr.Accordion("π View/Export Full Results", open=False):
|
360 |
+
markdown_output = gr.Markdown(label="π Markdown View")
|
361 |
+
with gr.Row():
|
362 |
+
csv_output = gr.File(label="β¬οΈ Download CSV")
|
363 |
+
xlsx_output = gr.File(label="β¬οΈ Download XLSX")
|
364 |
+
copy_output = gr.Code(label="π Copy-Paste (Tab-Delimited)")
|
365 |
+
|
366 |
+
code_output = gr.Code(label="π» Python Code Snippet", language="python")
|
367 |
+
|
368 |
+
debug_log_output = gr.Code(label="π Debug Log", visible=False)
|
369 |
+
|
370 |
+
fetch_button.click(
|
371 |
+
fn=fetch_data,
|
372 |
+
inputs=[gr.State(dataset_key), access_method, query],
|
373 |
+
outputs=[
|
374 |
+
df_output, gallery_output, status_output, markdown_output,
|
375 |
+
csv_output, xlsx_output, copy_output, code_output,
|
376 |
+
debug_log_output
|
377 |
+
]
|
378 |
+
)
|
379 |
+
|
380 |
+
# --- π Main App ---
|
381 |
+
with gr.Blocks(theme=gr.themes.Soft(), title="Hugging Face Dataset Explorer") as demo:
|
382 |
+
gr.Markdown("# π€ Hugging Face Dataset Explorer")
|
383 |
+
gr.Markdown(
|
384 |
+
"Select a dataset, choose an access method, and type a query. "
|
385 |
+
"If an error occurs, a detailed debug log will appear to help troubleshoot the issue."
|
386 |
+
)
|
387 |
+
|
388 |
+
with gr.Accordion("π§ Quick Start Guide", open=False):
|
389 |
+
gr.Markdown("""
|
390 |
+
### π Quick Start:
|
391 |
+
1. **π€ Prompts Tab**: Try API method, search for "translator" or "linux"
|
392 |
+
2. **βοΈ Caselaw Tab**: Try API method, search for "contract" or "court"
|
393 |
+
3. **π° Finance Tab**: Requires login, try API method first
|
394 |
+
4. **π©Ί Medical Tab**: Requires login, try API method first
|
395 |
+
5. **πΌοΈ InScene Tab**: Requires login, try Datasets method for images
|
396 |
+
|
397 |
+
### π Authentication:
|
398 |
+
For gated datasets, run in terminal: `huggingface-cli login`
|
399 |
+
|
400 |
+
### π οΈ Methods:
|
401 |
+
- **π¨ API**: Fast, reliable, works without login (100 rows max)
|
402 |
+
- **πΌ Pandas**: Full dataset access, requires login for gated datasets
|
403 |
+
- **π€ Datasets**: Good for streaming large datasets
|
404 |
+
- **π§ Polars/Dask**: Alternative fast data processing
|
405 |
+
- **π₯ Croissant**: Metadata-aware loading
|
406 |
+
""")
|
407 |
+
|
408 |
+
with gr.Tabs():
|
409 |
+
for key in DATASET_CONFIG.keys():
|
410 |
+
create_dataset_tab(key)
|
411 |
+
|
412 |
+
if __name__ == "__main__":
|
413 |
+
demo.launch(debug=True)
|