|
|
|
import os |
|
import glob |
|
import base64 |
|
import time |
|
import pandas as pd |
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
from transformers import AutoModelForCausalLM, AutoTokenizer, AutoModel |
|
from diffusers import StableDiffusionPipeline |
|
from torch.utils.data import Dataset, DataLoader |
|
import csv |
|
import fitz |
|
import requests |
|
from PIL import Image |
|
import numpy as np |
|
import logging |
|
import asyncio |
|
import aiofiles |
|
from io import BytesIO |
|
from dataclasses import dataclass |
|
from typing import Optional, Tuple |
|
import zipfile |
|
import math |
|
import random |
|
import re |
|
import gradio as gr |
|
|
|
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s") |
|
logger = logging.getLogger(__name__) |
|
log_records = [] |
|
|
|
class LogCaptureHandler(logging.Handler): |
|
def emit(self, record): |
|
log_records.append(record) |
|
|
|
logger.addHandler(LogCaptureHandler()) |
|
|
|
@dataclass |
|
class ModelConfig: |
|
name: str |
|
base_model: str |
|
size: str |
|
domain: Optional[str] = None |
|
model_type: str = "causal_lm" |
|
@property |
|
def model_path(self): |
|
return f"models/{self.name}" |
|
|
|
@dataclass |
|
class DiffusionConfig: |
|
name: str |
|
base_model: str |
|
size: str |
|
domain: Optional[str] = None |
|
@property |
|
def model_path(self): |
|
return f"diffusion_models/{self.name}" |
|
|
|
class ModelBuilder: |
|
def __init__(self): |
|
self.config = None |
|
self.model = None |
|
self.tokenizer = None |
|
self.jokes = ["Why did the AI go to therapy? Too many layers to unpack! π", "Training complete! Time for a binary coffee break. β"] |
|
def load_model(self, model_path: str, config: Optional[ModelConfig] = None): |
|
self.model = AutoModelForCausalLM.from_pretrained(model_path) |
|
self.tokenizer = AutoTokenizer.from_pretrained(model_path) |
|
if self.tokenizer.pad_token is None: |
|
self.tokenizer.pad_token = self.tokenizer.eos_token |
|
if config: |
|
self.config = config |
|
self.model.to("cuda" if torch.cuda.is_available() else "cpu") |
|
return self |
|
def save_model(self, path: str): |
|
os.makedirs(os.path.dirname(path), exist_ok=True) |
|
self.model.save_pretrained(path) |
|
self.tokenizer.save_pretrained(path) |
|
|
|
class DiffusionBuilder: |
|
def __init__(self): |
|
self.config = None |
|
self.pipeline = None |
|
def load_model(self, model_path: str, config: Optional[DiffusionConfig] = None): |
|
self.pipeline = StableDiffusionPipeline.from_pretrained(model_path, torch_dtype=torch.float32).to("cpu") |
|
if config: |
|
self.config = config |
|
return self |
|
def save_model(self, path: str): |
|
os.makedirs(os.path.dirname(path), exist_ok=True) |
|
self.pipeline.save_pretrained(path) |
|
def generate(self, prompt: str): |
|
return self.pipeline(prompt, num_inference_steps=20).images[0] |
|
|
|
def generate_filename(sequence, ext="png"): |
|
timestamp = time.strftime("%d%m%Y%H%M%S") |
|
return f"{sequence}_{timestamp}.{ext}" |
|
|
|
def pdf_url_to_filename(url): |
|
safe_name = re.sub(r'[<>:"/\\|?*]', '_', url) |
|
return f"{safe_name}.pdf" |
|
|
|
def get_gallery_files(file_types=["png", "pdf"]): |
|
return sorted(list(set([f for ext in file_types for f in glob.glob(f"*.{ext}")]))) |
|
|
|
def get_model_files(model_type="causal_lm"): |
|
path = "models/*" if model_type == "causal_lm" else "diffusion_models/*" |
|
dirs = [d for d in glob.glob(path) if os.path.isdir(d)] |
|
return dirs if dirs else ["None"] |
|
|
|
def download_pdf(url, output_path): |
|
try: |
|
response = requests.get(url, stream=True, timeout=10) |
|
if response.status_code == 200: |
|
with open(output_path, "wb") as f: |
|
for chunk in response.iter_content(chunk_size=8192): |
|
f.write(chunk) |
|
return True |
|
except requests.RequestException as e: |
|
logger.error(f"Failed to download {url}: {e}") |
|
return False |
|
|
|
async def process_pdf_snapshot(pdf_path, mode="single"): |
|
doc = fitz.open(pdf_path) |
|
output_files = [] |
|
if mode == "single": |
|
page = doc[0] |
|
pix = page.get_pixmap(matrix=fitz.Matrix(2.0, 2.0)) |
|
output_file = generate_filename("single", "png") |
|
pix.save(output_file) |
|
output_files.append(output_file) |
|
elif mode == "twopage": |
|
for i in range(min(2, len(doc))): |
|
page = doc[i] |
|
pix = page.get_pixmap(matrix=fitz.Matrix(2.0, 2.0)) |
|
output_file = generate_filename(f"twopage_{i}", "png") |
|
pix.save(output_file) |
|
output_files.append(output_file) |
|
elif mode == "allpages": |
|
for i in range(len(doc)): |
|
page = doc[i] |
|
pix = page.get_pixmap(matrix=fitz.Matrix(2.0, 2.0)) |
|
output_file = generate_filename(f"page_{i}", "png") |
|
pix.save(output_file) |
|
output_files.append(output_file) |
|
doc.close() |
|
return output_files |
|
|
|
async def process_ocr(image, output_file): |
|
tokenizer = AutoTokenizer.from_pretrained("ucaslcl/GOT-OCR2_0", trust_remote_code=True) |
|
model = AutoModel.from_pretrained("ucaslcl/GOT-OCR2_0", trust_remote_code=True, torch_dtype=torch.float32).to("cpu").eval() |
|
temp_file = f"temp_{int(time.time())}.png" |
|
image.save(temp_file) |
|
result = model.chat(tokenizer, temp_file, ocr_type='ocr') |
|
os.remove(temp_file) |
|
async with aiofiles.open(output_file, "w") as f: |
|
await f.write(result) |
|
return result |
|
|
|
async def process_image_gen(prompt, output_file, builder): |
|
if builder and isinstance(builder, DiffusionBuilder) and builder.pipeline: |
|
pipeline = builder.pipeline |
|
else: |
|
pipeline = StableDiffusionPipeline.from_pretrained("OFA-Sys/small-stable-diffusion-v0", torch_dtype=torch.float32).to("cpu") |
|
gen_image = pipeline(prompt, num_inference_steps=20).images[0] |
|
gen_image.save(output_file) |
|
return gen_image |
|
|
|
|
|
def update_gallery(history, asset_checkboxes): |
|
all_files = get_gallery_files() |
|
gallery_images = [] |
|
for file in all_files[:5]: |
|
if file.endswith('.png'): |
|
gallery_images.append(Image.open(file)) |
|
else: |
|
doc = fitz.open(file) |
|
pix = doc[0].get_pixmap(matrix=fitz.Matrix(0.5, 0.5)) |
|
img = Image.frombytes("RGB", [pix.width, pix.height], pix.samples) |
|
gallery_images.append(img) |
|
doc.close() |
|
history.append(f"Gallery updated: {len(all_files)} files") |
|
return gallery_images, history, asset_checkboxes |
|
|
|
def camera_snap(image, cam_id, history, asset_checkboxes, cam_files): |
|
if image is not None: |
|
filename = generate_filename(f"cam{cam_id}") |
|
image.save(filename) |
|
history.append(f"Snapshot from Cam {cam_id}: {filename}") |
|
asset_checkboxes[filename] = True |
|
cam_files[cam_id] = filename |
|
return f"Image saved as {filename}", Image.open(filename), history, asset_checkboxes, cam_files |
|
elif cam_files.get(cam_id) and os.path.exists(cam_files[cam_id]): |
|
return f"Showing previous capture: {cam_files[cam_id]}", Image.open(cam_files[cam_id]), history, asset_checkboxes, cam_files |
|
return "No image captured", None, history, asset_checkboxes, cam_files |
|
|
|
def download_pdfs(urls, history, asset_checkboxes): |
|
urls = urls.strip().split("\n") |
|
downloaded = [] |
|
for url in urls: |
|
if url: |
|
output_path = pdf_url_to_filename(url) |
|
if download_pdf(url, output_path): |
|
downloaded.append(output_path) |
|
history.append(f"Downloaded PDF: {output_path}") |
|
asset_checkboxes[output_path] = True |
|
return f"Downloaded {len(downloaded)} PDFs", history, asset_checkboxes |
|
|
|
def upload_pdfs(pdf_files, history, asset_checkboxes): |
|
uploaded = [] |
|
for pdf_file in pdf_files: |
|
if pdf_file: |
|
output_path = f"uploaded_{int(time.time())}_{pdf_file.name}" |
|
with open(output_path, "wb") as f: |
|
f.write(pdf_file.read()) |
|
uploaded.append(output_path) |
|
history.append(f"Uploaded PDF: {output_path}") |
|
asset_checkboxes[output_path] = True |
|
return f"Uploaded {len(uploaded)} PDFs", history, asset_checkboxes |
|
|
|
def snapshot_pdfs(mode, history, asset_checkboxes): |
|
selected_pdfs = [path for path in get_gallery_files() if path.endswith('.pdf') and asset_checkboxes.get(path, False)] |
|
if not selected_pdfs: |
|
return "No PDFs selected", [], history, asset_checkboxes |
|
snapshots = [] |
|
mode_key = {"Single Page (High-Res)": "single", "Two Pages (High-Res)": "twopage", "All Pages (High-Res)": "allpages"}[mode] |
|
for pdf_path in selected_pdfs: |
|
snap_files = asyncio.run(process_pdf_snapshot(pdf_path, mode_key)) |
|
for snap in snap_files: |
|
snapshots.append(Image.open(snap)) |
|
asset_checkboxes[snap] = True |
|
history.append(f"Snapshot {mode_key}: {snap}") |
|
return f"Generated {len(snapshots)} snapshots", snapshots, history, asset_checkboxes |
|
|
|
def process_ocr_all(history, asset_checkboxes): |
|
all_files = get_gallery_files() |
|
if not all_files: |
|
return "No assets to OCR", history, asset_checkboxes |
|
full_text = "# OCR Results\n\n" |
|
for file in all_files: |
|
if file.endswith('.png'): |
|
image = Image.open(file) |
|
else: |
|
doc = fitz.open(file) |
|
pix = doc[0].get_pixmap(matrix=fitz.Matrix(2.0, 2.0)) |
|
image = Image.frombytes("RGB", [pix.width, pix.height], pix.samples) |
|
doc.close() |
|
output_file = generate_filename(f"ocr_{os.path.basename(file)}", "txt") |
|
result = asyncio.run(process_ocr(image, output_file)) |
|
full_text += f"## {os.path.basename(file)}\n\n{result}\n\n" |
|
history.append(f"OCR Test: {file} -> {output_file}") |
|
md_output_file = f"full_ocr_{int(time.time())}.md" |
|
with open(md_output_file, "w") as f: |
|
f.write(full_text) |
|
return f"Full OCR saved to {md_output_file}", history, asset_checkboxes |
|
|
|
def process_ocr_single(file_path, history, asset_checkboxes): |
|
if not file_path: |
|
return "No file selected", None, "", history, asset_checkboxes |
|
if file_path.endswith('.png'): |
|
image = Image.open(file_path) |
|
else: |
|
doc = fitz.open(file_path) |
|
pix = doc[0].get_pixmap(matrix=fitz.Matrix(2.0, 2.0)) |
|
image = Image.frombytes("RGB", [pix.width, pix.height], pix.samples) |
|
doc.close() |
|
output_file = generate_filename("ocr_output", "txt") |
|
result = asyncio.run(process_ocr(image, output_file)) |
|
history.append(f"OCR Test: {file_path} -> {output_file}") |
|
return f"OCR output saved to {output_file}", image, result, history, asset_checkboxes |
|
|
|
def build_model(model_type, base_model, model_name, domain, history): |
|
config = (ModelConfig if model_type == "Causal LM" else DiffusionConfig)(name=model_name, base_model=base_model, size="small", domain=domain) |
|
builder = ModelBuilder() if model_type == "Causal LM" else DiffusionBuilder() |
|
builder.load_model(base_model, config) |
|
builder.save_model(config.model_path) |
|
history.append(f"Built {model_type} model: {model_name}") |
|
return builder, f"Model saved to {config.model_path}", history |
|
|
|
def image_gen(prompt, file_path, builder, history, asset_checkboxes): |
|
if not file_path: |
|
return "No file selected", None, history, asset_checkboxes |
|
if file_path.endswith('.png'): |
|
image = Image.open(file_path) |
|
else: |
|
doc = fitz.open(file_path) |
|
pix = doc[0].get_pixmap(matrix=fitz.Matrix(2.0, 2.0)) |
|
image = Image.frombytes("RGB", [pix.width, pix.height], pix.samples) |
|
doc.close() |
|
output_file = generate_filename("gen_output", "png") |
|
gen_image = asyncio.run(process_image_gen(prompt, output_file, builder)) |
|
history.append(f"Image Gen Test: {prompt} -> {output_file}") |
|
asset_checkboxes[output_file] = True |
|
return f"Image saved to {output_file}", gen_image, history, asset_checkboxes |
|
|
|
|
|
with gr.Blocks(title="AI Vision & SFT Titans π") as demo: |
|
gr.Markdown("# AI Vision & SFT Titans π") |
|
history = gr.State(value=[]) |
|
builder = gr.State(value=None) |
|
asset_checkboxes = gr.State(value={}) |
|
cam_files = gr.State(value={}) |
|
|
|
with gr.Row(): |
|
with gr.Column(scale=1): |
|
gr.Markdown("## Captured Files π") |
|
gallery_output = gr.Gallery(label="Asset Gallery", columns=2, height="auto") |
|
gr.Button("Update Gallery").click(update_gallery, inputs=[history, asset_checkboxes], outputs=[gallery_output, history, asset_checkboxes]) |
|
gr.Markdown("## History π") |
|
history_output = gr.Textbox(label="History", lines=5, interactive=False) |
|
gr.Markdown("## Action Logs π") |
|
log_output = gr.Textbox(label="Logs", value="\n".join([f"{r.asctime} - {r.levelname} - {r.message}" for r in log_records]), lines=5, interactive=False) |
|
|
|
with gr.Column(scale=3): |
|
with gr.Tabs(): |
|
with gr.TabItem("Camera Snap π·"): |
|
with gr.Row(): |
|
cam0_input = gr.Image(type="pil", label="Camera 0") |
|
cam1_input = gr.Image(type="pil", label="Camera 1") |
|
with gr.Row(): |
|
cam0_output = gr.Textbox(label="Cam 0 Status") |
|
cam1_output = gr.Textbox(label="Cam 1 Status") |
|
with gr.Row(): |
|
cam0_image = gr.Image(label="Cam 0 Preview") |
|
cam1_image = gr.Image(label="Cam 1 Preview") |
|
gr.Button("Capture Cam 0").click(camera_snap, inputs=[cam0_input, gr.State(value=0), history, asset_checkboxes, cam_files], outputs=[cam0_output, cam0_image, history, asset_checkboxes, cam_files]) |
|
gr.Button("Capture Cam 1").click(camera_snap, inputs=[cam1_input, gr.State(value=1), history, asset_checkboxes, cam_files], outputs=[cam1_output, cam1_image, history, asset_checkboxes, cam_files]) |
|
|
|
with gr.TabItem("Download PDFs π₯"): |
|
url_input = gr.Textbox(label="Enter PDF URLs (one per line)", lines=5) |
|
pdf_upload = gr.File(label="Upload PDFs", file_count="multiple", type="binary") |
|
pdf_output = gr.Textbox(label="Status") |
|
snapshot_mode = gr.Dropdown(["Single Page (High-Res)", "Two Pages (High-Res)", "All Pages (High-Res)"], label="Snapshot Mode") |
|
snapshot_output = gr.Textbox(label="Snapshot Status") |
|
snapshot_images = gr.Gallery(label="Snapshots", columns=2, height="auto") |
|
gr.Button("Download URLs").click(download_pdfs, inputs=[url_input, history, asset_checkboxes], outputs=[pdf_output, history, asset_checkboxes]) |
|
gr.Button("Upload PDFs").click(upload_pdfs, inputs=[pdf_upload, history, asset_checkboxes], outputs=[pdf_output, history, asset_checkboxes]) |
|
gr.Button("Snapshot Selected").click(snapshot_pdfs, inputs=[snapshot_mode, history, asset_checkboxes], outputs=[snapshot_output, snapshot_images, history, asset_checkboxes]) |
|
|
|
with gr.TabItem("Test OCR π"): |
|
all_files = gr.Dropdown(choices=get_gallery_files(), label="Select File") |
|
ocr_output = gr.Textbox(label="Status") |
|
ocr_image = gr.Image(label="Input Image") |
|
ocr_result = gr.Textbox(label="OCR Result", lines=5) |
|
gr.Button("OCR All Assets").click(process_ocr_all, inputs=[history, asset_checkboxes], outputs=[ocr_output, history, asset_checkboxes]) |
|
gr.Button("OCR Selected").click(process_ocr_single, inputs=[all_files, history, asset_checkboxes], outputs=[ocr_output, ocr_image, ocr_result, history, asset_checkboxes]) |
|
|
|
with gr.TabItem("Build Titan π±"): |
|
model_type = gr.Dropdown(["Causal LM", "Diffusion"], label="Model Type") |
|
base_model = gr.Dropdown( |
|
choices=["HuggingFaceTB/SmolLM-135M", "Qwen/Qwen1.5-0.5B-Chat"], |
|
label="Base Model", |
|
value="HuggingFaceTB/SmolLM-135M" |
|
) |
|
model_name = gr.Textbox(label="Model Name", value=f"tiny-titan-{int(time.time())}") |
|
domain = gr.Textbox(label="Target Domain", value="general") |
|
build_output = gr.Textbox(label="Status") |
|
gr.Button("Build").click(build_model, inputs=[model_type, base_model, model_name, domain, history], outputs=[builder, build_output, history]) |
|
|
|
with gr.TabItem("Test Image Gen π¨"): |
|
gen_file = gr.Dropdown(choices=get_gallery_files(), label="Select Reference File") |
|
gen_prompt = gr.Textbox(label="Prompt", value="Generate a neon superhero version of this image") |
|
gen_output = gr.Textbox(label="Status") |
|
gen_image = gr.Image(label="Generated Image") |
|
gr.Button("Generate").click(image_gen, inputs=[gen_prompt, gen_file, builder, history, asset_checkboxes], outputs=[gen_output, gen_image, history, asset_checkboxes]) |
|
|
|
|
|
demo.load(lambda h: "\n".join(h[-5:]), inputs=[history], outputs=[history_output]) |
|
|
|
demo.launch() |