Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,244 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python3
|
2 |
+
import os
|
3 |
+
import glob
|
4 |
+
import time
|
5 |
+
import pandas as pd
|
6 |
+
import torch
|
7 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
8 |
+
from diffusers import StableDiffusionPipeline
|
9 |
+
import fitz
|
10 |
+
import requests
|
11 |
+
from PIL import Image
|
12 |
+
import logging
|
13 |
+
import asyncio
|
14 |
+
import aiofiles
|
15 |
+
from io import BytesIO
|
16 |
+
from dataclasses import dataclass
|
17 |
+
from typing import Optional
|
18 |
+
import gradio as gr
|
19 |
+
|
20 |
+
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
|
21 |
+
logger = logging.getLogger(__name__)
|
22 |
+
log_records = []
|
23 |
+
|
24 |
+
class LogCaptureHandler(logging.Handler):
|
25 |
+
def emit(self, record):
|
26 |
+
log_records.append(record)
|
27 |
+
|
28 |
+
logger.addHandler(LogCaptureHandler())
|
29 |
+
|
30 |
+
@dataclass
|
31 |
+
class ModelConfig:
|
32 |
+
name: str
|
33 |
+
base_model: str
|
34 |
+
size: str
|
35 |
+
domain: Optional[str] = None
|
36 |
+
model_type: str = "causal_lm"
|
37 |
+
@property
|
38 |
+
def model_path(self):
|
39 |
+
return f"models/{self.name}"
|
40 |
+
|
41 |
+
@dataclass
|
42 |
+
class DiffusionConfig:
|
43 |
+
name: str
|
44 |
+
base_model: str
|
45 |
+
size: str
|
46 |
+
domain: Optional[str] = None
|
47 |
+
@property
|
48 |
+
def model_path(self):
|
49 |
+
return f"diffusion_models/{self.name}"
|
50 |
+
|
51 |
+
class ModelBuilder:
|
52 |
+
def __init__(self):
|
53 |
+
self.config = None
|
54 |
+
self.model = None
|
55 |
+
self.tokenizer = None
|
56 |
+
def load_model(self, model_path: str, config: Optional[ModelConfig] = None):
|
57 |
+
self.model = AutoModelForCausalLM.from_pretrained(model_path)
|
58 |
+
self.tokenizer = AutoTokenizer.from_pretrained(model_path)
|
59 |
+
if self.tokenizer.pad_token is None:
|
60 |
+
self.tokenizer.pad_token = self.tokenizer.eos_token
|
61 |
+
if config:
|
62 |
+
self.config = config
|
63 |
+
self.model.to("cuda" if torch.cuda.is_available() else "cpu")
|
64 |
+
return self
|
65 |
+
def save_model(self, path: str):
|
66 |
+
os.makedirs(os.path.dirname(path), exist_ok=True)
|
67 |
+
self.model.save_pretrained(path)
|
68 |
+
self.tokenizer.save_pretrained(path)
|
69 |
+
|
70 |
+
class DiffusionBuilder:
|
71 |
+
def __init__(self):
|
72 |
+
self.config = None
|
73 |
+
self.pipeline = None
|
74 |
+
def load_model(self, model_path: str, config: Optional[DiffusionConfig] = None):
|
75 |
+
self.pipeline = StableDiffusionPipeline.from_pretrained(model_path, torch_dtype=torch.float32).to("cpu")
|
76 |
+
if config:
|
77 |
+
self.config = config
|
78 |
+
return self
|
79 |
+
def save_model(self, path: str):
|
80 |
+
os.makedirs(os.path.dirname(path), exist_ok=True)
|
81 |
+
self.pipeline.save_pretrained(path)
|
82 |
+
def generate(self, prompt: str):
|
83 |
+
return self.pipeline(prompt, num_inference_steps=20).images[0]
|
84 |
+
|
85 |
+
def generate_filename(sequence, ext="png"):
|
86 |
+
timestamp = time.strftime("%d%m%Y%H%M%S")
|
87 |
+
return f"{sequence}_{timestamp}.{ext}"
|
88 |
+
|
89 |
+
def get_gallery_files(file_types):
|
90 |
+
return sorted(list(set([f for ext in file_types for f in glob.glob(f"*.{ext}")]))) # Deduplicate files
|
91 |
+
|
92 |
+
async def process_image_gen(prompt, output_file, builder):
|
93 |
+
if builder and isinstance(builder, DiffusionBuilder) and builder.pipeline:
|
94 |
+
pipeline = builder.pipeline
|
95 |
+
else:
|
96 |
+
pipeline = StableDiffusionPipeline.from_pretrained("OFA-Sys/small-stable-diffusion-v0", torch_dtype=torch.float32).to("cpu")
|
97 |
+
gen_image = pipeline(prompt, num_inference_steps=20).images[0]
|
98 |
+
gen_image.save(output_file)
|
99 |
+
return gen_image
|
100 |
+
|
101 |
+
# Smart Uploader Functions
|
102 |
+
def upload_files(files, links_title, links_url, history, selected_files):
|
103 |
+
uploaded = {"images": [], "videos": [], "documents": [], "datasets": [], "links": []}
|
104 |
+
if files:
|
105 |
+
for file in files:
|
106 |
+
ext = file.name.split('.')[-1].lower()
|
107 |
+
output_path = f"uploaded_{int(time.time())}_{file.name}"
|
108 |
+
with open(output_path, "wb") as f:
|
109 |
+
f.write(file.read())
|
110 |
+
if ext in ["jpg", "png"]:
|
111 |
+
uploaded["images"].append(output_path)
|
112 |
+
elif ext == "mp4":
|
113 |
+
uploaded["videos"].append(output_path)
|
114 |
+
elif ext in ["md", "pdf", "docx"]:
|
115 |
+
uploaded["documents"].append(output_path)
|
116 |
+
elif ext in ["csv", "xlsx"]:
|
117 |
+
uploaded["datasets"].append(output_path)
|
118 |
+
history.append(f"Uploaded: {output_path}")
|
119 |
+
selected_files[output_path] = False # Default unchecked
|
120 |
+
if links_title and links_url:
|
121 |
+
links = list(zip(links_title.split('\n'), links_url.split('\n')))
|
122 |
+
for title, url in links:
|
123 |
+
if title and url:
|
124 |
+
link_entry = f"[{title}]({url})"
|
125 |
+
uploaded["links"].append(link_entry)
|
126 |
+
history.append(f"Added Link: {link_entry}")
|
127 |
+
selected_files[link_entry] = False
|
128 |
+
return uploaded, history, selected_files
|
129 |
+
|
130 |
+
def update_galleries(history, selected_files):
|
131 |
+
galleries = {
|
132 |
+
"images": get_gallery_files(["jpg", "png"]),
|
133 |
+
"videos": get_gallery_files(["mp4"]),
|
134 |
+
"documents": get_gallery_files(["md", "pdf", "docx"]),
|
135 |
+
"datasets": get_gallery_files(["csv", "xlsx"]),
|
136 |
+
"links": [f for f in selected_files.keys() if f.startswith('[') and '](' in f and f.endswith(')')]
|
137 |
+
}
|
138 |
+
gallery_outputs = {
|
139 |
+
"images": [(Image.open(f), os.path.basename(f)) for f in galleries["images"][:4]],
|
140 |
+
"videos": [(f, os.path.basename(f)) for f in galleries["videos"][:4]], # Video preview as file path
|
141 |
+
"documents": [(Image.frombytes("RGB", fitz.open(f)[0].get_pixmap(matrix=fitz.Matrix(0.5, 0.5)).size, fitz.open(f)[0].get_pixmap(matrix=fitz.Matrix(0.5, 0.5)).samples) if f.endswith('.pdf') else f, os.path.basename(f)) for f in galleries["documents"][:4]],
|
142 |
+
"datasets": [(f, os.path.basename(f)) for f in galleries["datasets"][:4]], # Text preview
|
143 |
+
"links": [(f, f.split(']')[0][1:]) for f in galleries["links"][:4]]
|
144 |
+
}
|
145 |
+
history.append(f"Updated galleries: {sum(len(g) for g in galleries.values())} files")
|
146 |
+
return gallery_outputs, history, selected_files
|
147 |
+
|
148 |
+
def toggle_selection(file_list, selected_files):
|
149 |
+
for file in file_list:
|
150 |
+
selected_files[file] = not selected_files.get(file, False)
|
151 |
+
return selected_files
|
152 |
+
|
153 |
+
def image_gen(prompt, builder, history, selected_files):
|
154 |
+
selected = [f for f, sel in selected_files.items() if sel and f.endswith(('.jpg', '.png'))]
|
155 |
+
if not selected:
|
156 |
+
return "No images selected", None, history, selected_files
|
157 |
+
output_file = generate_filename("gen_output", "png")
|
158 |
+
gen_image = asyncio.run(process_image_gen(prompt, output_file, builder))
|
159 |
+
history.append(f"Image Gen: {prompt} -> {output_file}")
|
160 |
+
selected_files[output_file] = True
|
161 |
+
return f"Image saved to {output_file}", gen_image, history, selected_files
|
162 |
+
|
163 |
+
# Gradio UI
|
164 |
+
with gr.Blocks(title="AI Vision & SFT Titans π") as demo:
|
165 |
+
gr.Markdown("# AI Vision & SFT Titans π")
|
166 |
+
history = gr.State(value=[])
|
167 |
+
builder = gr.State(value=None)
|
168 |
+
selected_files = gr.State(value={})
|
169 |
+
|
170 |
+
with gr.Row():
|
171 |
+
with gr.Column(scale=1):
|
172 |
+
gr.Markdown("## π File Tree")
|
173 |
+
with gr.Accordion("π³ Uploads", open=True):
|
174 |
+
with gr.Row():
|
175 |
+
gr.Markdown("### πΌοΈ Images (jpg/png)")
|
176 |
+
img_gallery = gr.Gallery(label="Images", columns=4, height="auto")
|
177 |
+
with gr.Row():
|
178 |
+
gr.Markdown("### π₯ Videos (mp4)")
|
179 |
+
vid_gallery = gr.Gallery(label="Videos", columns=4, height="auto")
|
180 |
+
with gr.Row():
|
181 |
+
gr.Markdown("### π Docs (md/pdf/docx)")
|
182 |
+
doc_gallery = gr.Gallery(label="Documents", columns=4, height="auto")
|
183 |
+
with gr.Row():
|
184 |
+
gr.Markdown("### π Data (csv/xlsx)")
|
185 |
+
data_gallery = gr.Gallery(label="Datasets", columns=4, height="auto")
|
186 |
+
with gr.Row():
|
187 |
+
gr.Markdown("### π Links")
|
188 |
+
link_gallery = gr.Gallery(label="Links", columns=4, height="auto")
|
189 |
+
gr.Markdown("## π History")
|
190 |
+
history_output = gr.Textbox(label="Log", lines=5, interactive=False)
|
191 |
+
|
192 |
+
with gr.Column(scale=3):
|
193 |
+
with gr.Row():
|
194 |
+
gr.Markdown("## π οΈ Toolbar")
|
195 |
+
upload_btn = gr.Button("π€ Upload")
|
196 |
+
select_btn = gr.Button("β
Select")
|
197 |
+
gen_btn = gr.Button("π¨ Generate")
|
198 |
+
|
199 |
+
with gr.Tabs():
|
200 |
+
with gr.TabItem("π€ Smart Upload"):
|
201 |
+
file_upload = gr.File(label="Upload Files", file_count="multiple", type="binary")
|
202 |
+
links_title = gr.Textbox(label="Link Titles (one per line)", lines=3)
|
203 |
+
links_url = gr.Textbox(label="Link URLs (one per line)", lines=3)
|
204 |
+
upload_status = gr.Textbox(label="Status")
|
205 |
+
|
206 |
+
with gr.TabItem("π Operations"):
|
207 |
+
prompt = gr.Textbox(label="Image Gen Prompt", value="Generate a neon version")
|
208 |
+
op_status = gr.Textbox(label="Status")
|
209 |
+
op_output = gr.Image(label="Output")
|
210 |
+
|
211 |
+
upload_btn.click(
|
212 |
+
upload_files,
|
213 |
+
inputs=[file_upload, links_title, links_url, history, selected_files],
|
214 |
+
outputs=[upload_status, history, selected_files]
|
215 |
+
).then(
|
216 |
+
update_galleries,
|
217 |
+
inputs=[history, selected_files],
|
218 |
+
outputs=[img_gallery, vid_gallery, doc_gallery, data_gallery, link_gallery, history, selected_files]
|
219 |
+
)
|
220 |
+
|
221 |
+
select_btn.click(
|
222 |
+
toggle_selection,
|
223 |
+
inputs=[gr.Dropdown(choices=list(selected_files.value.keys()), multiselect=True, label="Select Files"), selected_files],
|
224 |
+
outputs=[selected_files]
|
225 |
+
).then(
|
226 |
+
update_galleries,
|
227 |
+
inputs=[history, selected_files],
|
228 |
+
outputs=[img_gallery, vid_gallery, doc_gallery, data_gallery, link_gallery, history, selected_files]
|
229 |
+
)
|
230 |
+
|
231 |
+
gen_btn.click(
|
232 |
+
image_gen,
|
233 |
+
inputs=[prompt, builder, history, selected_files],
|
234 |
+
outputs=[op_status, op_output, history, selected_files]
|
235 |
+
).then(
|
236 |
+
update_galleries,
|
237 |
+
inputs=[history, selected_files],
|
238 |
+
outputs=[img_gallery, vid_gallery, doc_gallery, data_gallery, link_gallery, history, selected_files]
|
239 |
+
)
|
240 |
+
|
241 |
+
# Update history output
|
242 |
+
demo.load(lambda h: "\n".join(h[-5:]), inputs=[history], outputs=[history_output])
|
243 |
+
|
244 |
+
demo.launch()
|