Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,18 +1,42 @@
|
|
1 |
import streamlit as st
|
2 |
-
from transformers import
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
|
4 |
@st.cache_resource(show_spinner=False)
|
5 |
def load_generator():
|
6 |
-
model_name = "ayyuce/NeoProtein-GPT"
|
7 |
-
config = AutoConfig.from_pretrained(model_name, model_type="gpt2")
|
8 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
9 |
-
model = AutoModelForCausalLM.from_pretrained(model_name, config=
|
10 |
gen_pipeline = pipeline("text-generation", model=model, tokenizer=tokenizer)
|
11 |
return gen_pipeline
|
12 |
|
13 |
st.title("NeoProtein-GPT")
|
14 |
st.write("Welcome to the NeoProtein-GPT interface. Enter a protein prompt and generate new protein sequences!")
|
15 |
|
|
|
16 |
user_prompt = st.text_area("Enter your prompt", value="Design a novel protein sequence with a unique binding site:")
|
17 |
|
18 |
if st.button("Generate Protein Sequence"):
|
@@ -20,4 +44,4 @@ if st.button("Generate Protein Sequence"):
|
|
20 |
outputs = load_generator()(user_prompt, max_new_tokens=200, do_sample=True, temperature=0.7)
|
21 |
generated_text = outputs[0]["generated_text"]
|
22 |
st.subheader("Generated Sequence:")
|
23 |
-
st.code(generated_text, language="python")
|
|
|
1 |
import streamlit as st
|
2 |
+
from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer, AutoConfig
|
3 |
+
import json
|
4 |
+
import os
|
5 |
+
|
6 |
+
model_name = "ayyuce/NeoProtein-GPT"
|
7 |
+
config_path = os.path.join(os.path.expanduser("~"), f".cache/huggingface/hub/models--{model_name.replace('/', '--')}/snapshots/d462becc43e0c3e4792cfa78efd029bed5dcfeb8/config.json")
|
8 |
+
|
9 |
+
if not os.path.isfile(config_path):
|
10 |
+
config = {
|
11 |
+
"model_type": "gpt2",
|
12 |
+
"architectures": ["GPT2LMHeadModel"],
|
13 |
+
"vocab_size": 50257,
|
14 |
+
"n_positions": 1024,
|
15 |
+
"n_ctx": 1024,
|
16 |
+
"n_embd": 768,
|
17 |
+
"n_layer": 12,
|
18 |
+
"n_head": 12,
|
19 |
+
"activation_function": "gelu",
|
20 |
+
"initializer_range": 0.02,
|
21 |
+
"layer_norm_epsilon": 1e-5,
|
22 |
+
"bos_token_id": 50256,
|
23 |
+
"eos_token_id": 50256,
|
24 |
+
}
|
25 |
+
os.makedirs(os.path.dirname(config_path), exist_ok=True)
|
26 |
+
with open(config_path, "w") as f:
|
27 |
+
json.dump(config, f)
|
28 |
|
29 |
@st.cache_resource(show_spinner=False)
|
30 |
def load_generator():
|
|
|
|
|
31 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
32 |
+
model = AutoModelForCausalLM.from_pretrained(model_name, config=AutoConfig.from_pretrained(model_name))
|
33 |
gen_pipeline = pipeline("text-generation", model=model, tokenizer=tokenizer)
|
34 |
return gen_pipeline
|
35 |
|
36 |
st.title("NeoProtein-GPT")
|
37 |
st.write("Welcome to the NeoProtein-GPT interface. Enter a protein prompt and generate new protein sequences!")
|
38 |
|
39 |
+
|
40 |
user_prompt = st.text_area("Enter your prompt", value="Design a novel protein sequence with a unique binding site:")
|
41 |
|
42 |
if st.button("Generate Protein Sequence"):
|
|
|
44 |
outputs = load_generator()(user_prompt, max_new_tokens=200, do_sample=True, temperature=0.7)
|
45 |
generated_text = outputs[0]["generated_text"]
|
46 |
st.subheader("Generated Sequence:")
|
47 |
+
st.code(generated_text, language="python")
|