File size: 7,292 Bytes
18d1755
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ce3c203
18d1755
 
ce3c203
 
18d1755
 
 
 
 
 
ce3c203
18d1755
ce3c203
 
18d1755
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ce3c203
18d1755
 
 
 
 
 
 
 
 
ce3c203
 
 
 
18d1755
ce3c203
18d1755
 
ce3c203
18d1755
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ce3c203
18d1755
 
 
 
 
 
 
 
 
 
 
 
ce3c203
18d1755
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ce3c203
 
18d1755
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ce3c203
18d1755
 
 
ce3c203
18d1755
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ce3c203
18d1755
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
import os
import subprocess
import spaces
import torch

import gradio as gr

from gradio_client.client import DEFAULT_TEMP_DIR
from playwright.sync_api import sync_playwright
from threading import Thread
from transformers import AutoProcessor, AutoModelForCausalLM, TextIteratorStreamer
from transformers.image_utils import to_numpy_array, PILImageResampling, ChannelDimension
from typing import List
from PIL import Image

from transformers.image_transforms import resize, to_channel_dimension_format

# Install flash-attn without CUDA build isolation
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)

# Set the device to GPU if available, otherwise use CPU
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
PROCESSOR = AutoProcessor.from_pretrained(
    "HuggingFaceM4/VLM_WebSight_finetuned",
)
MODEL = AutoModelForCausalLM.from_pretrained(
    "HuggingFaceM4/VLM_WebSight_finetuned",
    trust_remote_code=True,
    torch_dtype=torch.bfloat16 if torch.cuda.is_available() else torch.float32,
).to(DEVICE)

# Determine image sequence length
if MODEL.config.use_resampler:
    image_seq_len = MODEL.config.perceiver_config.resampler_n_latents
else:
    image_seq_len = (
        MODEL.config.vision_config.image_size // MODEL.config.vision_config.patch_size
    ) ** 2
BOS_TOKEN = PROCESSOR.tokenizer.bos_token
BAD_WORDS_IDS = PROCESSOR.tokenizer(["<image>", "<fake_token_around_image>"], add_special_tokens=False).input_ids

## Utils

def convert_to_rgb(image):
    if image.mode == "RGB":
        return image

    image_rgba = image.convert("RGBA")
    background = Image.new("RGBA", image_rgba.size, (255, 255, 255))
    alpha_composite = Image.alpha_composite(background, image_rgba)
    alpha_composite = alpha_composite.convert("RGB")
    return alpha_composite

def custom_transform(x):
    x = convert_to_rgb(x)
    x = to_numpy_array(x)
    x = resize(x, (960, 960), resample=PILImageResampling.BILINEAR)
    x = PROCESSOR.image_processor.rescale(x, scale=1 / 255)
    x = PROCESSOR.image_processor.normalize(
        x,
        mean=PROCESSOR.image_processor.image_mean,
        std=PROCESSOR.image_processor.image_std
    )
    x = to_channel_dimension_format(x, ChannelDimension.FIRST)
    x = torch.tensor(x)
    return x

## End of Utils

# Install Playwright
def install_playwright():
    try:
        subprocess.run(["playwright", "install"], check=True)
        print("Playwright installation successful.")
    except subprocess.CalledProcessError as e:
        print(f"Error during Playwright installation: {e}")

install_playwright()

IMAGE_GALLERY_PATHS = [
    f"example_images/{ex_image}"
    for ex_image in os.listdir(f"example_images")
]

def add_file_gallery(selected_state: gr.SelectData, gallery_list: List[str]):
    return Image.open(gallery_list.root[selected_state.index].image.path)

def render_webpage(html_css_code):
    with sync_playwright() as p:
        browser = p.chromium.launch(headless=True)
        context = browser.new_context(
            user_agent=(
                "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/107.0.0.0"
                " Safari/537.36"
            )
        )
        page = context.new_page()
        page.set_content(html_css_code)
        page.wait_for_load_state("networkidle")
        output_path_screenshot = f"{DEFAULT_TEMP_DIR}/{hash(html_css_code)}.png"
        _ = page.screenshot(path=output_path_screenshot, full_page=True)

        context.close()
        browser.close()

    return Image.open(output_path_screenshot)

@spaces.GPU(duration=180)
def model_inference(image):
    if image is None:
        raise ValueError("`image` is None. It should be a PIL image.")

    inputs = PROCESSOR.tokenizer(
        f"{BOS_TOKEN}<fake_token_around_image>{'<image>' * image_seq_len}<fake_token_around_image>",
        return_tensors="pt",
        add_special_tokens=False,
    )
    inputs["pixel_values"] = PROCESSOR.image_processor(
        [image],
        transform=custom_transform
    )
    inputs = {k: v.to(DEVICE) for k, v in inputs.items()}

    streamer = TextIteratorStreamer(
        PROCESSOR.tokenizer,
        skip_prompt=True,
    )
    generation_kwargs = dict(
        inputs,
        bad_words_ids=BAD_WORDS_IDS,
        max_length=4096,
        streamer=streamer,
    )
    thread = Thread(
        target=MODEL.generate,
        kwargs=generation_kwargs,
    )
    thread.start()
    generated_text = ""
    for new_text in streamer:
        if "</s>" in new_text:
            new_text = new_text.replace("</s>", "")
            rendered_image = render_webpage(generated_text)
        else:
            rendered_image = None
        generated_text += new_text
        yield generated_text, rendered_image

generated_html = gr.Code(label="Extracted HTML", elem_id="generated_html")
rendered_html = gr.Image(label="Rendered HTML", show_download_button=False, show_share_button=False)

css = """
.gradio-container{max-width: 1000px!important}
h1{display: flex;align-items: center;justify-content: center;gap: .25em}
*{transition: width 0.5s ease, flex-grow 0.5s ease}
"""

with gr.Blocks(title="Screenshot to HTML", theme=gr.themes.Base(), css=css) as demo:
    gr.Markdown(
        "Since the model used for this demo *does not generate images*, it is more effective to input standalone website elements or sites with minimal image content."
    )
    with gr.Row(equal_height=True):
        with gr.Column(scale=4, min_width=250) as upload_area:
            imagebox = gr.Image(
                type="pil",
                label="Screenshot to extract",
                visible=True,
                sources=["upload", "clipboard"],
            )
            with gr.Group():
                with gr.Row():
                    submit_btn = gr.Button(value="▶️ Submit", visible=True, min_width=120)
                    clear_btn = gr.ClearButton(
                        [imagebox, generated_html, rendered_html], value="🧹 Clear", min_width=120
                    )
                    regenerate_btn = gr.Button(value="🔄 Regenerate", visible=True, min_width=120)
        with gr.Column(scale=4):
            rendered_html.render()

    with gr.Row():
        generated_html.render()

    with gr.Row():
        template_gallery = gr.Gallery(
            value=IMAGE_GALLERY_PATHS,
            label="Templates Gallery",
            allow_preview=False,
            columns=5,
            elem_id="gallery",
            show_share_button=False,
            height=400,
        )

    gr.on(
        triggers=[imagebox.upload, submit_btn.click, regenerate_btn.click],
        fn=model_inference,
        inputs=[imagebox],
        outputs=[generated_html, rendered_html],
    )
    regenerate_btn.click(
        fn=model_inference,
        inputs=[imagebox],
        outputs=[generated_html, rendered_html],
    )
    template_gallery.select(
        fn=add_file_gallery,
        inputs=[template_gallery],
        outputs=[imagebox],
    ).success(
        fn=model_inference,
        inputs=[imagebox],
        outputs=[generated_html, rendered_html],
    )
    demo.load()

demo.queue(max_size=40, api_open=False)
demo.launch(max_threads=400)