Spaces:
Sleeping
Sleeping
Azzan Dwi Riski
commited on
Commit
·
2f33391
1
Parent(s):
68e7bab
initial commit
Browse files- app.py +394 -0
- requirements.txt +8 -0
app.py
ADDED
@@ -0,0 +1,394 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import os
|
3 |
+
import re
|
4 |
+
import time
|
5 |
+
import torch
|
6 |
+
import torch.nn as nn
|
7 |
+
from PIL import Image
|
8 |
+
import requests
|
9 |
+
import easyocr
|
10 |
+
from transformers import AutoTokenizer
|
11 |
+
from torchvision import transforms
|
12 |
+
from torchvision import models
|
13 |
+
from torchvision.transforms import functional as F
|
14 |
+
import pandas as pd
|
15 |
+
from huggingface_hub import hf_hub_download
|
16 |
+
import warnings
|
17 |
+
warnings.filterwarnings("ignore")
|
18 |
+
|
19 |
+
# --- Setup ---
|
20 |
+
|
21 |
+
# Device setup
|
22 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
23 |
+
print(f"Using device: {device}")
|
24 |
+
|
25 |
+
# Load tokenizer
|
26 |
+
tokenizer = AutoTokenizer.from_pretrained('indobenchmark/indobert-base-p1')
|
27 |
+
|
28 |
+
# Image transformation
|
29 |
+
class ResizePadToSquare:
|
30 |
+
def __init__(self, target_size=300):
|
31 |
+
self.target_size = target_size
|
32 |
+
|
33 |
+
def __call__(self, img):
|
34 |
+
img = img.convert("RGB")
|
35 |
+
img.thumbnail((self.target_size, self.target_size), Image.BILINEAR)
|
36 |
+
delta_w = self.target_size - img.size[0]
|
37 |
+
delta_h = self.target_size - img.size[1]
|
38 |
+
padding = (delta_w // 2, delta_h // 2, delta_w - delta_w // 2, delta_h - delta_h // 2)
|
39 |
+
img = F.pad(img, padding, fill=0, padding_mode='constant')
|
40 |
+
return img
|
41 |
+
|
42 |
+
transform = transforms.Compose([
|
43 |
+
ResizePadToSquare(300),
|
44 |
+
transforms.ToTensor(),
|
45 |
+
transforms.Normalize(mean=[0.485, 0.456, 0.406],
|
46 |
+
std=[0.229, 0.224, 0.225]),
|
47 |
+
])
|
48 |
+
|
49 |
+
|
50 |
+
# Screenshot folder
|
51 |
+
SCREENSHOT_DIR = "screenshots"
|
52 |
+
os.makedirs(SCREENSHOT_DIR, exist_ok=True)
|
53 |
+
|
54 |
+
# Create OCR reader
|
55 |
+
reader = easyocr.Reader(['id']) # Indonesia language
|
56 |
+
print("OCR reader initialized.")
|
57 |
+
|
58 |
+
# --- Model ---
|
59 |
+
|
60 |
+
class LateFusionModel(nn.Module):
|
61 |
+
def __init__(self, image_model, text_model):
|
62 |
+
super(LateFusionModel, self).__init__()
|
63 |
+
self.image_model = image_model
|
64 |
+
self.text_model = text_model
|
65 |
+
self.image_weight = nn.Parameter(torch.tensor(0.5))
|
66 |
+
self.text_weight = nn.Parameter(torch.tensor(0.5))
|
67 |
+
|
68 |
+
def forward(self, images, input_ids, attention_mask):
|
69 |
+
with torch.no_grad():
|
70 |
+
image_logits = self.image_model(images).squeeze(1)
|
71 |
+
text_logits = self.text_model(input_ids=input_ids, attention_mask=attention_mask).logits.squeeze(1)
|
72 |
+
|
73 |
+
weights = torch.softmax(torch.stack([self.image_weight, self.text_weight]), dim=0)
|
74 |
+
fused_logits = weights[0] * image_logits + weights[1] * text_logits
|
75 |
+
|
76 |
+
return fused_logits, image_logits, text_logits, weights
|
77 |
+
|
78 |
+
# def unwrap_dataparallel(model):
|
79 |
+
# """Recursively unwrap all DataParallel layers inside a model."""
|
80 |
+
# if isinstance(model, torch.nn.DataParallel):
|
81 |
+
# model = model.module
|
82 |
+
# for name, module in model.named_children():
|
83 |
+
# setattr(model, name, unwrap_dataparallel(module))
|
84 |
+
# return model
|
85 |
+
|
86 |
+
# Load model
|
87 |
+
model_path = "models/best_fusion_model.pt"
|
88 |
+
if os.path.exists(model_path):
|
89 |
+
fusion_model = torch.load(model_path, map_location=device, weights_only=False)
|
90 |
+
else:
|
91 |
+
model_path = hf_hub_download(repo_id="azzandr/gambling-fusion-model", filename="best_fusion_model.pt")
|
92 |
+
fusion_model = torch.load(model_path, map_location=device, weights_only=False)
|
93 |
+
|
94 |
+
# fusion_model = unwrap_dataparallel(fusion_model)
|
95 |
+
fusion_model.to(device)
|
96 |
+
fusion_model.eval()
|
97 |
+
print("Fusion model loaded successfully!")
|
98 |
+
|
99 |
+
# Load Image-Only Model
|
100 |
+
# Load image model from state_dict
|
101 |
+
image_model_path = "models/best_image_model_Adam_lr0.0001_bs32_state_dict.pt"
|
102 |
+
if os.path.exists(image_model_path):
|
103 |
+
image_only_model = models.efficientnet_b3(weights=models.EfficientNet_B3_Weights.DEFAULT)
|
104 |
+
num_features = image_only_model.classifier[1].in_features
|
105 |
+
image_only_model.classifier = nn.Linear(num_features, 1)
|
106 |
+
image_only_model.load_state_dict(torch.load(image_model_path, map_location=device))
|
107 |
+
image_only_model.to(device)
|
108 |
+
image_only_model.eval()
|
109 |
+
print("Image-only model loaded from state_dict successfully!")
|
110 |
+
else:
|
111 |
+
raise FileNotFoundError("Image-only model not found in models/ folder.")
|
112 |
+
|
113 |
+
|
114 |
+
# --- Functions ---
|
115 |
+
def clean_text(text):
|
116 |
+
# text = re.sub(r"http\S+", "", text)
|
117 |
+
# text = re.sub('\n', '', text)
|
118 |
+
# text = re.sub("[^a-zA-Z^']", " ", text)
|
119 |
+
# text = re.sub(" {2,}", " ", text)
|
120 |
+
# text = text.strip()
|
121 |
+
# text = re.sub(r'\s+', ' ', text)
|
122 |
+
# text = re.sub(r'\b\w{1,2}\b', '', text)
|
123 |
+
# text = re.sub(r'\b\w{20,}\b', '', text)
|
124 |
+
# text = text.lower()
|
125 |
+
# Kata 1–2 huruf yang penting dan tidak boleh dihapus
|
126 |
+
exceptions = {
|
127 |
+
"di", "ke", "ya"
|
128 |
+
}
|
129 |
+
# ----- BASIC CLEANING -----
|
130 |
+
text = re.sub(r"http\S+", "", text) # Hapus URL
|
131 |
+
text = re.sub(r"\n", " ", text) # Ganti newline dengan spasi
|
132 |
+
text = re.sub(r"[^a-zA-Z']", " ", text) # Hanya sisakan huruf dan apostrof
|
133 |
+
text = re.sub(r"\s{2,}", " ", text).strip().lower() # Hapus spasi ganda, ubah ke lowercase
|
134 |
+
|
135 |
+
# ----- FILTERING -----
|
136 |
+
words = text.split()
|
137 |
+
filtered_words = [
|
138 |
+
w for w in words
|
139 |
+
if (len(w) > 2 or w in exceptions) # Simpan kata >2 huruf atau ada di exceptions
|
140 |
+
]
|
141 |
+
text = ' '.join(filtered_words)
|
142 |
+
|
143 |
+
# ----- REMOVE UNWANTED PATTERNS -----
|
144 |
+
text = re.sub(r'\b[aeiou]+\b', '', text) # Hapus kata semua vokal (panjang berapa pun)
|
145 |
+
text = re.sub(r'\b[^aeiou\s]+\b', '', text) # Hapus kata semua konsonan (panjang berapa pun)
|
146 |
+
text = re.sub(r'\b\w{20,}\b', '', text) # Hapus kata sangat panjang (≥20 huruf)
|
147 |
+
text = re.sub(r'\s+', ' ', text).strip() # Bersihkan spasi ekstra
|
148 |
+
|
149 |
+
# check words number
|
150 |
+
if len(text.split()) < 5:
|
151 |
+
print(f"Cleaned text too short ({len(text.split())} words). Ignoring text.")
|
152 |
+
return "" # empty return to use image-only
|
153 |
+
return text
|
154 |
+
|
155 |
+
# Your API key
|
156 |
+
SCREENSHOT_API_KEY = os.getenv("SCREENSHOT_API_KEY") # Ambil dari environment variable
|
157 |
+
|
158 |
+
def take_screenshot(url):
|
159 |
+
filename = url.replace('https://', '').replace('http://', '').replace('/', '_').replace('.', '_') + '.png'
|
160 |
+
filepath = os.path.join(SCREENSHOT_DIR, filename)
|
161 |
+
|
162 |
+
try:
|
163 |
+
if not SCREENSHOT_API_KEY:
|
164 |
+
print("SCREENSHOT_API_KEY not found in environment.")
|
165 |
+
return None
|
166 |
+
|
167 |
+
api_url = "https://api.apiflash.com/v1/urltoimage"
|
168 |
+
|
169 |
+
# Try with different configurations for problematic URLs
|
170 |
+
configs = [
|
171 |
+
# Configuration 1: Standard with redirect handling
|
172 |
+
{
|
173 |
+
"access_key": SCREENSHOT_API_KEY,
|
174 |
+
"url": url,
|
175 |
+
"format": "png",
|
176 |
+
"wait_until": "network_idle",
|
177 |
+
"delay": 3,
|
178 |
+
"timeout": 30,
|
179 |
+
"follow_redirect": "true"
|
180 |
+
},
|
181 |
+
# Configuration 2: Simplified for redirect issues
|
182 |
+
{
|
183 |
+
"access_key": SCREENSHOT_API_KEY,
|
184 |
+
"url": url,
|
185 |
+
"format": "png",
|
186 |
+
"delay": 5,
|
187 |
+
"timeout": 20,
|
188 |
+
"follow_redirect": "false"
|
189 |
+
},
|
190 |
+
# Configuration 3: Basic fallback
|
191 |
+
{
|
192 |
+
"access_key": SCREENSHOT_API_KEY,
|
193 |
+
"url": url,
|
194 |
+
"format": "png"
|
195 |
+
}
|
196 |
+
]
|
197 |
+
|
198 |
+
for i, params in enumerate(configs):
|
199 |
+
print(f"Attempting screenshot with configuration {i+1} for: {url}")
|
200 |
+
response = requests.get(api_url, params=params)
|
201 |
+
|
202 |
+
if response.status_code == 200:
|
203 |
+
# Check if response is actually an image
|
204 |
+
if response.headers.get('content-type', '').startswith('image'):
|
205 |
+
with open(filepath, 'wb') as f:
|
206 |
+
f.write(response.content)
|
207 |
+
print(f"Screenshot taken successfully for URL: {url}")
|
208 |
+
return filepath
|
209 |
+
else:
|
210 |
+
print(f"Configuration {i+1} returned non-image content")
|
211 |
+
continue
|
212 |
+
else:
|
213 |
+
error_msg = response.text
|
214 |
+
print(f"Configuration {i+1} failed: {error_msg}")
|
215 |
+
|
216 |
+
# Check for specific redirect error
|
217 |
+
if "ERR_TOO_MANY_REDIRECTS" in error_msg:
|
218 |
+
print(f"Redirect issue detected for {url}, trying next configuration...")
|
219 |
+
continue
|
220 |
+
elif i == len(configs) - 1: # Last configuration failed
|
221 |
+
print(f"All configurations failed for {url}")
|
222 |
+
return None
|
223 |
+
|
224 |
+
return None
|
225 |
+
|
226 |
+
except Exception as e:
|
227 |
+
print(f"Error taking screenshot: {e}")
|
228 |
+
return None
|
229 |
+
|
230 |
+
def resize_if_needed(image_path, max_mb=1, target_height=720):
|
231 |
+
file_size = os.path.getsize(image_path) / (1024 * 1024) # dalam MB
|
232 |
+
if file_size > max_mb:
|
233 |
+
try:
|
234 |
+
with Image.open(image_path) as img:
|
235 |
+
width, height = img.size
|
236 |
+
if height > target_height:
|
237 |
+
ratio = target_height / float(height)
|
238 |
+
new_width = int(float(width) * ratio)
|
239 |
+
img = img.resize((new_width, target_height), Image.Resampling.LANCZOS)
|
240 |
+
img.save(image_path, optimize=True, quality=85)
|
241 |
+
print(f"Image resized to {new_width}x{target_height}")
|
242 |
+
except Exception as e:
|
243 |
+
print(f"Resize error: {e}")
|
244 |
+
|
245 |
+
def easyocr_extract(image_path):
|
246 |
+
try:
|
247 |
+
results = reader.readtext(image_path, detail=0)
|
248 |
+
text = " ".join(results)
|
249 |
+
print(f"OCR text extracted from EasyOCR: {len(text)} characters")
|
250 |
+
return text.strip()
|
251 |
+
except Exception as e:
|
252 |
+
print(f"EasyOCR error: {e}")
|
253 |
+
return ""
|
254 |
+
|
255 |
+
# def extract_text_from_image(image_path):
|
256 |
+
# print("Skipping OCR. Forcing Image-Only prediction.")
|
257 |
+
# return ""
|
258 |
+
|
259 |
+
def extract_text_from_image(image_path):
|
260 |
+
try:
|
261 |
+
resize_if_needed(image_path, max_mb=1, target_height=720) # Tambahkan ini di awal
|
262 |
+
file_size = os.path.getsize(image_path) / (1024 * 1024) # ukuran MB
|
263 |
+
|
264 |
+
if file_size < 1:
|
265 |
+
print(f"Using OCR.Space API for image ({file_size:.2f} MB)")
|
266 |
+
api_key = os.getenv("OCR_SPACE_API_KEY")
|
267 |
+
if not api_key:
|
268 |
+
print("OCR_SPACE_API_KEY not found in environment. Using EasyOCR as fallback.")
|
269 |
+
return easyocr_extract(image_path)
|
270 |
+
|
271 |
+
with open(image_path, 'rb') as f:
|
272 |
+
payload = {
|
273 |
+
'isOverlayRequired': False,
|
274 |
+
'apikey': api_key,
|
275 |
+
'language': 'eng'
|
276 |
+
}
|
277 |
+
r = requests.post('https://api.ocr.space/parse/image',
|
278 |
+
files={'filename': f},
|
279 |
+
data=payload)
|
280 |
+
result = r.json()
|
281 |
+
if result.get('IsErroredOnProcessing', False):
|
282 |
+
print(f"OCR.Space API Error: {result.get('ErrorMessage')}")
|
283 |
+
return easyocr_extract(image_path)
|
284 |
+
text = result['ParsedResults'][0]['ParsedText']
|
285 |
+
print(f"OCR text extracted from OCR.Space: {len(text)} characters")
|
286 |
+
return text.strip()
|
287 |
+
else:
|
288 |
+
print(f"Using EasyOCR for image ({file_size:.2f} MB)")
|
289 |
+
return easyocr_extract(image_path)
|
290 |
+
except Exception as e:
|
291 |
+
print(f"OCR error: {e}")
|
292 |
+
return ""
|
293 |
+
|
294 |
+
def prepare_data_for_model(image_path, text):
|
295 |
+
image = Image.open(image_path)
|
296 |
+
image_tensor = transform(image).unsqueeze(0).to(device)
|
297 |
+
|
298 |
+
clean_text_data = clean_text(text)
|
299 |
+
encoding = tokenizer.encode_plus(
|
300 |
+
clean_text_data,
|
301 |
+
add_special_tokens=True,
|
302 |
+
max_length=128,
|
303 |
+
padding='max_length',
|
304 |
+
truncation=True,
|
305 |
+
return_tensors='pt'
|
306 |
+
)
|
307 |
+
|
308 |
+
input_ids = encoding['input_ids'].to(device)
|
309 |
+
attention_mask = encoding['attention_mask'].to(device)
|
310 |
+
|
311 |
+
return image_tensor, input_ids, attention_mask
|
312 |
+
|
313 |
+
def predict_single_url(url):
|
314 |
+
print(f"Processing URL: {url}")
|
315 |
+
screenshot_path = take_screenshot(url)
|
316 |
+
if not screenshot_path:
|
317 |
+
return f"❌ Error: Unable to capture screenshot for {url}. This may be due to:\n• Too many redirects\n• Website blocking automated access\n• Network connectivity issues\n• Invalid URL", "Screenshot capture failed"
|
318 |
+
|
319 |
+
text = extract_text_from_image(screenshot_path)
|
320 |
+
|
321 |
+
if not text.strip(): # Jika text kosong
|
322 |
+
print(f"No OCR text found for {url}. Using Image-Only Model.")
|
323 |
+
image = Image.open(screenshot_path)
|
324 |
+
image_tensor = transform(image).unsqueeze(0).to(device)
|
325 |
+
|
326 |
+
with torch.no_grad():
|
327 |
+
image_logits = image_only_model(image_tensor).squeeze(1)
|
328 |
+
image_probs = torch.sigmoid(image_logits)
|
329 |
+
|
330 |
+
threshold = 0.6
|
331 |
+
is_gambling = image_probs[0] > threshold
|
332 |
+
|
333 |
+
label = "Gambling" if is_gambling else "Non-Gambling"
|
334 |
+
confidence = image_probs[0].item() if is_gambling else 1 - image_probs[0].item()
|
335 |
+
print(f"[Image-Only] URL: {url}")
|
336 |
+
print(f"Prediction: {label} | Confidence: {confidence:.2f}\n")
|
337 |
+
return label, f"Confidence: {confidence:.2f} (Image-Only Model)"
|
338 |
+
|
339 |
+
else:
|
340 |
+
image_tensor, input_ids, attention_mask = prepare_data_for_model(screenshot_path, text)
|
341 |
+
|
342 |
+
with torch.no_grad():
|
343 |
+
fused_logits, image_logits, text_logits, weights = fusion_model(image_tensor, input_ids, attention_mask)
|
344 |
+
fused_probs = torch.sigmoid(fused_logits)
|
345 |
+
image_probs = torch.sigmoid(image_logits)
|
346 |
+
text_probs = torch.sigmoid(text_logits)
|
347 |
+
|
348 |
+
threshold = 0.6
|
349 |
+
is_gambling = fused_probs[0] > threshold
|
350 |
+
|
351 |
+
label = "Gambling" if is_gambling else "Non-Gambling"
|
352 |
+
confidence = fused_probs[0].item() if is_gambling else 1 - fused_probs[0].item()
|
353 |
+
|
354 |
+
# ✨ Log detail
|
355 |
+
print(f"[Fusion Model] URL: {url}")
|
356 |
+
print(f"Image Model Prediction Probability: {image_probs[0]:.2f}")
|
357 |
+
print(f"Text Model Prediction Probability: {text_probs[0]:.2f}")
|
358 |
+
print(f"Fusion Final Prediction: {label} | Confidence: {confidence:.2f}\n")
|
359 |
+
|
360 |
+
return label, f"Confidence: {confidence:.2f} (Fusion Model)"
|
361 |
+
|
362 |
+
def predict_batch_urls(file_obj):
|
363 |
+
results = []
|
364 |
+
content = file_obj.read().decode('utf-8')
|
365 |
+
urls = [line.strip() for line in content.splitlines() if line.strip()]
|
366 |
+
for url in urls:
|
367 |
+
label, confidence = predict_single_url(url)
|
368 |
+
results.append({"url": url, "label": label, "confidence": confidence})
|
369 |
+
|
370 |
+
df = pd.DataFrame(results)
|
371 |
+
print(f"Batch prediction completed for {len(urls)} URLs.")
|
372 |
+
return df
|
373 |
+
|
374 |
+
# --- Gradio App ---
|
375 |
+
|
376 |
+
with gr.Blocks() as app:
|
377 |
+
gr.Markdown("# 🕵️ Gambling Website Detection (URL Based)")
|
378 |
+
|
379 |
+
with gr.Tab("Single URL"):
|
380 |
+
url_input = gr.Textbox(label="Enter Website URL")
|
381 |
+
predict_button = gr.Button("Predict")
|
382 |
+
label_output = gr.Label()
|
383 |
+
confidence_output = gr.Textbox(label="Confidence", interactive=False)
|
384 |
+
|
385 |
+
predict_button.click(fn=predict_single_url, inputs=url_input, outputs=[label_output, confidence_output])
|
386 |
+
|
387 |
+
with gr.Tab("Batch URLs"):
|
388 |
+
file_input = gr.File(label="Upload .txt file with URLs (one per line)")
|
389 |
+
batch_predict_button = gr.Button("Batch Predict")
|
390 |
+
batch_output = gr.DataFrame()
|
391 |
+
|
392 |
+
batch_predict_button.click(fn=predict_batch_urls, inputs=file_input, outputs=batch_output)
|
393 |
+
|
394 |
+
app.launch()
|
requirements.txt
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
torch
|
2 |
+
transformers
|
3 |
+
easyocr
|
4 |
+
gradio
|
5 |
+
torchvision
|
6 |
+
pandas
|
7 |
+
Pillow
|
8 |
+
requests
|