Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
import streamlit as st
|
2 |
import random
|
3 |
-
from app_config import SYSTEM_PROMPT, NLP_MODEL_NAME, NUMBER_OF_VECTORS_FOR_RAG, NLP_MODEL_TEMPERATURE, NLP_MODEL_MAX_TOKENS, VECTOR_MAX_TOKENS,my_vector_store,chat,tiktoken_len
|
4 |
from langchain.memory import ConversationSummaryBufferMemory
|
5 |
from langchain_core.messages import SystemMessage, HumanMessage, AIMessage
|
6 |
from langchain.chains.summarize import load_summarize_chain
|
@@ -9,37 +9,29 @@ from langchain_groq import ChatGroq
|
|
9 |
from dotenv import load_dotenv
|
10 |
from pathlib import Path
|
11 |
import os
|
|
|
12 |
env_path = Path('.') / '.env'
|
13 |
load_dotenv(dotenv_path=env_path)
|
14 |
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
Args:
|
19 |
-
prompt (string): user query
|
20 |
-
|
21 |
-
Returns:
|
22 |
-
string: answer of the query
|
23 |
-
"""
|
24 |
|
|
|
25 |
try:
|
26 |
-
retriever = st.session_state.retriever
|
27 |
docs = retriever.invoke(prompt)
|
28 |
my_context = [doc.page_content for doc in docs]
|
29 |
my_context = '\n\n'.join(my_context)
|
30 |
-
system_message = SystemMessage(content
|
31 |
print(system_message)
|
32 |
chat_messages = (system_message + st.session_state.rag_memory.chat_memory.messages + HumanMessage(content=prompt)).messages
|
33 |
print("total tokens: ", tiktoken_len(str(chat_messages)))
|
34 |
-
|
35 |
-
response = st.session_state.llm.invoke(chat_messages)
|
36 |
return response.content
|
37 |
-
|
38 |
except Exception as error:
|
39 |
print(error, "ERROR")
|
40 |
return "Oops! something went wrong, please try again."
|
41 |
|
42 |
-
|
43 |
st.markdown(
|
44 |
"""
|
45 |
<style>
|
@@ -52,30 +44,16 @@ st.markdown(
|
|
52 |
unsafe_allow_html=True,
|
53 |
)
|
54 |
|
55 |
-
#
|
56 |
-
|
57 |
-
print("SYSTEM MESSAGE")
|
58 |
if "messages" not in st.session_state:
|
59 |
-
st.session_state.messages=[{"role": "system", "content": SYSTEM_PROMPT}]
|
60 |
-
|
61 |
-
print("SYSTEM MODEL")
|
62 |
-
if "llm" not in st.session_state:
|
63 |
-
st.session_state.llm = ChatGroq(temperature=NLP_MODEL_TEMPERATURE, groq_api_key=str(os.getenv('GROQ_API_KEY')), model_name=NLP_MODEL_NAME)
|
64 |
-
|
65 |
-
print("rag")
|
66 |
if "rag_memory" not in st.session_state:
|
67 |
-
st.session_state.rag_memory = ConversationSummaryBufferMemory(llm=
|
68 |
-
|
69 |
-
print("retrival")
|
70 |
if "retriever" not in st.session_state:
|
71 |
-
|
72 |
-
st.session_state.retriever = my_vector_store.as_retriever(k=NUMBER_OF_VECTORS_FOR_RAG)
|
73 |
-
|
74 |
|
75 |
st.title("Insurance Bot")
|
76 |
-
|
77 |
-
# Display chat messages from history
|
78 |
-
container = st.container(height=600)
|
79 |
for message in st.session_state.messages:
|
80 |
if message["role"] != "system":
|
81 |
with container.chat_message(message["role"]):
|
@@ -84,7 +62,7 @@ for message in st.session_state.messages:
|
|
84 |
if prompt := st.chat_input("Enter your query here... "):
|
85 |
with container.chat_message("user"):
|
86 |
st.write(prompt)
|
87 |
-
st.session_state.messages.append({"role":"user"
|
88 |
|
89 |
with container.chat_message("assistant"):
|
90 |
response = response_generator(prompt=prompt)
|
@@ -94,4 +72,4 @@ if prompt := st.chat_input("Enter your query here... "):
|
|
94 |
|
95 |
print("Response is:", response)
|
96 |
st.session_state.rag_memory.save_context({'input': prompt}, {'output': response})
|
97 |
-
st.session_state.messages.append({"role":"assistant"
|
|
|
1 |
import streamlit as st
|
2 |
import random
|
3 |
+
from app_config import SYSTEM_PROMPT, NLP_MODEL_NAME, NUMBER_OF_VECTORS_FOR_RAG, NLP_MODEL_TEMPERATURE, NLP_MODEL_MAX_TOKENS, VECTOR_MAX_TOKENS, my_vector_store, chat, tiktoken_len
|
4 |
from langchain.memory import ConversationSummaryBufferMemory
|
5 |
from langchain_core.messages import SystemMessage, HumanMessage, AIMessage
|
6 |
from langchain.chains.summarize import load_summarize_chain
|
|
|
9 |
from dotenv import load_dotenv
|
10 |
from pathlib import Path
|
11 |
import os
|
12 |
+
|
13 |
env_path = Path('.') / '.env'
|
14 |
load_dotenv(dotenv_path=env_path)
|
15 |
|
16 |
+
# Initialize vector store and LLM outside session state
|
17 |
+
retriever = my_vector_store.as_retriever(k=NUMBER_OF_VECTORS_FOR_RAG)
|
18 |
+
llm = ChatGroq(temperature=NLP_MODEL_TEMPERATURE, groq_api_key=str(os.getenv('GROQ_API_KEY')), model_name=NLP_MODEL_NAME)
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
|
20 |
+
def response_generator(prompt: str) -> str:
|
21 |
try:
|
|
|
22 |
docs = retriever.invoke(prompt)
|
23 |
my_context = [doc.page_content for doc in docs]
|
24 |
my_context = '\n\n'.join(my_context)
|
25 |
+
system_message = SystemMessage(content=SYSTEM_PROMPT.format(context=my_context, previous_message_summary=st.session_state.rag_memory.moving_summary_buffer))
|
26 |
print(system_message)
|
27 |
chat_messages = (system_message + st.session_state.rag_memory.chat_memory.messages + HumanMessage(content=prompt)).messages
|
28 |
print("total tokens: ", tiktoken_len(str(chat_messages)))
|
29 |
+
response = llm.invoke(chat_messages)
|
|
|
30 |
return response.content
|
|
|
31 |
except Exception as error:
|
32 |
print(error, "ERROR")
|
33 |
return "Oops! something went wrong, please try again."
|
34 |
|
|
|
35 |
st.markdown(
|
36 |
"""
|
37 |
<style>
|
|
|
44 |
unsafe_allow_html=True,
|
45 |
)
|
46 |
|
47 |
+
# Initialize session state
|
|
|
|
|
48 |
if "messages" not in st.session_state:
|
49 |
+
st.session_state.messages = [{"role": "system", "content": SYSTEM_PROMPT}]
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
if "rag_memory" not in st.session_state:
|
51 |
+
st.session_state.rag_memory = ConversationSummaryBufferMemory(llm=llm, max_token_limit=5000)
|
|
|
|
|
52 |
if "retriever" not in st.session_state:
|
53 |
+
st.session_state.retriever = retriever
|
|
|
|
|
54 |
|
55 |
st.title("Insurance Bot")
|
56 |
+
container = st.container(height=600)
|
|
|
|
|
57 |
for message in st.session_state.messages:
|
58 |
if message["role"] != "system":
|
59 |
with container.chat_message(message["role"]):
|
|
|
62 |
if prompt := st.chat_input("Enter your query here... "):
|
63 |
with container.chat_message("user"):
|
64 |
st.write(prompt)
|
65 |
+
st.session_state.messages.append({"role": "user", "content": prompt})
|
66 |
|
67 |
with container.chat_message("assistant"):
|
68 |
response = response_generator(prompt=prompt)
|
|
|
72 |
|
73 |
print("Response is:", response)
|
74 |
st.session_state.rag_memory.save_context({'input': prompt}, {'output': response})
|
75 |
+
st.session_state.messages.append({"role": "assistant", "content": response})
|