Spaces:
Sleeping
Sleeping
Upload folder using huggingface_hub
Browse files- app.py +95 -66
- requirements.txt +9 -0
app.py
CHANGED
@@ -1,66 +1,95 @@
|
|
1 |
-
|
2 |
-
import
|
3 |
-
import
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
#
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Import necessary libraries
|
2 |
+
import numpy as np
|
3 |
+
import joblib # For loading the serialized model
|
4 |
+
import pandas as pd # For data manipulation
|
5 |
+
from flask import Flask, request, jsonify # For creating the Flask API
|
6 |
+
|
7 |
+
# Initialize the Flask application
|
8 |
+
super_kart_sales_predictor_api = Flask("Super Kart Sales Predictor")
|
9 |
+
|
10 |
+
# Load the trained machine learning model
|
11 |
+
model = joblib.load("super_kart_sales_prediction_model_v1_0.joblib")
|
12 |
+
|
13 |
+
# Define a route for the home page (GET request)
|
14 |
+
@super_kart_sales_predictor_api.get('/')
|
15 |
+
def home():
|
16 |
+
"""
|
17 |
+
This function handles GET requests to the root URL ('/') of the API.
|
18 |
+
It returns a simple welcome message.
|
19 |
+
"""
|
20 |
+
return "Welcome to the super kart sales Prediction API!"
|
21 |
+
|
22 |
+
# Define an endpoint for single property prediction (POST request)
|
23 |
+
@super_kart_sales_predictor_api.post('/v1/kart')
|
24 |
+
def predict_kart_sales():
|
25 |
+
"""
|
26 |
+
This function handles POST requests to the '/v1/rental' endpoint.
|
27 |
+
It expects a JSON payload containing property details and returns
|
28 |
+
the predicted rental price as a JSON response.
|
29 |
+
"""
|
30 |
+
# Get the JSON data from the request body
|
31 |
+
property_data = request.get_json()
|
32 |
+
|
33 |
+
# Extract relevant features from the JSON data
|
34 |
+
sample = {
|
35 |
+
'Product_Type': property_data['Product_Type'],
|
36 |
+
'Product_Weight': property_data['Product_Weight'],
|
37 |
+
'Product_MRP': property_data['Product_MRP'],
|
38 |
+
'Store_Type': property_data['Store_Type'],
|
39 |
+
'Store_Size': property_data['Store_Size'],
|
40 |
+
'Store_Location_City_Type': property_data['Store_Location_City_Type'],
|
41 |
+
'Product_Sugar_Content': property_data['Product_Sugar_Content'],
|
42 |
+
|
43 |
+
'Store_Id': property_data['Store_Id'],
|
44 |
+
|
45 |
+
'Product_Allocated_Area': property_data['Product_Allocated_Area'],
|
46 |
+
'Store_Establishment_Year': property_data['Store_Establishment_Year']
|
47 |
+
}
|
48 |
+
|
49 |
+
# Convert the extracted data into a Pandas DataFrame
|
50 |
+
input_data = pd.DataFrame([sample])
|
51 |
+
|
52 |
+
# Make prediction
|
53 |
+
predicted_sales = model.predict(input_data)[0]
|
54 |
+
|
55 |
+
|
56 |
+
|
57 |
+
# Convert predicted_price to Python float
|
58 |
+
predicted_sales = round(float(predicted_sales), 2)
|
59 |
+
# The conversion above is needed as we convert the model prediction (log price) to actual price using np.exp, which returns predictions as NumPy float32 values.
|
60 |
+
# When we send this value directly within a JSON response, Flask's jsonify function encounters a datatype error
|
61 |
+
|
62 |
+
# Return the actual price
|
63 |
+
return jsonify({'Predicted Sales (in dollars)': predicted_sales})
|
64 |
+
|
65 |
+
|
66 |
+
# Define an endpoint for batch prediction (POST request)
|
67 |
+
@super_kart_sales_predictor_api.post('/v1/salesbatch')
|
68 |
+
def predict_rental_price_batch():
|
69 |
+
"""
|
70 |
+
This function handles POST requests to the '/v1/rentalbatch' endpoint.
|
71 |
+
It expects a CSV file containing property details for multiple properties
|
72 |
+
and returns the predicted rental prices as a dictionary in the JSON response.
|
73 |
+
"""
|
74 |
+
# Get the uploaded CSV file from the request
|
75 |
+
file = request.files['file']
|
76 |
+
|
77 |
+
# Read the CSV file into a Pandas DataFrame
|
78 |
+
input_data = pd.read_csv(file)
|
79 |
+
|
80 |
+
# Make predictions for all properties in the DataFrame (get log_prices)
|
81 |
+
predicted_log_sales = model.predict(input_data).tolist()
|
82 |
+
|
83 |
+
# Calculate actual prices
|
84 |
+
predicted_sales = [round(float(np.exp(log_price)), 2) for log_price in predicted_log_sales]
|
85 |
+
|
86 |
+
# Create a dictionary of predictions with property IDs as keys
|
87 |
+
property_ids = input_data['id'].tolist() # Assuming 'id' is the property ID column
|
88 |
+
output_dict = dict(zip(property_ids, predicted_sales)) # Use actual prices
|
89 |
+
|
90 |
+
# Return the predictions dictionary as a JSON response
|
91 |
+
return output_dict
|
92 |
+
|
93 |
+
# Run the Flask application in debug mode if this script is executed directly
|
94 |
+
if __name__ == '__main__':
|
95 |
+
rental_price_predictor_api.run(debug=True)
|
requirements.txt
CHANGED
@@ -1,2 +1,11 @@
|
|
1 |
pandas==2.2.2
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
requests==2.28.1
|
|
|
|
|
|
1 |
pandas==2.2.2
|
2 |
+
numpy==2.0.2
|
3 |
+
scikit-learn==1.6.1
|
4 |
+
xgboost==2.1.4
|
5 |
+
joblib==1.4.2
|
6 |
+
Werkzeug==2.2.2
|
7 |
+
flask==2.2.2
|
8 |
+
gunicorn==20.1.0
|
9 |
requests==2.28.1
|
10 |
+
uvicorn[standard]
|
11 |
+
streamlit==1.43.2
|