bala-ai commited on
Commit
59f18d4
·
verified ·
1 Parent(s): 7748a4a

Upload folder using huggingface_hub

Browse files
Files changed (2) hide show
  1. app.py +95 -66
  2. requirements.txt +9 -0
app.py CHANGED
@@ -1,66 +1,95 @@
1
- import streamlit as st
2
- import pandas as pd
3
- import requests
4
-
5
- model_root_url = "https://bala-ai-KartSalesPredictionBackend.hf.space/v1/kart" # Base URL of the deployed Flask API on Hugging Face Spaces
6
-
7
-
8
- # Set the title of the Streamlit app
9
- st.title("Super Kart Sales Prediction")
10
-
11
- # Section for online prediction
12
- st.subheader("Online Prediction")
13
-
14
- # Collect user input for property features
15
- Product_Sugar_Content = st.selectbox("Room Type", ["Entire home/apt", "Private room", "Shared room"])
16
- Product_Type = st.number_input("Accommodates (Number of guests)", min_value=1, value=2)
17
- Store_Establishment_Year = st.number_input("Bathrooms", min_value=1, step=1, value=2)
18
- Store_Location_City_Type = st.selectbox("Cancellation Policy (kind of cancellation policy)", ["strict", "flexible", "moderate"])
19
- Store_Id = st.selectbox("Cleaning Fee Charged?", ["True", "False"])
20
- Product_MRP = st.selectbox("Instantly Bookable?", ["False", "True"])
21
- Product_Weight = st.number_input("Review Score Rating", min_value=0.1, max_value=100.0, step=1.0, value=90.0)
22
- Store_Size = st.number_input("Bedrooms", min_value=0, step=1, value=1)
23
- Product_Allocated_Area = st.number_input("Area", min_value=0.1, step=1, value=1)
24
-
25
- # Convert user input into a DataFrame
26
- input_data = pd.DataFrame([{
27
-
28
- "Product_Sugar_Content": Product_Sugar_Content,
29
- "Product_Type": Product_Type,
30
- "Store_Establishment_Year": Store_Establishment_Year,
31
- "Store_Location_City_Type": Store_Location_City_Type,
32
- "Store_Id": Store_Id,
33
- "Product_MRP": Product_MRP,
34
- "Product_Weight": Product_Weight,
35
- "Store_Size": Store_Size,
36
- "Store_Type" : Store_Type,
37
- "Product_Allocated_Area" : Product_Allocated_Area
38
-
39
-
40
- }])
41
-
42
- # Make prediction when the "Predict" button is clicked
43
- if st.button("Predict"):
44
- response = requests.post(model_root_url, json=input_data.to_dict(orient='records')[0]) # Send data to Flask API
45
- if response.status_code == 200:
46
- prediction = response.json()['Predicted Price (in dollars)']
47
- st.success(f"Predicted Rental Price (in dollars): {prediction}")
48
- else:
49
- st.error("Error making prediction.")
50
-
51
- # Section for batch prediction
52
- st.subheader("Batch Prediction")
53
-
54
- # Allow users to upload a CSV file for batch prediction
55
- uploaded_file = st.file_uploader("Upload CSV file for batch prediction", type=["csv"])
56
-
57
- # Make batch prediction when the "Predict Batch" button is clicked
58
- if uploaded_file is not None:
59
- if st.button("Predict Batch"):
60
- response = requests.post("https://<username>-<repo_id>.hf.space/v1/rentalbatch", files={"file": uploaded_file}) # Send file to Flask API
61
- if response.status_code == 200:
62
- predictions = response.json()
63
- st.success("Batch predictions completed!")
64
- st.write(predictions) # Display the predictions
65
- else:
66
- st.error("Error making batch prediction.")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Import necessary libraries
2
+ import numpy as np
3
+ import joblib # For loading the serialized model
4
+ import pandas as pd # For data manipulation
5
+ from flask import Flask, request, jsonify # For creating the Flask API
6
+
7
+ # Initialize the Flask application
8
+ super_kart_sales_predictor_api = Flask("Super Kart Sales Predictor")
9
+
10
+ # Load the trained machine learning model
11
+ model = joblib.load("super_kart_sales_prediction_model_v1_0.joblib")
12
+
13
+ # Define a route for the home page (GET request)
14
+ @super_kart_sales_predictor_api.get('/')
15
+ def home():
16
+ """
17
+ This function handles GET requests to the root URL ('/') of the API.
18
+ It returns a simple welcome message.
19
+ """
20
+ return "Welcome to the super kart sales Prediction API!"
21
+
22
+ # Define an endpoint for single property prediction (POST request)
23
+ @super_kart_sales_predictor_api.post('/v1/kart')
24
+ def predict_kart_sales():
25
+ """
26
+ This function handles POST requests to the '/v1/rental' endpoint.
27
+ It expects a JSON payload containing property details and returns
28
+ the predicted rental price as a JSON response.
29
+ """
30
+ # Get the JSON data from the request body
31
+ property_data = request.get_json()
32
+
33
+ # Extract relevant features from the JSON data
34
+ sample = {
35
+ 'Product_Type': property_data['Product_Type'],
36
+ 'Product_Weight': property_data['Product_Weight'],
37
+ 'Product_MRP': property_data['Product_MRP'],
38
+ 'Store_Type': property_data['Store_Type'],
39
+ 'Store_Size': property_data['Store_Size'],
40
+ 'Store_Location_City_Type': property_data['Store_Location_City_Type'],
41
+ 'Product_Sugar_Content': property_data['Product_Sugar_Content'],
42
+
43
+ 'Store_Id': property_data['Store_Id'],
44
+
45
+ 'Product_Allocated_Area': property_data['Product_Allocated_Area'],
46
+ 'Store_Establishment_Year': property_data['Store_Establishment_Year']
47
+ }
48
+
49
+ # Convert the extracted data into a Pandas DataFrame
50
+ input_data = pd.DataFrame([sample])
51
+
52
+ # Make prediction
53
+ predicted_sales = model.predict(input_data)[0]
54
+
55
+
56
+
57
+ # Convert predicted_price to Python float
58
+ predicted_sales = round(float(predicted_sales), 2)
59
+ # The conversion above is needed as we convert the model prediction (log price) to actual price using np.exp, which returns predictions as NumPy float32 values.
60
+ # When we send this value directly within a JSON response, Flask's jsonify function encounters a datatype error
61
+
62
+ # Return the actual price
63
+ return jsonify({'Predicted Sales (in dollars)': predicted_sales})
64
+
65
+
66
+ # Define an endpoint for batch prediction (POST request)
67
+ @super_kart_sales_predictor_api.post('/v1/salesbatch')
68
+ def predict_rental_price_batch():
69
+ """
70
+ This function handles POST requests to the '/v1/rentalbatch' endpoint.
71
+ It expects a CSV file containing property details for multiple properties
72
+ and returns the predicted rental prices as a dictionary in the JSON response.
73
+ """
74
+ # Get the uploaded CSV file from the request
75
+ file = request.files['file']
76
+
77
+ # Read the CSV file into a Pandas DataFrame
78
+ input_data = pd.read_csv(file)
79
+
80
+ # Make predictions for all properties in the DataFrame (get log_prices)
81
+ predicted_log_sales = model.predict(input_data).tolist()
82
+
83
+ # Calculate actual prices
84
+ predicted_sales = [round(float(np.exp(log_price)), 2) for log_price in predicted_log_sales]
85
+
86
+ # Create a dictionary of predictions with property IDs as keys
87
+ property_ids = input_data['id'].tolist() # Assuming 'id' is the property ID column
88
+ output_dict = dict(zip(property_ids, predicted_sales)) # Use actual prices
89
+
90
+ # Return the predictions dictionary as a JSON response
91
+ return output_dict
92
+
93
+ # Run the Flask application in debug mode if this script is executed directly
94
+ if __name__ == '__main__':
95
+ rental_price_predictor_api.run(debug=True)
requirements.txt CHANGED
@@ -1,2 +1,11 @@
1
  pandas==2.2.2
 
 
 
 
 
 
 
2
  requests==2.28.1
 
 
 
1
  pandas==2.2.2
2
+ numpy==2.0.2
3
+ scikit-learn==1.6.1
4
+ xgboost==2.1.4
5
+ joblib==1.4.2
6
+ Werkzeug==2.2.2
7
+ flask==2.2.2
8
+ gunicorn==20.1.0
9
  requests==2.28.1
10
+ uvicorn[standard]
11
+ streamlit==1.43.2