import io import json import re import gradio as gr import pandas as pd import plotly import plotly.express as px from pandas.api.types import is_numeric_dtype from pipeline.config import LLMBoardConfig, QueriesConfig from app_constants import README, JS, TIME_PERIODS_EXPLANATION_DF from itertools import chain queries_config = QueriesConfig() output_types_df = pd.DataFrame( {"Output Type": queries_config.query_template.keys(), "Added text": queries_config.query_template.values()} ) summary_df: pd.DataFrame = pd.read_csv("data/summary.csv") time_of_day_comparison_df = pd.read_csv("data/time_of_day_comparison.csv") general_plots = pd.read_csv("data/general_plots.csv") model_costs_df = pd.read_csv("data/model_costs.csv") time_of_day_plots = pd.read_csv("data/time_of_day_plots.csv") summary_metrics_plots = pd.read_csv("data/summary_metrics_plots.csv") output_plots = pd.read_csv("data/output_plots.csv") combined_plots = pd.read_csv("data/combined_plots.csv") searched_query = "" collapse_languages = False collapse_output_method = False def filter_dataframes(input: str): global searched_query input = input.lower() searched_query = input return get_updated_dataframes() def collapse_languages_toggle(): global collapse_languages if collapse_languages: collapse_languages = False button_text = "Collapse languages" else: collapse_languages = True button_text = "Un-collapse languages" return get_updated_dataframes()[0], button_text def collapse_output_method_toggle(): global collapse_output_method if collapse_output_method: collapse_output_method = False button_text = "Collapse output method" else: collapse_output_method = True button_text = "Un-collapse output method" return get_updated_dataframes()[0], button_text def filter_dataframe_by_models(df, searched_model_names): if not searched_model_names: return df filter_series = df.model == "" # False values for n in searched_model_names: filter_series = filter_series | df.model.str.lower().str.contains(n) return df[filter_series] def get_updated_dataframes(): global collapse_languages, collapse_output_method, searched_query, summary_df, time_of_day_comparison_df, model_costs_df summary_df_columns = summary_df.columns.to_list() group_columns = LLMBoardConfig().group_columns.copy() if collapse_languages: summary_df_columns.remove("language") group_columns.remove("language") if collapse_output_method: summary_df_columns.remove("template_name") group_columns.remove("template_name") summary_df_processed = summary_df[summary_df_columns].groupby(by=group_columns).mean().reset_index() searched_model_names = searched_query.split("|") searched_model_names = [n.lower().strip() for n in searched_model_names] searched_model_names = [n for n in searched_model_names if n] def for_dataframe(df): return dataframe_style(filter_dataframe_by_models(df, searched_model_names)) return ( for_dataframe(summary_df_processed), for_dataframe(time_of_day_comparison_df), for_dataframe(model_costs_df), ) def dataframe_style(df: pd.DataFrame): df = df.copy() column_formats = {} new_column_names = [] for column in df.columns: if is_numeric_dtype(df[column]): if column == "execution_time": column_formats[column] = "{:.4f}" else: column_formats[column] = "{:.2f}" new_column_name = snake_case_to_title(column) if "time" in column and column != "time_of_day": new_column_name += " (Seconds)" elif "chunk" in column: new_column_name += " (Characters)" new_column_names.append(new_column_name) df.columns = new_column_names df = df.style.format(column_formats, na_rep="") return df def snake_case_to_title(text): # Convert snake_case to title-case words = re.split(r"_", text) title_words = [word.capitalize() for word in words] return " ".join(title_words) plots = [] def display_plot(plot_df_row): row = dict(plot_df_row) plot = plotly.io.from_json(row["plot_json"]) plot.update_layout(autosize=True) return (gr.Plot(plot, label=row["header"], scale=1), plot) def display_filtered_plot(plot_df_row): row = dict(plot_df_row) plot_element, plot = display_plot(plot_df_row) if "description" in row and pd.notna(row["description"]): description_element = gr.Markdown(str(row["description"])) else: description_element = gr.Markdown(value="", visible=False) plots.append((plot_element, description_element, plot, row)) def filter_plots(searched_query: str): searched_model_names = searched_query.split("|") searched_model_names = [n.lower().strip() for n in searched_model_names] searched_model_names = [n for n in searched_model_names if n] results = [] for plot_display, description_element, plot, row in plots: visible = True if "df" in row and pd.notna(row["df"]): buffer = io.StringIO(row["df"]) df = pd.read_csv(buffer) df = filter_dataframe_by_models(df, searched_model_names) plot_constructor = px.bar if "plot_type" in row and pd.notna(row["plot_type"]) and row["plot_type"]: if row["plot_type"] == "scatter": plot_constructor = px.scatter plot = plot_constructor(df, **json.loads(row["arguments"])) plot.update_layout(autosize=True) elif "for model" in row["header"] and searched_model_names: plot_model = row["header"].split("for model")[1].lower() if not any(n in plot_model for n in searched_model_names): visible = False results.append(gr.Plot(plot, visible=visible)) if not description_element.value: visible = False results.append(gr.Markdown(visible=visible)) return results with gr.Blocks(theme=gr.themes.Default(text_size="lg"), js=JS) as demo: gr.HTML("

Performance LLM Board

") with gr.Row(): filter_textbox = gr.Textbox(label="Model name parts *", scale=2, elem_id="filter-textbox") filter_button = gr.Button("Filter", scale=1, elem_id="filter-button") with gr.Column(scale=1): open_ai_button = gr.Button("Compare Open AI models", elem_id="open-ai-button", scale=1) google_button = gr.Button("Compare Google Models", elem_id="google-button", scale=1) # gr.Button("Open Models", size="sm") gr.Markdown( '      \* You can use `|` operator to display multiple models at once, for example "gpt|mistral|zephyr"' ) with gr.Tab("About this project"): gr.Markdown( README.format( queries_config.base_query_template.replace("```", "'''"), output_types_df.to_markdown(index=False) ) ) with gr.Tab("Performance by time of the day"): # display only first plot for all models time_of_day_plots[0:1].apply(display_filtered_plot, axis=1) time_periods_explanation_ui = gr.DataFrame( dataframe_style(TIME_PERIODS_EXPLANATION_DF), label="Times of day ranges" ) time_of_day_comparison_ui = gr.DataFrame(dataframe_style(time_of_day_comparison_df), label="Time of day") gr.Markdown( """\ These measurements were made by testing the models using the same dataset as in the other comparisons every hour for 24 hours. Execution time refers to averaged time needed to execute one query. Hours and times of day in the table and in the plot are based on Central European Time. Measurements were made during a normal work week. """ ) # display rest of the plots time_of_day_plots[1:].apply(display_filtered_plot, axis=1) with gr.Tab("Output characteristics"): with gr.Row(): collapse_languages_button = gr.Button("Collapse languages") collapse_output_method_button = gr.Button("Collapse output method") summary_ui = gr.DataFrame(dataframe_style(summary_df), label="Output characteristics") gr.Markdown( """\ This table compares output characteristics of different models which include execution time, output size and chunking of the output. Some providers and models don't support output chunking, in this case chunk related fields are left empty. Execution time refers to averaged time needed to execute one query. To count words we split the output string by whitespace `\w` regex character. Chunk sizes are measured in the characters count.""" ) output_plots.apply(display_filtered_plot, axis=1) with gr.Tab("Costs comparison"): models_costs_ui = gr.DataFrame(dataframe_style(model_costs_df), label="Costs comparison") gr.Markdown( """\ Provider pricing column contains pricing from the website of the provider. Hugging Face Inference Endpoints are charged by hour so to compare different providers together, for models hosted this way we calculated "Cost Per Token" column using data collected during the experiment. Note that pause and resume time cost was not included in the "Cost Per Token" column calculation. """ ) general_plots[general_plots.plot_name == "execution_costs"].apply(display_filtered_plot, axis=1) with gr.Tab("Context length and parameters count"): general_plots[general_plots.plot_name != "execution_costs"].apply(display_filtered_plot, axis=1) gr.Markdown( """ LLM models context length and parameters count are based on release blogs and documentation of their respective developers. A lot of models had to be omitted due to their developers not disclosing their parameters count. Mainly OpenAI's GPT models and Google's Palm 2. """ ) with gr.Tab("Summary quality metrics"): summary_metrics_plots.apply(display_filtered_plot, axis=1) with gr.Tab("Comprehensive models comparison"): with gr.Row(): choices = combined_plots.header choices = choices[choices.str.contains("for model")] choices = choices.str.split("for model").apply(lambda x: x[1]) def handle_dropdown(dropdown, plot_element): def dropdown_change_handler(value): for _, row in combined_plots.iterrows(): if value in row["header"]: return display_plot(row)[0] dropdown.change( fn=dropdown_change_handler, inputs=[dropdown], outputs=[plot_element], api_name="dropdown_change_handler", ) with gr.Column(): dropdown = gr.Dropdown(choices.tolist(), label="First model for comparison", value=choices.iloc[0]) plot_element, plot = display_plot(combined_plots.iloc[3]) handle_dropdown(dropdown, plot_element) with gr.Column(): dropdown = gr.Dropdown(choices.tolist(), label="Second model for comparison", value=choices.iloc[1]) plot_element, plot = display_plot(combined_plots.iloc[4]) handle_dropdown(dropdown, plot_element) gr.Markdown(""" Radial plots are used to compare the most important aspects of each model researched on this board using single images. All values are normalized and scaled into 0.25 to 1 range, 0 is left for unknown values. Some metrics were reversed in order to make the plots more readable, for example "Fast execution" is `1 - execution_time` scaled to 0-1 range and moved 0.25 units up as mentioned above. To compare the parameters more thoroughly use the filtering box on top of this page and inspect individual tabs. """) combined_plots.apply(display_filtered_plot, axis=1) filter_button.click( fn=filter_dataframes, inputs=filter_textbox, outputs=[summary_ui, time_of_day_comparison_ui, models_costs_ui], api_name="filter_dataframes", ) filter_textbox.submit( fn=filter_dataframes, inputs=filter_textbox, outputs=[summary_ui, time_of_day_comparison_ui, models_costs_ui], api_name="filter_dataframes", ) filter_button.click( fn=filter_plots, inputs=filter_textbox, outputs=list(chain.from_iterable([v[0:2] for v in plots])), api_name="filter_plots", ) filter_textbox.submit( fn=filter_plots, inputs=filter_textbox, outputs=list(chain.from_iterable([v[0:2] for v in plots])), api_name="filter_plots", ) collapse_languages_button.click( fn=collapse_languages_toggle, outputs=[summary_ui, collapse_languages_button], api_name="collapse_languages_toggle", ) collapse_output_method_button.click( fn=collapse_output_method_toggle, outputs=[summary_ui, collapse_output_method_button], api_name="collapse_output_method_toggle", ) demo.launch()